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Abstract

We have sequenced the whole genomes of eight proven Holstein bulls from the four half-sib

or full-sib families with extremely high and low estimated breeding values (EBV) for milk pro-

tein percentage (PP) and fat percentage (FP) using Illumina re-sequencing technology.

Consequently, 2.3 billion raw reads were obtained with an average effective depth of 8.1×.

After single nucleotide variant (SNV) calling, total 10,961,243 SNVs were identified, and

57,451 of them showed opposite fixed sites between the bulls with high and low EBVs within

each family (called as common differential SNVs). Next, we annotated the common differen-

tial SNVs based on the bovine reference genome, and observed that 45,188 SNVs

(78.70%) were located in the intergenic region of genes and merely 11,871 SNVs (20.67%)

located within the protein-coding genes. Of them, 13,099 common differential SNVs that

were within or close to protein-coding genes with less than 5 kb were chosen for identifica-

tion of candidate genes for milk compositions in dairy cattle. By integrated analysis of the

2,657 genes with the GO terms and pathways related to protein and fat metabolism, and the

known quantitative trait loci (QTLs) for milk protein and fat traits, we identified 17 promising

candidate genes: ALG14, ATP2C1, PLD1, C3H1orf85, SNX7, MTHFD2L, CDKN2D,

COL5A3, FDX1L, PIN1, FIG4, EXOC7, LASP1, PGS1, SAO, GPLD1 and MGEA5. Our find-

ings provided an important foundation for further study and a prompt for molecular breeding

of dairy cattle.

Introduction

Milk yield, milk protein and fat traits are main economic traits and important breeding goals

of dairy industry. Compared to the standard phenotypic data based methods, marker-assisted
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selection is expected to lead faster genetic progress by using information at the DNA level. Of

note, genomic selection (GS) with the application of high density SNP chips has become the

most popular and efficient technology in dairy cattle breeding since the first report of GS in

2001 by Meuwissen et al [1, 2]. Using publicly available quantitative trait loci (QTLs) and

genome-wide association study (GWAS) data can improve the accuracy of whole genome pre-

diction (WGP) compared to the chip-based GBLUP and BayesB methods et al[3]. Over the last

few decades, with linkage (LA) or linkage and linkage disequilibrium (LA/LD) analysis, candi-

date genes approach and genome-wide association analysis (GWAS)[4], a great amount of

QTLs and genetic associations for milk yield and milk composition have been identified in

dairy cattle since the first report of QTL mapping in Holstein by Georges et al [5]. So far, the

Cattle QTL database contains 3,996, 17,677, and 19,895 loci for milk yield, milk protein and

fat, respectively (December 23, 2018, http://www.animalgenome.org/cgi-bin/QTLdb/). None-

theless, merely DGAT1, GHR, and ABCG2 gene have been validated to be true major genes for

milk composition traits until now [6–11].

In recent years, the development of bioinformatics software and cost reduction of next gen-

eration sequencing (NGS) has opened a new era for genomics and molecular biology[12].

Compared to the traditional Sanger capillary electrophoresis sequencing method [13, 14],

NGS technologies that is massively parallel DNA sequencing methods, provide higher

throughput data with lower cost and make population-scale genome research possible[15–17].

Moreover, NGS can detect rare mutations, solve the disequilibrium between the rare causal

mutations, genotype SNPs and distinguish structural variants [15, 18]. As for all kinds of vari-

ants, single nucleotide polymorphisms (SNPs) are the most widespread and wide-used in iden-

tification of genes for complex traits [19, 20]. Some whole genome resequencing studies in

cattle have been reported on SNPs and copy number variations (CNVs) for genetic differences

between the Black Angus and Holstein[21], Hanwoo-specific structural variations and selec-

tion signatures for meat quality and disease resistance traits in Hanwoo [22], haplotype under

selection in USA Holstein [23] and evolutionary analysis in Japanese Kuchinoshima-Ushi

[24]. In our previous studies, we detected some CNVs and insertions and deletions (indels)

associated with milk protein and fat in Chinese Holstein [25, 26]. In the present study, we

searched for differential SNVs between the Holstein bulls with extremely high and low esti-

mated breeding values (EBVs) for milk protein percentage (PP) and fat percentage (FP) traits

based on whole genome sequencing data, and identified candidate genes for milk composi-

tions by integrating biological functions and the known QTL data.

Materials and methods

Sample selection and resequencing

Eight Holstein bulls were selected from the Beijing Dairy Cattle Center (http://www.bdcc.com.

cn/) that consisted of four full-sib and/or half-sib families, and each family contain s two bulls

who have extremely high and low EBVs for milk protein percentage (PP) and fat percentage

(FP) with reliabilities of more than 0.85. The detailed information of the 8 bulls were described

previously [25, 26].

The frozen semen samples were used for genomic DNA collection with the standard phe-

nol/chloroform extraction method. 1% agarose gels and Nano Drop 2000 (Thermo Scientific

Inc. Waltham, DE, USA) were performed for the DNA concentration and purity control. The

purified DNAs were then used for library construction. Eight paired-end libraries (read

length = 2×100 bp) with one library for each bull were constructed, and subsequently

sequenced on Illumina Hiseq2000 instruments (Illumina Inc., San Diego, CA, USA).

SNV discovery and gene identification for milk composition based on whole genome resequencing of Holstein
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Read mapping and SNV calling

By using the Burrows–Wheeler Alignment tool (BWA ver. 0.6.2)[27], the sequenced reads

were aligned to the bovine reference genome assembly UMD3.1.69 (ftp://ftp.ensembl.org/pub/

release-69/fasta/bos_taurus/dna/) with the default parameters. NGS QC Toolkit with default

parameters was applied to reduce mapping error rate [28]. By comparing 8 individual

sequence to the bovine reference genome respectively, we called SNVs for each bull based on

SAM tools (ver. 0.1.19)[29] with following criteria: base quality score�20; read depth <100

for each individual; and non-reference allele supporting reads>3. Based on this, 8 sets of SNV

data for 8 bulls could be obtained.

Functional annotation and SNV filtering

After SNV calling, the SNVs were annotated by ANNOVAR[30] using the RefSeq gene sets

(14,912 genes; the gene sets is available from the UCSC download site http://hgdownload.cse.

ucsc.edu/goldenPath/bosTau6/database/). The region that was close to a gene with less than

1kb was defined as upstream/downstream and that with more than 1kb was defined as inter-

genic region.

Afterwards, every single nucleotide which was polymorphic between the two bulls with

high and low EBVs within each family was preserved. Then the SNVs with opposite fixed sites

across four families were chosen and defined as ‘common differential SNVs’. Fixed sites,

which were SNVs with opposite fixed alleles in the high and low group were used for identifi-

cation of candidate genes.

Functional enrichment analysis

After annotation, we selected the genes that included or were closed to the common differential

SNVs with less than 5 kb. Then, we performed Gene Ontology (GO), Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway and Medical Subject Headings (MeSH) enrichment for

these genes. KOBAS tool(http://kobas.cbi.pku.edu.cn/) was used for GO and KEGG pathway

enrichment and MeSH ORA was applied for MeSH enrichement[31–33].All packages used in

MeSH analysis are available in the releases of BIOCONDUCTOR (http://bioconductor.org/).

P value of<0.05 determined by Fisher’s exact test was set as the criteria for significance.

Apart from the genes that were referred in the significantly enriched pathways, we also

remained the genes that were not significantly enriched but involved in the 8 well-known path-

ways related to protein, fat, and fatty acid metabolisms based on the KEGG pathway website

(http://www.kegg.jp/), including mTOR, insulin, AMPK, PPAR, Jak-STAT, PI3K-Akt, MAPK,

and TGF-β.

Positions comparison with known QTL database

Afterwards, we obtained the genetic position of each gene based on its physical position and

compared with the confidence intervals and the peak positions of the previously reported

QTLs that have been shown to be associated with milk composition traits (http://www.

animalgenome.org/cgi-bin/QTLdb). The genes that were close to the peaks of QTLs with less

than 1 cM were remained.

Results

Read mapping and SNV detection

With Illumina HiSeq 2000, we sequenced the genomic DNA samples of the eight Holstein

bulls with extremely high and low EBVs for milk protein percentage and milk fat percentage

SNV discovery and gene identification for milk composition based on whole genome resequencing of Holstein
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[25, 26]. As a result, a total of 2,303,781,449 raw reads were obtained. Of these, 2,055,337,835

reads (91.71%) were finally mapped to the reference genome (UMD 3.1.69) while the average

proportion of uniquely mapped reads was 82.62% with an average depth of 8.1×, and the

genome coverage was approximately 98% in each individual.

By using SAM tools with variant filtration process, 10,961,243 SNVs were identified in total

after removing duplicates among 8 bulls at an average of 4,560,713 within each individual

(Table 1).

SNV annotation and genomic distribution

The 10,945,507 SNVs were annotated based on the bovine gene set in RefSeq database (includ-

ing 14,912 genes) (S1 Table). Most of the SNVs (79.63%) were detected in intergenic region,

and 2,156,190 (19.70%) SNVs were located within genes including introns (19.13%), exons

(0.32%) and untranslated regions (UTR) (0.24%), and other region (0.68%) (ncRNA_exonic,

ncRNA_intronic and up/downstream) (Table 2 and Fig 1). Of the total 35,505 exonic SNVs,

11,843 nonsynonymous nucleotide substitutions were included.

Identification of common differential SNVs

Out of the 10,945,507 annotated SNVs, 57,451 that were fixed sites between the bulls with

extremely high and low EBVs across four families were chosen for the further analysis, which

number across chromosomes ranged from 761 to 5,044 (Fig 2). As a result of annotation,

57,419 common differential SNVs were successfully classified into 9 functional categories: the

majority was found in intergenic and intronic regions (78.70% and 20.10%, respectively),

whereas fewer SNVs were located in exon (0.31%), exonic ncRNA (0.003%), UTR (0.26%) and

up/downstream (0.63%) (Table 3 and Fig 3).

Subsequently, we further identified 2,657 protein-coding genes that included or were

nearby the common differential SNVs with less than 5 kb. Of these, 13,099 SNVs were

remained, including 11,498 (87.78%) in intron, 176 (1.34%) in exon, 154 (1.18%) in UTR, and

355 (2.71%) in upstream/downstream while only 6.99% were detected in intergenic region

(Table 4 and Fig 4).

Genes Ontology and pathway analyses

To further identify candidate genes for milk protein and fat traits, we performed functional

analysis on the above-mentioned 2,657 genes with KOBAS online tool and MeSH ORA. A

total of 6,819 GO terms and 286 KEGG pathways were observed, among them with 1,011

terms and 73 pathways were significantly enriched (P<0.05; S2 Table). 23 significant MeSH

Table 1. Summary of the sequencing result and SNV counts for 8 extreme Holstein bulls.

Sib-family Sample Raw reads Mapped reads Mapped reads (%) Uniquely mapped reads (%) Genome coverage (%) Sequencing depth(X) SNV

full-sib1 high 1 289,952,310 261,783,075 92.01 82.9 98.58 8 4,925,685

low 1 286,870,238 252,201,294 90.24 80.88 98.55 8 4,636,009

full-sib2 high 2 292,878,886 257,840,281 91.28 82.97 98.59 8 5,075,588

low 2 272,948,496 241,748,531 91.48 81.69 98.52 8 4,166,954

half-sib1 high 3 251,953,446 218,677,291 89.03 81.15 98.34 7 4,306,882

low 3 337,815,303 314,651,325 96.73 83.75 98.4 10 5,403,284

half-sib2 high 4 288,003,254 253,311,627 91.01 82.45 98.61 8 4,572,191

low 4 283,359,516 255,124,411 91.89 85.16 98.57 8 3,399,107

average 287,972,681 256,917,229 91.71 82.62 98.52 8.1 4,560,713

https://doi.org/10.1371/journal.pone.0220629.t001
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terms were detected by MeSH ORA(P<0.05; S3 Table). Of these, 29 genes was enriched in

Mesh term of Amino Acids (MeSH:D000596) in the Chemicals and Drugs category which was

associated with protein synthesis and metabolism Thereby, we identified 1,354 genes that were

involved in 133 significant GO terms, pathways and Mesh terms relevant to protein, lipid, and

fatty acid synthesis and metabolism such as protein metabolic, cellular protein modification,

lipid modification, phospholipid metabolic, glycerophospholipid metabolic, sphingolipid

metabolism, glycerolipid metabolic, fat cell differentiation, insulin resistance, insulin secretion

and MAPK signaling pathways.

Besides the genes which were significantly enriched in pathways associated with protein

and fat synthesis and metabolism, we selected 23 additional genes that were not significantly

enriched but participated in six well-known pathways such as mTOR, AMPK, Jak-STAT,

PI3K-Akt, PPAR and TGF-β.Thus, 1,377 candidate genes were obtained for milk protein and

fat traits.

Position comparison with known QTLs and identification of promising

candidates associated with milk protein and fat traits

We further compared the physical positions of the 1,377 candidate genes with the previously

reported QTLs for milk fat and protein in dairy cattle (http://www.animalgenome.org/cgi-bin/

QTLdb). Consequently, 94 genes were found to be adjacent to the peak positions of QTLs with

less than 1.0 cM. Of these, 17 genes with 21 common differential SNVs in exon, UTR,

upstream and downsteam were identified as promising candidates affecting milk protein and

fat traits. They included UDP-N-acetylglucosaminyltransferase subunit (ALG14), ATPase

secretory pathway Ca2+ transporting 1 (ATP2C1), phosphatidylcholine-specific (PLD1),

Table 2. Annotation of 10,945,507 SNVs across 8 bulls.

Category Number of SNP Percentage of SNP %1

intergenic 8,715,765 79.63

upstreama 33,515 0.31

downstreamb 36,840 0.34

upstream and downstreamc 624 0.01

3’ UTR 22,495 0.21

5’ UTR 3,832 0.04

ncRNA__exonicd 216 0.002

ncRNA__intronice 2357 0.02

intronic 2,094,358 19.13

exonic 0.32

nonsynonymous 11,843

synonymous 19,617

stop gain 75

stop loss 5

unknown 3,965

1Percentage was calculated based on total annotated SNVs.
aupstream from the nearest gene (<1kb).
bdownstream away from the nearest gene (<1kb).
cvariant located in both upstream and downstream regions for two different genes (<1kb).
dnon-coding RNA expressed within exon of a gene
enon-coding RNA expressed within intron of a gene

https://doi.org/10.1371/journal.pone.0220629.t002
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glycosylated lysosomal membrane protein (C3H1orf85), sorting nexin 7 (SNX7), methylenete-

trahydrofolate dehydrogenase (NADP+ dependent) 2 like (MTHFD2L), cyclin dependent

kinase inhibitor 2D (CDKN2D), alpha3 (V) collagen chain (COL5A3), ferredoxin 1-like

(FDX1L), NIMA-interacting 1(PIN1), phosphoinositide 5-phosphatase (FIG4), exocyst com-

plex component 7 (EXOC7), LIM and SH3 protein 1 (LASP1), phosphatidylglycerophosphate

synthase 1 (PGS1), primary amine oxidase, liver isozyme (SAO), glycosylphosphatidylinositol

specific phospholipase D1 (GPLD1) and OGA O-GlcNAcase (MGEA5). The alleles of the com-

mon differential SNV in high and low groups and the adjacent QTLs of 17 candidate genes

were shown in Tables 5 and 6, respectively.

Discussion

In this study, based on the whole genome resequencing data of 8 proven Holstein bulls from

the four half-sib or full-sib families with extremely high and low EBVs for milk protein and fat

percentages, we obtained 57,419 common differential SNVs between high and low groups, and

further identified 17 promising candidate genes for milk composition traits by integrating the

positions of SNVs in gene regions, the known QTLs and the biological functions of genes.

Since the first report of SNV detection by the whole genome resequencing in cattle, a num-

ber of SNVs have been detected in different cattle breeds. In this study, a total of 10,961,243

SNVs were identified in 8 Holstein bulls (average 4,560,713 for each), which was much more

than those in Holstein bulls reported by Paul et al. (SNP = 3,755,663) [21], but fewer than

other Holstein bulls studies(SNP = 12,434,860 and 26.7 million, respectively)[23, 47]. This was

probably due to the different sequencing depth and coverage.

Fig 1. Distribution of the 10,945,507 annotated SNVs according to the functional category. After annotation of all SNVs among eight bulls, we found 8,715,765

intergenic SNVs (away from protein-coding genes more than 1 kb), 70,979 up/downstream SNVs, 2,573 ncRNA SNVs, 2,094,358 intronic SNVs, 26,327 untranslated

regions (UTRs), 19,617 synonymous SNVs, 11,843 nonsynonymous substitutions, 75 stop gain SNVs, 5 stop loss SNVs and 3,965 unknown.

https://doi.org/10.1371/journal.pone.0220629.g001
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Candidate genes

The 17 identified promising candidate genes that contained one or two common differential

SNVs were specifically illustrated follow.

Candidate genes with SNV in exon. SNV in exon of a gene, especially nonsynonymous

variants, potentially had a bigger influence on gene function. COL5A3 with a nonsynonymous

SNV in exon 2 encodes collagen type V alpha 3 belong to a superfamily of proteins. COL5A3
takes part in protein digestion, absorption and PI3K-Akt signaling pathway. Previous study

found that obese black women exhibited higher expression of COL5A1 (collagen Valpha1),

and COL6A1 (collagen VIalpha1) than obese white women in gluteal [48]. In our previous

RNA sequencing study among 3 milking period Holstein cattle, Collagen VI was found

involved in regulating fat metabolism[49]. COL5A3 is an important element of the microenvi-

ronment of certain highly specialized cell types in white adipose tissue and have profound

effects on function of such cells [50]. Actually, nonsynonymous and synonymous coding SNPs

show similar likelihood and effect size of traits [51–54]. ATP2C1 with 2 synonymous SNVs

encodes a protein belongs to the family of P-type cation transport ATPases which catalyzes the

hydrolysis of ATP coupled with the transport of calcium ions. ATP2C1 activity is associated

with the sphingomyelin content of the trans-Golgi network membrane and it regulates

Fig 2. The number of common differential SNVs in each chromosome. Each point represents the location of a SNV on chromosome and the number above every

chromosome represents the counts of SNV in this chromosome.

https://doi.org/10.1371/journal.pone.0220629.g002
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proteases within the trans-Golgi network that require for virus glycoprotein maturation [55,

56]. The study of rat demonstrated that ATP2C1 played a role in the control of beta-cell Ca (2

+) homeostasis and insulin secretion [57]. In addition, Golgi Ca2+/H+ antiporter as a contrib-

utor to mammary Golgi calcium transport needs was related to the role of ATP2C1 and

ATP2C2 [58]. PLD1 encodes a phosphatidylcholine-specific phospholipase which catalyzes the

hydrolysis of phosphatidylcholine in order to yield phosphatidic acid and choline. The defi-

ciency of PLD1 or PLD2 activity promotes elevated free fatty acids (FFA) levels and are insulin

as well as glucose intolerant[59]. Besides, PLD1 regulates COPII vesicle transport from the

endoplasmic reticulum (ER) to the Golgi apparatus by regulating Sec13/31 recruitment from

the cytosol to the ER membrane during COPII vesicle formation [60]. EXOC7 encodes a pro-

tein which is a component of the exocyst complex that plays a critical role in vesicular traffick-

ing and the secretory pathway by targeting post-Golgi vesicles to the plasma membrane.

EXOC7 is a direct substrate of the extracellular signal-regulated kinases 1/2, their phosphoryla-

tion enhances the binding of EXOC7 to other exocyst components and promotes the assembly

of the exocyst complex [61, 62]. PIPKIgamma and phosphatidyl inositol phosphate pools at

nascent E-cadherin contacts cue EXOC7 targeting and orient the tethering of exocyst-associ-

ated E-cadherin [62]. The protein encoded by FIG4 belongs to the SAC domain-containing

protein gene family. FIG4 binds to hepatitis C virus and modulates particle formation in a cho-

lesteryl ester-related manner [63].

Candidate genes with SNV in regulatory regions. SNV in regulatory regions probably

regulates the translation processes of a gene. ALG14 with a SNV in 5’UTR is a member of the

glycosyltransferase 1 family. The protein encoded by ALG14 and ALG13 are thought to be sub-

units of UDP-GlcNAc transferase, which catalyzes the first two committed steps in endoplas-

mic reticulum N-linked glycosylation. ALG14 coordinate recruitment of catalytic ALG7 and

ALG13 to the endoplasmic reticulum membrane for initiating lipid-linked oligosaccharide

biosynthesis at the N- and C-termini and interacted formation of the active UDP-N-acetylglu-

cosamine transferase complex at the C terminus mediates[64, 65]. CDKN2D, LASP1 and PIN1
respectively contained 1, 1 and 2 SNVs in 3’UTR. CDKN2D encoded a protein which is a

Table 3. Annotation of 57,419 common differential SNVs across 8 bulls.

Category Number of SNVs Percentage of SNVs %1

intergenic 45,188 78.70

upstreama 161 0.28

downstreamb 193 0.34

upstream;downstreamc 4 0.01

3’UTR 140 0.24

5’UTR 14 0.02

ncRNA_exonicd 2 0.003

intronic 11,541 20.10

exonic 0.31

nonsynonymous 45

synonymous 116

unknown 15

1Percentage was calculated based on annotated 57,419 common differential SNVs.
aupstream from the nearest gene (<1kb).
bdownstream away from the nearest gene (<1kb).
cvariant located in both upstream and downstream regions for two different genes (<1kb).
dnon-coding RNA expressed within exon of a gene

https://doi.org/10.1371/journal.pone.0220629.t003
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member of the INK4 family of cyclin-dependent kinase inhibitors that form a stable complex

with CDK4 or CDK6, and prevent the activation of the CDK kinases, thus function as a cell

growth regulator that controls cell cycle G1 progression. FDX1L encodes a member of the

Fig 3. Distribution of the common differential SNVs in nine functional categories. After annotation, we found 45,188 intergenic SNVs (away from protein coding

genes more than 1kb), 358 up/downstream SNVs, 2 ncRNA SNVs, 11,541 intronic SNVs, 154 untranslated regions (UTRs), 116 synonymous SNVs, 45 nonsynonymous

substitutions and 15 unknown.

https://doi.org/10.1371/journal.pone.0220629.g003

Table 4. Annotation of 13,099 common differential SNVs that were included or nearby 2,657 protein-coding

genes.

Category Number of SNVs Percentage of SNVs %1

intregenic 916 6.99

upstreama 161 1.23

downstreamb 190 1.45

upstream;downstreamc 4 0.03

3’UTR 140 0.11

5’UTR 14 1.07

intronic 11,498 87.78

exonic 1.34

nonsynonymous 45

synonymous 116

unknown 15

1Percentage was calculated based on 13,099 SNVs.
aupstream from the nearest gene (<1kb).
bdownstream away from the nearest gene (<1kb).
cvariant located in both upstream and downstream regions for two different genes (<1kb).

https://doi.org/10.1371/journal.pone.0220629.t004
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ferredoxin family. The mutation of genes that encoded proteins involved in either the lipoic

acid (LIPT1 and LIPT2) or mitochondrial ISC biogenesis (FDX1L, ISCA2, IBA57, NFU1,

BOLA3) pathway leaded a heterogeneous group of diseases with a wide variety of clinical

symptoms and combined enzymatic defects [66]. The protein encoded by LASP1 is a subfamily

of LIM proteins and also a member of the nebulin family of actin-binding proteins. LASP1
activates the PI3K/AKT signaling pathway which is well-known pathways for protein and fat

synthesis and metabolism [67]. LASP1 was significantly upregulated in breast cancer tissues

and cell lines and identified as a target gene of miR-133a [68]. Comparing gene expression pro-

files of lactating bovine mammary tissue against nonlactating tissue on the BMAM microarray,

LASP1 exhibited differential expression [69]. PIN1 encodes one of the PPIases, which specifi-

cally binds to phosphorylated ser/thr-pro motifs to catalytically regulate the post-phosphoryla-

tion conformation of its substrates and involved in the regulation of cell growth. Besides, PIN1
can enhance adipocyte differentiation by regulating the function of PPAR gamma [70].

Another study suggested that PIN1 expression in pancreatic beta-cells was obviously changed

in obese knockout mice from diet high in fat or sucrose [71].

Candidate genes with SNV in upstream and downstream. Transcription factors interact

with specific nucleotide sequences known as transcription factor binding site and these inter-

actions are implicated in regulation of the gene expression. The upstream and downstream

regions of genes contain variety of elements/binding sites, which apparently infer on a particu-

lar gene the inducibility. C3H1orf85, GPLD1, MTHFD2L, LASP1, MGEA5, PGS1, SAO, SNX7
contained at least one SNV located in upstream and downstream (<1000 bp) of these gene.

Fig 4. Distribution of the 13,099 SNVs in eight functional categories. A total of 13,099 SNVs was included or nearby the protein-coding genes with less than 5 kb. Of

these, 916 SNVs were located in intergenic region (away from protein coding genes more than 1kb), 355 in up/downstream, 11,498 in intron, 154 untranslated regions

(UTRs), 176 in exon (116 synonymous SNVs, 45 nonsynonymous substitutions and 15 unknown).

https://doi.org/10.1371/journal.pone.0220629.g004
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C3H1orf85 encodes glycosylated lysosomal membrane protein and was also known as GLMP.

Data indicated that increased flux of glucose, increased de novo lipogenesis and lipid accumu-

lation were detected in lysosomal protein NCU-G1 (GLMP) gt/gt primary hepatocytes[72].

Compared with the wild-type myotubes, myotubes from GLMP (gt/gt) mice metabolized glu-

cose faster and had a larger pool of intracellular glycogen, while oleic acid uptake, storage and

oxidation were significantly reduced [73]. The nuclear proteins by O-linked N-acetylglucosa-

mine (MGEA5) addition and removal on serine and threonine residues is catalyzed by OGT

(MIM 300255), which adds O-GlcNAc, and MGEA5, a glycosidase that removes O-GlcNAc

modifications[74]. PGS1 encodes a phosphatidylglycero-phosphate synthase. In cancer

cachexia, TNFalpha induces a higher energy wasting in liver mitochondria by increasing cardi-

olipin content via upregulation of phosphatidylglycerophosphate synthase (PGPS) expression

[75]. PGS1 gene in Saccharomyces cerevisiae played a vital role in cells impaired in the mito-

chondrial DNA, is localized in the mitochondria and expressed in response to inositol and

choline[76]. The protein encoded by SAO is part of the anion exchanger (AE) family and is

expressed in the erythrocyte plasma membrane. MTHFD2L encodes a mitochondrial methyle-

netetrahydrofolate dehydrogenase isozyme expressed in adult tissues. SNX7 encodes a member

of the sorting nexin family that contain a phox (PX) domain, which is a phosphoinositide

binding domain, and are involved in intracellular trafficking. In zebrafish, SNX7 is a liver-

enriched anti-apoptotic protein and indispensible for the liver development[77]. The protein

encoded by GPLD1 is a GPI degrading enzyme. GPLD1 hydrolyzes the inositol phosphate link-

age in proteins anchored by phosphatidylinositol glycans, thereby releasing the attached pro-

tein from the plasma membrane. AMPK suppresses PLD activity, and PLD suppresses AMPK

via mTOR [78]. Additionally, GPLD1 influences triglyceride-rich lipoprotein metabolism [79].

Table 5. The information about the SNV allele in high and low groups of 17 candidate genes.

Gene Gene start1 Gene end Chromosome Location of SNV Physical position of SNV SNV allele in high group SNV allele in low group

ALG14 48600669 48699217 1 UTR5 48600677 T C

ATP2C1 140368052 140522627 1 exonic 140375966 A G

1 exonic 140388073 A G

PLD1 96517508 96676253 1 exonic 96594836 C T

C3H1orf85 14558546 14561400 3 upstream 14558465 T C

SNX7 44657521 44775833 3 downstream 44656702 A G

MTHFD2L 90842884 90986715 6 downstream 90987596 A G

CDKN2D 16298106 16300588 7 UTR3 16298320 G T

COL5A3 15768627 15813561 7 exonic 15769886 G A

FDX1L 16068661 16073072 7 UTR3 16068671 C G

PIN1 15532997 15545250 7 UTR3 15544947 C T

7 UTR3 15544948 C T

FIG4 40873044 41046003 9 exonic 40957415 G A

EXOC7 56190845 56208380 19 exonic 56206567 G A

LASP1 40090994 40131374 19 UTR3 40129782 C G

19 downstream 40131920 A G

PGS1 54404339 54441590 19 downstream 54404267 T C

SAO 43555807 43559785 19 downstream 43560755 A G

19 downstream 43560756 A C

GPLD1 32984455 33036038 23 upstream 32984009 C T

MGEA5 22390769 22417775 26 upstream 22418458 A G

1genomic coordinates of genes were based on Bos_taurus_UMD_3.1

https://doi.org/10.1371/journal.pone.0220629.t005

SNV discovery and gene identification for milk composition based on whole genome resequencing of Holstein

PLOS ONE | https://doi.org/10.1371/journal.pone.0220629 August 1, 2019 11 / 18

https://doi.org/10.1371/journal.pone.0220629.t005
https://doi.org/10.1371/journal.pone.0220629


Overexpressing GPLD1 in an insulinoma cell line enhanced glucose-stimulated insulin secre-

tion [79].

The 17 candidate genes and 21 SNVs identified in this study still need further in vivo and in

vitro experiments to validate their biological function and to explore molecular mechanisms

for formation of milk protein and fat traits.

The interpretation of the findings from the present study still has limitations. When per-

formed function enrichment for genes that included or were closed to the common differential

SNVs with less than 5 kb, non-coding RNAs and genes could be disregarded because the cur-

rent software and tools can only annotate limited protein-coding genes. Therefore, the omis-

sion of genes that haven not been studied yet is a general problem in present function study.

Table 6. The detailed information of 17 candidate genes and the related QTLs.

Gene Position(bp) Position

(cM)1
Previously reported QTL

Distance to QTL peak

(cM)

CI and peak location(cM) Trait Reference

ALG14 Chr1:48600669–

48699217

Chr3:48.4 0 48.37–48.37(peak:48.37) PY Marete et al., Frontiers in genetics, 2018[34]

ATP2C1 Chr1:140368052–

140522627

Chr1:134.9 0.3 134.24–135.04

(peak:134.64)

PP Russo et al., Animal genetics, 2012[35]

PLD1 Chr1:96517508–

96676253

Chr1:93.7 0.2 77.7–122.3(peak:93.5) PY Nadesalingam et al., Mammalian genome,2001

[36]

C3H1orf85 Chr3:14558546–

14561400

Chr3:24.3 0.7 22.6–27.4(peak:25) FY,

PP

Ashwell et al., J Dairy Sci,2004[37]

SNX7 Chr3:44657521–

44775833

Chr3:46.7 0.8 45.93–45.93(peak:45.95) FY Cole JB et al., BMC Genomics, 2011[38]

45.93–45.93(peak:45.95) PY Cole JB et al., BMC Genomics, 2011[38]

MTHFD2L Chr6:90842884–

90986715

Chr6:100 0.9 100.09–

100.09 (peak:100.9)

PP Olsen HG et al., Genetics, selection, evolution :

GSE, 2016[39]

0.4 100.28–

100.49 (peak:100.38)

PP Zhou Y et al., BMC genomics, 2018[40]

CDKN2D Chr7:16298106–

16300588

Chr7:18.4 0.6 15.2–38.5(peak:17.8,15.9) PP Ron et al., Journal of dairy science, 2004[41]

COL5A3 Chr7:15768627–

15813561

Chr7:17.9 0.1 15.2–38.5(peak:17.8,15.9) PP Ron et al., Journal of dairy science, 2004[41]

FDX1L Chr7:16068661–

16073072

Chr7:18.2 0.4 15.2–38.5(peak:15.9,17.8) PP Ron et al., Journal of dairy science,2004[41]

PIN1 Chr7:15532997–

15545250

Chr7:17.5 0.3 15.2–38.5(peak:17.8,15.9) PP Ron et al., Journal of dairy science,2004[41]

FIG4 Chr9:40873044–

41046003

Chr9:45 0.6 42.5-50(peak:44.4,49.1) FY,

PY

Schnabel et al., Animal Genetics, 2005[42]

EXOC7 Chr19:56190845–

56208380

Chr19:96.1 0.9 82.8–101.4(peak:95.2) PY Boichard et al., Genetics,selection,evolution:GSE,

2003[43]

LASP1 Chr19:40090994–

40131374

Chr19:51.3 0.7 2.4-91(peak:60.4) FP Bennewitz et al., Genetics, 2004[44]

PGS1 Chr19:54404339–

54441590

Chr19:93.1 0.7 60.7–106.2(PEAK:92.4) FY Boichard et al., Genetics,selection,evolution:GSE,

2003[43]

SAO Chr19:43555807–

43559785

Chr19:74.5 0.5 70.24–77.386 (peak:75.0) FP Viitala SM et al., J Dairy Sci, 2003[45]

GPLD1 Chr23:32984455–

33036038

Chr23:44.2 0.6 42.4–58.2(peak:43.6) FY Plante et al.,J Dairy Sci,2001[46]

MGEA5 Chr26:22390769–

22417775

Chr26:32.5 0.8 31.72–31.72(peak:31.72) PP Cole JB, et al, BMC Genomics, 2011[38]

1The linkage position was estimated relative to UMD3.1 and based on the QTL mapper v.2.019 at www.animalgenome.org/cgi-bin/QTLdb/.

PP: protein percentage; PY: protein yield; FP: fat percentage; FY: fat yield.

https://doi.org/10.1371/journal.pone.0220629.t006
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Conclusions

In this study, by resequencing the whole genome of eight proven Holstein bulls with extremely

high and low EBVs of milk protein percentage and fat percentage, we successfully identified

10,961,243 SNVs and detected 57,451 common differential SNVs with opposite fixed sites

between high and low groups. Subsequently, 2,657 genes that included or were nearby the

common differential SNVs were obtained. Further, through integrating GO, KEGG pathways

and Mesh enrichment results, the known QTLs for milk composition and common differential

SNVs located in exon and flanking regions, we identified 17 promising candidate genes for

milk protein and fat, including ALG14, ATP2C1, PLD1, C3H1orf85, SNX7, MTHFD2L,

CDKN2D, COL5A3, FDX1L, PIN1, FIG4, EXOC7, LASP1, PGS1, SAO, GPLD1 and MGEA5.

And the 17 genes identified in this study will provide a useful resource for future genomic

selection (GS) in dairy cattle.
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