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Prostate cancer with bone metastasis has a high cancer-specific mortality.

Thus, it is essential to delineate the mechanism of bone metastasis. Pre-

metastatic niche (PMN) is a concept in tumor metastasis, which is

characterized by tumor-secreted factors, reprogramming of stromal cells,

and immunosuppression by myeloid-derived suppressor cells (MDSC), which

is induced by bone marrow-derived cells (BMDC) in the target organ. However,

PMN does not explain the predilection of prostate cancer towards bone

metastasis. In this review, we discuss the initiation of bone metastasis of

prostate cancer from the perspective of PMN and tumor microenvironment

in a step-wise manner. Furthermore, we present a new concept called pre-

metastatic bone niche, featuring inherent BMDC, to interpret bone metastasis.

Moreover, we illustrate the regulation of traditional Chinese medicine on PMN.
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1 Introduction

Prostate cancer (PCa) has gradually become a major threat to humans. Recent reports

reveal that 1.6 million people were diagnosed with PCa and 366 thousand people succumb

to it each year (Pernar, Ebot, Wilson, & Mucci, 2018). PCa metastasis occurs

predominantly in the bone, which is associated with high mortality (Mazzone et al.,

2018; Riihimäki, Thomsen, Sundquist, Sundquist, & Hemminki, 2018), thereby
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suggesting the need for its mechanistic evaluation. Recent studies

have focused on understanding the role of the pre-metastatic

niche (PMN) and tumor micro-environment (TME) in cancer

metastasis and have made a groundbreaking revelation about the

mechanism of metastasis. However, little is known about specific

bone metastasis, especially in PCa, because the PMN theory may

not completely explain the metastatic tendency of PCa to the

bone. Moreover, the bone TME seems more complicated than

other secondary tumor TMEs. Therefore, we proposed a

secondary concept of PMN: pre-metastatic bone niche

(PMBN) to illustrate the mechanism of bone metastasis and

bone TME. This review aims to explore the difference between

PMN and PMBN and provide an insight into the formation of

PMBN and the mechanism of bone metastasis in PCa.

2 Formation of the pre-metastatic
niche

The classical hypothesis regarding metastasis is “seeds”

(cancer cells) and the “soil” (host micro-environment) theory

(Paget, 1989; Peinado et al., 2017). A hundred years later, this

hypothesis has been further explained by the concept of PMN

(Kaplan et al., 2005). With time, the theory of PMN has

developed, where the formation of PMN takes place in three

steps: first, migration of tumor-secreted extracellular vesicles and

non-vesicular tumor-secreted factors to the future metastatic

organ. Secondly, reprogramming of stromal cells occurs in the

metastatic organ. Thirdly, recruitment of vascular endothelial

growth factor receptor (VEGFR+) hematopoietic stem/

progenitor cells (HSPC) that differentiate into myeloid-derived

suppressor cells (MDSC) to exert immunosuppressive effects

(Kaplan et al., 2005; Koh & Kang, 2012; Chin & Wang, 2016;

Zheng et al., 2020). PMN can provide a hotbed for metastatic

cells. However, different tumors display varying propensities to

target organs. According to a recent report, 50% of breast cancer,

44–90% of pancreatic cancer, and 35–55% of colorectal cancer

are known to migrate to the liver. About 30–60% of breast cancer

migrated to bone, and surprisingly, 68–80% of PCa migrated to

bone (Zhuyan et al., 2020). Till date, the mechanisms of specific

metastasis are poorly understood. As the tumor micro-

environment and the immune environment have been

explored, the mechanism of specific metastasis could be

explained in this aspect, especially the bone metastasis of PCa.

2.1 Pre-metastatic niche vs. pre-
metastatic bone niche

PMN has been detected in the lung and liver, but is poorly

explored in bone. However, the components of PMN like bone

marrow-derived cells (BMDC)/HSPC are components of the

stromal niche and hence do not require reprograming like

other PMN. Thus, we put forth a concept of PMBN to

explain the specific metastasis, particularly in PCa. We discuss

the differences in the sources and functions of components

between PMN and PMBN (Table 1).

2.2 The two subtypes of myeloid-derived
suppressor cells

MDSCs are a heterogeneous population of immature

myeloid cells (IMCs), which are the precursors of dendritic

cells (DCs), macrophages, and granulocytes. They have the

ability to significantly inhibit immune cell responses and

negatively regulate immunity. MDSCs are mainly composed

of two subtypes, including polymorphonuclear myeloid-

derived suppressor cells (PMN-MDSCs) and monocytic

myeloid-derived suppressor cells (M-MDSCs) (Li et al., 2021).

Mice and human MDSCs have different cell surface markers

(Gabrilovich, 2017). In mice, PMN-MDSCs and M-MDSCs can

be respectively defined as CD11b+Ly6G+Ly6Clow and

CD11b+Ly6G−Ly6Chi (Gabrilovich, 2017). Similarly, PMN-

MDSCs and M-MDSCs can be respectively defined as

CD11b+CD14−CD15+/CD11b+CD14−CD66b+ and

CD11b+CD14+HLA−DR-/lowCD15− in human peripheral blood

mononuclear cells (PBMC) (Gabrilovich, 2017). Increasing

evidence shows that M-MDSCs and PMN-MDSCs achieve

immunosuppressive effects through different mechanisms.

PMN-MDSCs highly express arginine (Arg1) and reactive

oxygen species (ROS), while M-MDSCs highly express nitric

oxide (NO) and nitric oxide synthase (iNOS), all of which mainly

inhibit the function of T cells (Gabrilovich, 2017). Notably,

current research suggests that PMN-MDSCs are the main

subtype responsible for promoting prostate cancer metastasis.

For example, one study has found that PMN-MDSCs are more

abundant in bone metastases than in primary prostate cancer

(Wen et al., 2020).

2.3 Steps for the formation of the pre-
metastatic bone niche

2.3.1 Step 1: Tumor-derived soluble factors and
tumor-derived exosomes are induced by
hypoxia and inflammation

TDSF such as interleukin (IL)-10, vascular endothelial

growth factor (VEGF), transforming growth factor-beta (TGF-

β), and soluble human leukocyte antigens (HLA) molecules have

several important immune modulatory functions like immune

escape, immunosurveillance, and subduing the immune cells’

functions (Allard et al., 2011; Deepak & Acharya, 2010; Packard,

Lee, Remold-O’Donnell, & Komoriya, 1995; Shimabukuro-

Vornhagen et al., 2012). As the first step of the formation of

PMBN, the role in bone environment and MDSC has been
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reported. Prostate-derived soluble factors block osteoblast

differentiation (Martínez, Silva, & Santibáñez, 1996),

Intriguingly, TDSFs promote the process of differentiation of

bone marrow-derived mesenchymal stem cells into mature

osteoblasts cultured using mineral-containing 3D poly

scaffolds (Lynch et al., 2016). TDSFs play an important role

in the differentiation of CD11b-Gr1-bone marrow progenitor

cells into MDSCs (Morales, Kmieciak, Knutson, Bear, & Manjili,

2010; Ishii et al., 2018). Notably, the recruitment of HSPC and

their differentiation into MDSC are symbolic events responsible

for PMN formation (Zheng et al., 2020) as above. Furthermore,

TDSF can recruit the regulatory T cells (Tregs) (Du & Wang,

2011; Crane, Ahn, Han, & Parsa, 2012) that account for the

suppression of immune cells and form an immunosuppressive

microenvironment, which may protect tumor cells from

immunotoxicity. This evidence provided strong evidence

about the regulation of TDSF in the formation of PMBN.

Communication via exosomes between primary cancer cells

and the microenvironment of target organs is vital for PMN

formation and metastasis (Wortzel, Dror, Kenific, & Lyden,

2019), especially tumor-derive exosomes (TDEs) that carry

out functions such as organotrophic metastasis, restraining

cancer immune surveillance, removing metabolic waste,

remodeling distant PMN, and promoting tumor invasion

(Chalmin et al., 2010; Deep et al., 2020; King, Michael, &

Gleadle, 2012; Y. Liu & Cao, 2016; Panigrahi et al., 2018).

Essential functions are associated with these proteins

expressed by the TDEs at their surface. For example, heat

shock protein 72 expressed by TDEs suppresses cancer

immune surveillance by enhancing MDSC suppression via

transducers and activators of transcription (STAT) signaling

pathway (Chalmin et al., 2010). Thus, TDEs and PMNs have

a synergistic effect on immunosuppression by promoting MDSC

function. Moreover, an experimental study that unveiled the

mechanism of organotrophic metastasis by TDEs examined the

lung-tropic, liver-tropic, and brain-tropic exosomes by

quantitative mass spectrometry. They found that integrins, an

important component in PMN, representing the cell adhesion

receptor proteins in exosomes, were the deciding factor for

metastatic organotropism. They showed that ITGα6β4 and

ITGα6β1 expressed by lung-tropic exosomes migrated to the

lung microenvironment and that pancreatic-tropic exosomes

expressing ITGαvβ5 preferred liver niches (Hoshino et al.,

2015; Y. Liu & Cao, 2016). However, integrins expressed by

TDEs migrating to the bone still need to be explored.

Hypoxia and inflammation driven by PCa are the two major

causes for the secretion of TDSF and tumor-derived exosomes.

Tumor promotes progression and metastasis potentially through

exosome driven by hypoxia which may be mediated by hypoxia

inducible factor-1α (King et al., 2012). Meanwhile, the data in

PCa cells was more representative. Recent data showed that PCa

derived exosomes promoted invasiveness and stemness under

hypoxia, which in turn promoted the activity of matrix

metalloproteinases (MMPs) (Deep et al., 2020). Interestingly,

the expression of MMP is one of the features of PMN; thus, the

hypoxia-tumor derived exosomes axis plausibly remodels distant

PMN (Deep et al., 2020). Moreover, a large number of exosomes

are secreted by PCa cells, which is a mechanism to remove

metabolic waste and promote the survival of PCa under chronic

hypoxia (Panigrahi et al., 2018). Other molecules induced by

hypoxia, including lysyl oxidase, annexin A1, and PIM kinases

(Erler et al., 2009; Bizzarro et al., 2017; Toth et al., 2019), also

regulate the invasion of PMN. Inflammation is not only induced

but is also a part of the TME, which is rich in proinflammatory

cytokines and cells. These promote metastasis in several ways,

such as inducing TDSF, which can potentially alter myelopoiesis

(Ugel, De Sanctis, Mandruzzato, & Bronte, 2015). In PCa cells,

TDSF such as indoleamine 2,3-dioxygenase and IL-6 have

already been reported to mediate PCa morbidity. Elicitation of

PCa-TDSFs by inflammatory factors like interferon gamma

(IFN-γ) and TNF-α might be responsible for rendering a

tumor untreatable (Banzola et al., 2018). Another TDSF called

sHLA-E can be upregulated by IFN-γ, TNF-α and IFN-α (Allard

et al., 2011). Further, IL-6 secretion regulates the epithelial-

TABLE 1 The difference of source and function of components between PMN and PMBN.

Components PMN PMBN Ref.

BMDC/HSPC Migrate from bone Inherent Kaplan et al. (2005); Kaplan, Psaila et al.
(2006)

CXCL12 Secreted by stromal cells, fibroblasts and
epithelial cells

Secreted by stromal cells, fibroblasts, epithelial
cells, osteoblast, osteoclast

Ahmadzadeh et al. (2015); Meng, Xue, &
Chen (2018)

extracellular matrix Collagens, proteoglycans, laminins,
fibronectin, matricellular-associated proteins

Collagens, proteoglycans, laminins, fibronectin,
matricellular-associated proteins, osteopontin

Mouw et al. (2014); Gartland et al. (2016);
Kai et al. (2019)

bone morphogenetic
protein (BMP)

Inhibits breast cancer cells at lung metastatic
sites

Promote invasive properties in prostate cancer at
bone metastatic sites

Graham et al. (2010); Gao et al. (2012)

Parathyroid hormone-
related protein

None Upregulating the expression of integrin Shen & Falzon (2003)

bone-stored growth
factors

None Includes insulin-like growth factors, TGF-β Yoneda (2011); Xie, Ling, van Dam, Zhou,
& Zhang (2018); Hiraga (2019)
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mesenchymal transition (EMT) and homing of tumor cells to the

bone (Nguyen, Li, & Tewari, 2014).

2.3.2 Step 2: Migration of metastasis-initiating
cells

MICs, stimulated by TDSF and TDEs, are recruited to the

bone metastatic lesions, preparing to form the PMBN. They

display long-term self-renewal, specific driver mutations, and

high cellular plasticity (Celià-Terrassa & Kang, 2016). Although

tumor metastasis is prevalent in clinics, dissemination of the

tumor to a secondary lesion at a molecular level is difficult.

Metastasis is a difficult process with a huge rate of attrition; thus,

only about 1% of disseminated tumor cells (DTCs) are estimated

to metastasize successfully (Luzzi et al., 1998; Cameron et al.,

2000). MICs are somewhat like cancer stem cells that maintain

their stemness and self-renewal. However, their most prominent

feature is dormancy. The dormant MIC travels to distant

metastatic target organs, like bone, becomes a part of PMN or

PMBN, and when the PMN/PMBN matures, the MIC

resuscitates and exerts its malignant potential. However, MIC

in dormancy still plays a critical role, especially in bone. Bone

marrow contains hematopoietic niches that also play an

important part in bone metastasis, especially in the dormant

stage of MIC. Mesenchymal and endothelial cells contribute to a

microenvironment called hematopoietic niches (Aurrand-Lions

& Mancini, 2018), which is a protective site for tumor cells.

Cancer cells survive in a dormant state by utilizing hematopoietic

niches (Mukaida, Zhang, & Sasaki, 2020). PMN is suggested to be

created or conditioned by early DTC which might affect

metastasis development even through dormancy (Sosa,

Bragado, & Aguirre-Ghiso, 2014). When MICs migrate to the

bone marrow, osteogenic cells form heterotypic adherens

junction with MICs and promote outgrowth. MICs also use

secreted and membrane-bound vascular cell adhesion

molecule 1 (VCAM1) to recruit pre-osteoclasts, which can

further promote osteolytic invasion of indolent bone micro-

metastasis by connecting α4β1-positive osteoclast progenitors

(Lu et al., 2011; Celià-Terrassa & Kang, 2016). Besides, PCa-

induced osteoblast activity increases receptor activator of nuclear

factor kappa-B ligand (RANKL), release of parathyroid hormone,

and promotes osteoclast activity (Casimiro, Ferreira, Mansinho,

Alho, & Costa, 2016). The above findings demonstrate that

PMBN MICs enhance the “vicious cycle” of bone metastasis,

which is another difference between PMBN and PMN.

2.3.3 Step 3: Activation of chemokine-
chemokine receptor signaling
2.3.3.1 Chemokine (C-X-C motif) ligand 12/receptor

4 axis in bone

Stromal derived factor (SDF)-1, also called CXCL12, is highly

expressed within the fully formed PMN (Kaplan et al., 2006a)

and whose secretion is an important event for PMN. Here, we

discuss some reports on CXCL12/CXCR4 in bone metastasis of

PCa. CXCL12, secreted by osteoblast, endothelial cells, and

mesenchymal stem cells, plays a vital role in the formation of

the bone metastatic niche (Ahmadzadeh et al., 2015). CXCL12 is

known to be more highly expressed in metastatic lesions than in

normal tissues of PCa (Sun et al., 2003). Chemokines recruit cells

with corresponding receptors by generating a concentration

gradient (Jin, Xu, & Hereld, 2008). PCa were found to express

CXCR4 (Sun et al., 2003), and the CXCL12 secreted by osteoblast

and osteoclast then recruits the PCa cells to the PMBN. This may

be a possible mechanism for cancer cells’ “homing” to the bone

and may be responsible for their growth in selected organs (Sun

et al., 2003). CXCL12 levels were found to be high in the pelvis,

tibia, femur, liver, and adrenal/kidneys compared with those in

the lungs, tongue, and eye (Sun et al., 2005). Interestingly, tumor-

derived CXCL8 and phosphatase and tensin homolog (PTEN)-

deficient cancer cells increase their sensitivity and reactivity to

stromal chemokines by upregulating the expression of receptors

in cancer cells and inducing stromal chemokine synthesis

(Maxwell, Neisen, Messenger, & Waugh, 2014). PTEN is a

regulator of CXCL12/CXCR4 and its loss leads to the

activation of both Akt1 signaling and MMP9 expression. This

promotes the expression of CXCL12/CXCR4, which in turn

regulates the metastasis and invasion of PCa. Moreover,

Akt1 overexpression reversed the osteosclerotic phenotype to

an osteolytic phenotype and promoted intra-osseous tumor

growth (Chinni et al., 2006; Conley-LaComb et al., 2013).

2.3.3.2 Tumor-associated macrophages/chemokine

(C-C motif) ligand 5 and tumor-associated

macrophages/CXCL1 axis in bone

Chemokines make a great contribution to the PMN/PMBN.

Here, we discuss two important axes in the bone micro-

environment. TAMs are immune cells that have anti-tumor

properties. However, the M2 phenotype of TAMs reveals a

contrasting function, promoting tumor angiogenesis and

metastasis (S. Lin et al., 2017). A study shows that

consumption of M2 TAMs disrupted lung PMN and

prevented metastasis (Chen et al., 2017b). TAMs function by

secreting chemokines such as CCL5 and CXCL1. A recent study

showed that TAMs/CXCL1 signaling could enhance breast

cancer metastasis (N. Wang et al., 2018) and stimulate the

recruitment of HSPCs and their differentiation into MDSCs,

further promoting the formation of PMN (S. Wang et al., 2020;

Zheng et al., 2020). However, TAMs/CXCL1 has not been

reported in bone metastasis. Surprisingly, CCL5 was found to

be a critical chemokine in gastric cancer, colorectal cancer, and

breast cancer (An et al., 2019; Ding et al., 2016; S. Zhang et al.,

2018). TGF-β signaling is an important pathway regulating the

bone micro-environment and crosstalks with several pathways

associated with tumor invasion (we will discuss the TGF-β later).
CCR5, the cognate receptor of CCL5, was shown to be regulated

by TGF-β signaling (S. Lin et al., 2017). Also, THP1-derived

TAMs co-injection with cancer cells increased the bone
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metastasis of PCa xenografts, while CCL5 knockdown partly

abrogated it (R. Huang et al., 2020).

2.3.3.3 Angiopoietin-1/tie-2 axis in bone

Ang-1 and its receptor Tie-2 are one of the significant

cytoactive molecules found within bone marrow, primary

lesion and the PMN (Kaplan et al., 2006b). Tie-2 expression

was found to be higher in PCa cell lines, which are capable of

migrating to the bone. The Tie-2 high PCa cells displayed more

adherence than the Tie-2 low PCa cell population to both

osteoblasts and endothelial cells, and these cells also had a

high expression of cancer stem cells (CSCs). However,

knockdown of the Ang-1 led to suppression of CSCs. More

importantly, only the Tie-2 high but not the Tie-2 low cells

developed metastasis in vivo (K. D. Tang et al., 2016). Moreover,

ng-1 mRNA expression was not observed in bone, lymph node or

liver metastasis but was observed in bone marrow cells

(Morrissey et al., 2008), suggesting that PCa cells move to

PMBN through the Ang-1/Tie-2 axis.

2.3.4 Step 4: Changes in extracellular matrix for
preparing pre-metastatic bone niche

ECM changes are symbolic pre-metastatic changes in the

target organ (Zhuyan et al., 2020) and contain comprehensive

components such as collagens, proteoglycans, laminins,

fibronectin, and matricellular-associated proteins (Mouw, Ou,

& Weaver, 2014; Kai, Drain, & Weaver, 2019). When it comes to

PMN, hypoxia, chemokines, and TDSF, as discussed previously,

induce ECM to change to a form with increased stiffness and

tensile strength (Gartland, Erler, & Cox, 2016). Furthermore,

lysyl oxidase-mediated collagen crosslinking creates a fibrotic

microenvironment supporting metastatic growth (Cox et al.,

2013). Notably, each organ has its own PMN and changes in

ECM, but when it comes to PMN and bone, the whole organ

(bone) is an enormous “organized mesh” containing a

tremendous amount of ECM, which consists of type I

collagen, fibrous proteins, and non-collagenous proteins

predominantly (Gartland et al., 2016). This is another

characteristic of PMBN which is different from PMN, giving

an insight into why so many tumors have a predilection for bone

metastasis. An enzyme called lysyl oxidase is known to post-

translationally modify collagen and elastin in the ECM, thereby

catalyzing the covalent crosslinking of collagen fibers associated

with bone metastasis (Gartland et al., 2016). An in vivo

experiment showed that tumor bearing mice displayed

increased bone loss and formed focal osteolytic lesions over

time before metastasizing, and these changes were lysyl

oxidase (LOX)-dependent (Gartland et al., 2016). Thus, during

PMBN formation, bone is osteolytic, far before the time that

cancer cells home to the bone. This is yet another feature of

PMBN. Another important ECM component in the bone is

osteopontin, which is associated with malignant

transformation and acts as a paracrine and autocrine mediator

of PCa growth and progression (Thalmann et al., 1999). As stated

previously, the bone marrow microenvironment contains

intricate components including ECM, cytokines and

chemokines regulate the hematopoietic progenitor cells’

proliferation and differentiation, which was a core step of PMBN.

2.3.5 Step 5: Recruitment of VEGFR1+ bone
marrow-derived cells in bone

Firstly, VEGFR was found to have a high expression in PCa.

More importantly, its expression was elevated at sites of bone

metastasis compared to the original prostate tumor. VEGF

interacting with VEGFR regulated adhesive and migratory

properties of the cancer cells (J. Chen, De, Brainard, &

Byzova, 2004). As discussed about PMN formation above,

HSPC expressing VEGFR1 and bone BMDC colonize pre-

metastatic sites before tumor cells (Kaplan et al., 2005).

However, the reason for the recruitment of VEGFR+ BMDC

or VEGFR+ HSPC to be considered as a symbolic event of PMN

is not known (Kaplan, Rafii, & Lyden, 2006; Zheng et al., 2020)?

The following reasons can be considered: regular T cells and

MDSC, especially those differentiated from HSPC, are functional

types of BMDC (Koh & Kang, 2012). Purified HSPC in vivo

differentiated into MDSC in early metastatic sites of tumor-

bearing mice and promoted tumors metastasis (Giles et al., 2016).

The MDSC in the PMN provided a microenvironment suitable

for cancer cells by enhancing immunosuppression, leaking

vasculature, and collagen restructuring in the PMN by

suppressing T cells, generating a lot of NO, arginase1 (Arg-1)

and immunosuppressive cytokines, and promoting regular T cell

expansion (Y. Wang, Ding, Guo, & Wang, 2019). A recent study

reported that, during tumor progression, MDSC contributed to

PMN formation by upregulating MMP-9 expression (J. Zhang

et al., 2020). The ability to suppress immune cells is an important

standard that is used to define MDSC (Bronte et al., 2016).

Recruitment of HSPC as a symbolic event for PMN, which has

been proven by several cancers like breast and colorectal cancer

(Psaila, Kaplan, Port, & Lyden, 2006; C. Zhang et al., 2014). As for

bone metastasis, distant primary tumor drives the expansion of

HSPC within the bone marrow and their mobilization to the

bloodstream (Giles et al., 2016). That means they don’t even

need to move to the bloodstream and site to the PMN, because

the bone is already its PMN, we call that PMBN. The bone marrow

is an inherent store of HSPC. Besides, metabolic conditions in

niches such as calcium concentrations mediated HSPC retention

within, but not homing to, the endosteal niche (Kucia et al., 2005). It

is not surprising that many cancers show a proclivity to establish

themselves in the bone marrow (Kaplan, Psaila, et al., 2006).

Recently, a new study demonstrated a previously unidentified

role for perivascular cells in PMN formation, which is a new

mechanism for PMN. The author showed that perivascular cells

lost the expression of traditional vascular smooth muscle cells to

build the PMN by stimulating the tumor-secreted factors and

genetic activation of Klf4 (Murgai et al., 2017).
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2.3.6 Step 6: Integrin plays a role in the last step
of the pre-metastatic bone niche

Here, we illustrate some data about integrin in the bone

environment of PCa. Bone-metastatic castration-resistant PCa is

lethal and shows drug resistance. One of the mechanisms is the

integrin α6β1-mediated adhesion to laminin (Toth et al., 2019).

Adhesion capability of PCa cells to bone marrow endothelial cells

was enhanced through upregulation of integrin-α4 expression,

concurrent with transcriptionally activated NF-κB (Zhao et al.,

2020). Parathyroid hormone-related protein, upregulates the

expression of alpha1, alpha5, alpha6, and beta4 integrin subunits

and plays a vital role in the development of bonemetastasis (Shen &

Falzon, 2003). In other cell lines, integrin β1 has high expression in

hepatocellular carcinoma with stiffness substrates and co-regulates

with the JNK/c-JUN signaling pathway in upregulating LOXL2,

MMP9, fibronectin production, CXCL12 expression and BMDC

recruitment, which account for PMN formation (Wu et al., 2018).

However, the positive outcome of alpha4 integrin which is most

relative with PMN. It has been reported that fibroblasts contributed

to breast cancer bone metastasis by mediating CCL4/CCR5 axis

(Sasaki et al., 2016). Upregulation of fibronectin activated by

fibroblasts is one of the earliest changes observed in future

metastatic niches (Kaplan et al., 2005), and then integrin

alpha4beta1 (VLA4) carrying VEGFR1+ HSPC attached to the

upregulating fibronectin. From the figure of Kaplan,

VLA4 connected with HSPC to fibroblasts and that was the last

step of the PMN formation (Kaplan, Rafii, et al., 2006). Those series

events associated with VLA4 are similar to their function within the

bonemarrow (Kaplan, Psaila, et al., 2006). It seems like the PMN try

to provide a tumor-friendly environment by imitation from bone

marrow environment and PMBN is an integration of bone marrow

environment. Consequently, we know from above that PMBN is the

initial PMN. In PCa cells line, VLA4 is not the only key for

connection, integrin α6β1, integrin alpha1, alpha5, alpha6, and

beta4 had their contribution to the bone metastasis.

VLA4+VEGFR + HSPC attaching fibronectin completely is a

symbolic event of the maturation of PMBN (Figure 1).

2.4 From pre-metastatic bone niche to
mature bone metastasis

2.4.1 Activation of migration of Metastasis-
initiating cells

Reactive oxygen-generating enzyme (Nox1) increases

tumorigenicity of prostate epithelial cell line. Importantly,

Nox1 could significantly upregulate VEGF mRNA, induce

VEGFR1, VEGFR2 and MMPs (Arbiser et al., 2002), which is

FIGURE 1
The formation of the Pre-Metastatic Bone Niche (PMBN). (A) Metastasis-initiating cells (MICs), exosomes, and tumor-derived soluble factors
(TDSF) were secreted by cancer cells under hypoxia and inflammatory conditions. Fibronectin carried by VEGFR + HSPC, which was connected by
integrin alpha4 beta1 (VLA4), were recruited together. (B) Before bone metastasis, the balance of osteoblast and osteoclast is disrupted. MICs can
adhere to osteoblasts and recruit pre-osteoclasts via vascular cell adhesion protein 1 mediated by mTOR signaling. This event promotes the
formation of osteoclasts. (C) Maturation of PMBN. Notably, HSPC was differentiated into MDSC. The difference of source and function of
components differ between PMN and PMBN.
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important for PMN and MIC. Nox1 may activate MIC by

triggering the angiogenic switch. Early DTCs contributed to

the PMN and the later ones account for the escape from

dormancy to promote metastasis (Sosa et al., 2014). For

example, tumor cells could escape from dormancy by

upregulating and activating VCAM1 (Lu et al., 2011).

Periostin, as a cancer-promoting factor, is induced by

endothelial tip cells, also promoting dormancy escape

(Malanchi et al., 2011; Ghajar et al., 2013). β1 integrins are

indispensable to prevent dormancy onset and critical for

proliferation of micro-metastatic cancer cells (Shibue &

Weinberg, 2009; Sosa et al., 2014). Gaining the function of

EMT and MET is also a typical event of MICs’ activation.

MICs are a type of stem-like cell that increases expression of

EMT, stemness of stem cells and pro-survival (Lawson et al.,

2015). When they arrive at the secondary organ, a reversed

process: MET is required (Tsai, Donaher, Murphy, Chau, &

Yang, 2012). Recent research found that low-burden cells

expressed high-level dormancy genes such as CDKN1B,

CHEK1, TGFBR3 and TGFB2 while higher-burden

metastatic cells rarely expressed dormancy-associated genes,

whereas highly expressed cell-cycle promoting genes such as

CDK2, MYC, MMP1, and CD24, which were accounted for

dormancy escape (Lawson et al., 2015). We could imply that

during the formation of PMBN, the surrounding MIC belong

to low-burden cells which show the stemness however, when

the PMBN is completely finish, those MIC turn to more

heterogeneous. Energy metabolism is another aspect to

elucidate the activation of MIC. A study demonstrated that

in brain metastatic breast cancer cells, tumors could obtain

energy in multiple ways in order to reinitiate MIC

proliferation (Celià-Terrassa & Kang, 2016; E. I. Chen

et al., 2007). A high plasticity in energy substrate

metabolism in PCa maybe another energy mentalism

pathway to active MIC as previous reported (Aguilar et al.,

2016). Other mechanism such as high expression of

VCAM1 induced by inflammatory, inducing reactivation of

growth by stromal niche also account for the activation of MIC

(Lu et al., 2011; Giancotti, 2013). Intriguingly, bone

morphogenetic protein (BMP) could promote invasive

properties in PCa at bone metastatic sites (Graham,

Agrawal, & Abdel-Mageed, 2010), but the BMP inhibitor

Coco reactivates breast cancer cells at lung metastasis. It

seems that BMP plays an opposite role in PMBN and PMN

(Gao et al., 2012).

2.4.2 Disruption of balance between osteoblast
and osteoclast

The balance comes from a classical theory of bone

metastasis called the “vicious cycle theory,” which

demonstrates a series of molecular events. In brief,

osteoclast-stimulating factors, such as PTHrP, promote

osteoblasts to secrete RANKL, which in turn promotes

differentiation of osteoclast precursor cells into mature

osteoclasts (Mundy, 2002; Hiraga, 2019). Later, osteoclasts

secrete TGF-β to promote PCa invasion and migration.

Surprisingly, a lot of insights go into exploring PCa with

bone metastasis. First comes the regulation of micro-RNA.

Three studies showed that micro-RNA (miR-141-3p, miR-

210-3p, miR-133a-3p, miR-204-5p) affected bone metastasis

by activating NF-κB and PI3K/AKT signaling (S. Huang et al.,

2017; Ren et al., 2017; Y. Tang et al., 2018; Wa et al., 2019; Ye

et al., 2017). Micro-RNAs (microRNA-124, miR-133b, miR-

505-3p, miR-19a-3p) regulate the bone metastasis via

activating TGF-β signaling pathway (Coniglio, 2018; S.

Huang et al., 2018; Y. Tang et al., 2019; Wa et al., 2018).

Other factors such as lnc-RNA, IFITM3, PICK1were also

mediate TGF-β signaling pathway (Y. Dai et al., 2017; Lang

et al., 2020; X. Liu et al., 2019). TGF-β signaling is an

important signaling/factor for bone metastasis in PCa. To

echo the PMBN, those symbolic factors of PMBN indeed

play a role in bone metastasis. For example, VEGF

contributes to PCa-induced osteoblastic activity in vivo

(Kitagawa et al., 2005); MMP2 is upregulated to promote

PCa bone metastasis (Dutta et al., 2014; Chen et al., 2017a).

Other factors, like interferon regulatory factor 7, stimulate

oncostatin M or even (m6A) mRNA methylation, regulate the

bone metastasis of PCa. Here, we highly focus on the specific

factors of bone: bone-stored growth factors. Osteoclastic bone

resorption followed by the release of bone-stored growth

factors (Yoneda, Hashimoto, & Hiraga, 2003; Yoneda, 2011)

such as insulin-like growth factors and TGF-β therefore,

provides fertile soil for metastatic cancer cells. Bone-derived

IGF-I connected with bone and metastasized the tumor cells

via IGF-IR/Akt/NF-κB signaling, while BMP9 was able to

inhibit the migration involving SDF-1/CXCR4-PI3K

pathway, which was associated with PMBN regulation

(Hiraga et al., 2012; W. Wang et al., 2015).

2.4.3 Oteoblastic bone metastasis in pre-
metastatic bone niche

Oteoprotegerin (OPG)/RANKL/RANK axis mediated

osteolytic bone metastasis is common in a lot of cancer bone

metastasis, but there is a consensus that osteoblastic bone

metastasis is dominant in PCa (Berruti et al., 2001). OPG is

an important cytokine to prevent pre-osteoclast from becoming

osteoclast by acting as a decoy receptor for RANKL. A meta-

analysis found that OPG was highly expressed in PCa with bone

metastasis (Zang et al., 2015), suggesting its importance in

mediating osteoblastic bone metastasis. Dickkopf-1 (DKK-1)/

Wnt signaling, endothelin-1 (ET-1) and BMP are also very

important in regulating osteoblastic bone metastasis. In TME,

PCa cells highly express DKK-1 to promote cancer proliferation

before bone metastasis. However, when the PMBN is

accomplished, PCA cells rarely express DKK-1

(Aufderklamm et al., 2018), which subsequently activates
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Wnts’ osteoblastic activity (Schwaninger et al., 2007; Hall,

Daignault, Shah, Pienta, & Keller, 2008). Moreover,

endothelin 1, elicits pleiotropic effects on the

microenvironment, expressed by PCA cells, suppresses the

function of DKK-1 so as to enhance the activation of Wnt

signaling (Rosanò, Spinella, & Bagnato, 2013). BMP, which

induces MIC to activate cancer cells in PMN to mature PMBN,

also plays a role in promoting osteoblastic activity (J. Dai et al.,

2005). Osteoblast enhanced VCAM-1 expression in PCa cells

and subsequently promoted the adherence of cancer cells to

osteoblasts (Chang et al., 2018) and surprisingly, this process

was corroborated with the formation of PMBN.

2.5 Traditional Chinese medicine and Pre-
metastatic niche

The theoretical basis of treatment using Traditional

Chinese Medicine (TCM) is the Yin-Yang theory. It is

important for TCM to maintain the Yin-Yang balance in

the body. Tumor cells are taken for Yang as invasion and

spread, while immune cells are taken for Yin on account of

clearing. If immune cells cannot clear tumor cells, it will cause

an imbalance of Yin-Yang in the body, leading to disease

progression. Notably, MDSCs are the main cells that make up

PMBN and are capable of forming a pre-metastatic

immunosuppressive microenvironment (Zheng et al., 2020).

Fortunately, TCM with multi-targeted efficacy can exert anti-

tumor effects by regulating MDSCs. For example,

cinnamaldehyde (CA), an important component of

cinnamon, can enhance the immune killing effect of PCa

by inhibiting myeloid-derived suppressor cells (MDSCs)

(Han et al., 2020). Accumulated evidence indicates that

TCM plays a pivotal role in regulating the pre-metastatic

niche and suppressing tumor metastasis. Thus, PMN is an

integral process involving multiple organs, multiple cells, and

multiple cytokines. Coincidentally, TCM has a holistic view of

diagnosis and treatment. In the past few years, a large number

of studies have shown that TCM can suppress tumor

metastasis by inhibiting the formation of PMN in breast

cancer (Tian et al., 2020; Zheng et al., 2020), gastric cancer

(Zhu, Zhou, Xu, & Wu, 2017) and colorectal cancer (C. Chen

TABLE 2 Chemical structure and function of traditional Chinese medicine monomer in PMN.

Compound Structure Function References

Bufalin 1. Inhibit bone metastasis of prostate cancer J. J. Zhang et al.
(2019)

Celastrol 1. Inhibit bone metastasis of prostate cancer Kuchta et al. (2017)

2. Inhibit the VEGF pathway of bone marrow-derived endothelial
progenitor cells

Perillaldehyde 1. Inhibit bone metastasis of prostate cancer Z. Lin et al. (2022)

2. Inhibit the RANKL-induced osteoclastogenesis

Aldehydic components of cinnamon
bark extract

1. Inhibit bone metastasis of prostate cancer Tsuji-Naito (2008)

2. Inhibit the RANKL-induced osteoclastogenesis
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et al., 2019). Therefore, summarizing the functions of TCM

herbs that can inhibit the formation of PCa PMN is beneficial

to extend the clinical application of TCM.

Several studies have demonstrated that natural

phytochemicals extracted from TCM herbs show great

advantages in the control of tumor metastasis via inhibiting

the formation of PMN. Active components extracted from TCM

herbs such as bufalin, which were obtained from the ChanSu skin

and parotid venom glands, can inhibit bone metastasis of PCa

(J. J. Zhang et al., 2019). Celastrol, one of the active components

of Tripterygium wilfordii, can inhibit the bone metastasis of PCa

cells by inhibiting the VEGF pathway of bone marrow-derived

endothelial progenitor cells (BM-EPCs) (Kuchta et al., 2017).

However, these two studies only preliminary explored the

inhibition of bone metastasis of TCM herbs, and have not

thoroughly investigated the mechanism of inhibiting bone

metastasis of PCa. The balance of osteogenesis and osteoclast

is an important regulatory mechanism for the formation of PMN

in bone metastasis (Furesi, Rauner, & Hofbauer, 2021), and the

RANKL pathway is closely related to osteogenesis (Portal-Núñez

et al., 2017). Perilla aldehyde (PAH), one of the active

components of the TCM herb Perilla, is widely used and has

important anticancer activity. A study has found that PAH can

inhibit the formation of an osteoclast pre-metastatic niche by

inhibiting the RANKL pathway and ultimately inhibit the bone

metastasis of PCa (Z. Lin et al., 2022). In addition, Aldehydic

components of Cinnamon bark ultimately extract can also

suppress RANKL-induced osteoclastogenesis by down-

regulating the expression of transcription factor NFATc1

(Tsuji-Naito, 2008).

However, there is still a lack of in-depth research on the

regulation of PCa bone pre-metastatic niche by TCM. In

addition to osteoclastogenesis, some immunosuppressive

cells such as MDSC and Treg play an important role in the

formation of the PCa bone pre-metastatic niche (Cheng &

Wang, 2021). There are some exciting progresses in the field

of breast cancer pre-metastatic niche. For example, Wang

et al. found that XIAOPI formula, a TCM herb composed of

multiple prescriptions, can inhibit the pre-metastatic niche

formation in breast cancer via the suppressing function of

TAMs (Zheng et al., 2020). TCM treasure trove. On the basis

of illuminating the formation of the PCa bone metastasis

niche, in-depth research on the mechanism of TCM will help

us to expand the clinical application of TCM in the treatment

of patients with PCa bone metastasis (Table 2).

3 Conclusion

The concept of PMBN may be convenient for the illustration

of the predilection of PCa bone metastasis. In brief, after

stimulation by TDSF, MICs will migrate to the target niche

and activate chemokines, which further induces the BMDC to

MDSC in bone. Fibronectin, integrin, and VEGFR promote the

recruitment and fusion of PMBN. As BMDC comes from the

bone, the formation of PMBN is easier than any other PMN.

After maturation of PMBN, MICs will activate in bone and

induce tumor cell metastasis from primary prostate to bone,

which affects the balance between osteoblast, and osteoclast

thereby leading to bone metastasis. Moreover, TCM has

potential regulation in PMBN. However, PMBN is just a

hypothesis for now and further basic research is necessary to

determine the cause of the predilection of PCa bone metastasis.
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