
ORIGINAL RESEARCH
published: 13 April 2021

doi: 10.3389/fnbot.2021.652562

Frontiers in Neurorobotics | www.frontiersin.org 1 April 2021 | Volume 15 | Article 652562

Edited by:

Wei Shi,

Carleton University, Canada

Reviewed by:

Xiaofei Xie,

Nanyang Technological University,

Singapore

Weisheng Li,

Chongqing University of Posts and

Telecommunications, China

Min Meng,

Guangdong University of Technology,

China

*Correspondence:

Keke Tang

tangbohutbh@gmail.com

Zhiyong Feng

zyfeng@tju.edu.cn

Received: 12 January 2021

Accepted: 15 March 2021

Published: 13 April 2021

Citation:

Peng W, Su Y, Tang K, Xu C, Feng Z

and Fang M (2021) Geometrical

Consistency Modeling on B-Spline

Parameter Domain for 3D Face

Reconstruction From Limited Number

of Wild Images.

Front. Neurorobot. 15:652562.

doi: 10.3389/fnbot.2021.652562

Geometrical Consistency Modeling
on B-Spline Parameter Domain for
3D Face Reconstruction From
Limited Number of Wild Images

Weilong Peng 1, Yong Su 2, Keke Tang 3*, Chao Xu 4, Zhiyong Feng 4* and Meie Fang 1

1 School of Computer Science and Cyber Engineering, Guangzhou University, Guangzhou, China, 2 Tianjin Key Laboratory of

Wireless Mobile Communications and Power Transmission, Tianjin Normal University, Tianjin, China, 3Cyberspace Institute of

Advanced Technology, Guangzhou University, Guangzhou, China, 4College of Intelligence and Computing, Tianjin University,

Tianjin, China

A number of methods have been proposed for face reconstruction from single/multiple

image(s). However, it is still a challenge to do reconstruction for limited number of

wild images, in which there exists complex different imaging conditions, various face

appearance, and limited number of high-quality images. And most current mesh

model based methods cannot generate high-quality face model because of the

local mapping deviation in geometric optics and distortion error brought by discrete

differential operation. In this paper, accurate geometrical consistency modeling on

B-spline parameter domain is proposed to reconstruct high-quality face surface from

the various images. The modeling is completely consistent with the law of geometric

optics, and B-spline reduces the distortion during surface deformation. In our method,

0th- and 1st-order consistency of stereo are formulated based on low-rank texture

structures and local normals, respectively, to approach the pinpoint geometric modeling

for face reconstruction. A practical solution combining the two consistency as well as

an iterative algorithm is proposed to optimize high-detailed B-spline face effectively.

Extensive empirical evaluations on synthetic data and unconstrained data are conducted,

and the experimental results demonstrate the effectiveness of our method on challenging

scenario, e.g., limited number of images with different head poses, illuminations,

and expressions.

Keywords: 3D face modeling, B-spline, face reconstruction, geometrical consistency, parametric domain

1. INTRODUCTION

3D face has been extensively applied in the areas of face recognition (Artificial and Aryananda,
2002; Mian et al., 2006), expression recognition (Zhang et al., 2015). These face analysis
technologies are of significance for human-robot cooperative tasks in a safe and intelligent
state (Maejima et al., 2012). So 3D face reconstruction is a import topic, and it is meaningful
to reconstruct specific 3D face from person-of-interest images under many challenge scenes.
The images under challenge scene are also referred as images in the wild, having following
characteristics: (1) significant changes in illuminations across time periods; (2) various face poses
caused by different camera sensors and view points; (3) different appearances among different
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environment; (4) occlusions or redundant backgrounds. More
seriously, only limited number of identity images are available
under human-robot interaction, surveillance, and mobile
shooting scenario as listed in Figure 1, sometimes.

As a whole, reconstruction technologies include single-image
method, multiple images, and even unconstrained images based
methods. Recent researches (Kemelmacher and Seitz, 2011; Roth
et al., 2015, 2016) prove that good reconstruction depends on
two aspects of efforts: (1) enough rich local information, e.g.,
normal, and (2) a good face prior, e.g., face template. Particularly,
the latter is to find an embedding representation with good
characteristic to register local information finely.

According to the template representation, these methods can
be categorized into three classes: (i) methods without using
template, e.g., integration (Kemelmacher and Seitz, 2011) and
structure from motion (Koo and Lam, 2008), (ii) methods using
a single discrete template, e.g., a reference face mesh (Roth
et al., 2015), and (iii) methods using a statistic continuous
template, e.g, T-splineMMs (Peng et al., 2017), or discrete
template, e.g., 3DMMs (Piotraschke and Blanz, 2016; Roth et al.,
2016). The methods with template always generate good global
shape compared with those without template, and a statistic
template contributes to a better personalization. Therefore, it
is very significant to find a excellent template representation
for face reconstruction. Mesh model is widely used due to its
rapid computation and popularity in computer vision, but it
is not well-compatible with geometric optics in vertex level,
resulting in local mapping deviation of rays, seen in Figure 1.
This makes local information not strictly registered physically.
Additional, discretization of Laplace-Beltrami operation (LBO),
i.e., cotangent scheme (Meyer et al., 2003), may bring a
deformation distortion at local, which often happens when
images are not enough for high-quality normal estimation.
This distortion irregularly occurs at the edge and the location
with large curvature changing, e.g., nose and mouth. Lastly the
topology-fixed mesh also restricts an extended refinement. All
above problem limits reconstruction precision of mesh.

FIGURE 1 | Geometric optics of BP (i.e., back projection) imaging on two types of surfaces: the correct ray lines go through the blue points on the true shape, while

the biased ones go through red points on the mesh shape because the cross point between a ray and mesh is bounded to vertex. The difference between red point

and the blue point is referred to local mapping deviation.

To solve the existing issue in mesh template, we adopt classic
B-spline embedding function (Piegl and Tiller, 1997) to register
local information and reconstruct face. Firstly, B-spline surface
is a parametric surface that can approximate the true shape of
an object with fewer parameters (control points) than mesh. It
contributes to correct rays in geometric optics, that makes local
information, i.e., texture, feature points and normals, accurately
registered. Secondly, we use 2nd-order partial derivative operator
w.r.t. parameters as the local deformation constraint to reduce
the deformation distortion. Lastly, B-spline surface also can be
used to generate mesh in any precision or be extended for further
refinement. The three characteristics of B-spline face show
great advantages over a mesh template based method. Given a
collection of images, we use B-spline embedding function as 3D
face representation and model 0th- and 1st-order consistency
of reconstruction in the parameter domain, which makes BP
imaging rays completely compatible with geometric optics. The
0th-order consistency model guarantees that the images are
well-registered to surface even if the face images has occlusion
or expression; And the 1st-order consistency model guarantees
that the surface normals is consistent to the normals estimated
from images. Both qualitative and quantitative experiments are
conducted and compared with other methods.

In a nutshell, there are two primary contributions:

1. Pinpoint geometrical consistency is modeled on B-spline
embedding function for face reconstruction from multiple
images, completely consistent with the law of geometric optics.

2. 0th- and 1st-order consistency conditions and its a practical
solution is proposed to optimize B-spline face effectively,
which is able to handle variations such as different poses,
illuminations, and expressions with limited of number images.

In the following, we will first review related work in section 2.
Section 3 provides a geometric modeling of multiple BP imaging
in image-based stereo for our problem. We introduce the B-
spline embedding and its brief representations in section 4 and
present consistency modeling for B-spline face reconstruction in
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section 5. In addition, a practical solution is proposed in section
6. We conduct experiment in section 7 and conclude in section 9.

2. RELATED WORK

2.1. 3D Face Required Scenes
With the development of robots and AIoT (Qiu et al., 2020),
vision will play an very important role in safety (Khraisat et al.,
2019; Li et al., 2019), scene and human understanding (Zhang
et al., 2015; Meng et al., 2020). As a base technology, 3D
face contributes to the scenes greatly. For example, to build
humanoid robots that interact in a human-understanding
manner, automatic face, and expression recognition is very
import (Zhang et al., 2015). The recognition during real-
life human robot interaction could still be challenging as a
result of subject variations, illumination changes, various pose,
background clutter, and occlusions (Mian et al., 2006). However,
humanoid robot API of original version cannot always be able
to handling such challenges. Optimal, robust, and accurate
automatic face analysis is thus meaningful for the real-life
applications since the performance of facial action and emotion
recognition relies heavily on it. Many parametric approaches
like 3DMMs (Blanz and Vetter, 1999; Blanz et al., 2004) and
face alignment with 3D solution (Zhu et al., 2016) in the
computer vision field have been proposed to estimate head
pose, recognition identity, and expression from real-life images
to benefit subsequent automatic facial behavior perception to
address the above issues. Therefore, 3d face modeling in a
humanoid robot view is of great significant to handling the
challenging face analysis during interaction.

2.2. 2D Images Based Face Reconstruction
2D methods generally cover several kinds of fundamental
methods including Structure from Motion (SFM) (Tomasi and
Kanade, 1992), Shape from Shading (SFM) (Zhang et al., 1999),
3D Morphable Model (3DMM) (Blanz and Vetter, 1999; Blanz
et al., 2004), and Deep learnings (Richardson et al., 2017; Deng
et al., 2019). SFM methods compute the positions of surface
points based on an assumption that there exists a coordinate
transformation between the image coordinate system and the
camera coordinate system. And SFS methods compute surface
normals with an assumption that the subject surface is of
Lambertian and under a relatively distant illumination. And
the idea of 3DMM is that human faces are within a linear
subspace, and that any novel face shape can be represented by
a linear combination of shape eigenvectors deduced by PCA.
SFS and SFM give the geometrical and physical descriptions
of face shape and imaging, and 3DMM concentrates on the
statistical explanation of 3D meshes or skeletons. Deep learning
methods infer 3D face shape or texture (Lin et al., 2020) by
statistically learning mapping between face images and their 3D
shapes (Zhou et al., 2019). Being limited to data size, most of them
relies 3DMM or PCA for synthesizing supplementary ground
truths (Richardson et al., 2016) or as a priori (Tran et al., 2017;
Gecer et al., 2019; Wu et al., 2019), resulting absence of shape
detail. It’s believed that face reconstruction is rather a geometrical
optimization problem than a statistical problem, as 3DMM is

more suitable to be an assistant of the geometrical method when
building detailed shape, e.g., that by Yang et al. (2014).

2.3. Shape in Shading and Structure in
Motion
SFS has been widely used for reconstruction, e.g., single-
view reconstruction (Kemelmacher Shlizerman and Basri,
2011), multiple frontal images based reconstruction (Wang
et al., 2003), and unconstrained image based reconstruction
(Kemelmacher and Seitz, 2011; Roth et al., 2015). As single-
view is ill posed (Prados and Faugeras, 2005), a reference is
always needed (Kemelmacher Shlizerman and Basri, 2011). For
unconstrained images, photometric stereo is applied to obtain
accurate normals locally (Kemelmacher and Seitz, 2011; Roth
et al., 2015). SFM uses multiple frame or images to recover sparse
3D structure of feature points of an object (Tomasi and Kanade,
1992). Spatial-transformation approach (Sun et al., 2013) only
estimates the depth of facial points. Bundle adjustment (Agarwal
et al., 2011) fits the large scale rigid object reconstruction, but it
cannot generate the dense model of non-rigid face. Incremental
SFM (Gonzalez-Mora et al., 2010) is proposed to build a generic
3D face model for non-rigid face. The work by Roth et al. (2015)
optimizes the local information with normals from shading,
based on a 3D feature points-driven global warping. Therefore,
shading and motion are important and very distinct geometric
information of face, and they enhance the reconstruction when
being combined. In our method, 0th- and 1st-order consistency
of stereo is modeled to integrate the advantages of both shading
and motion information.

2.4. Facial Surface Modeling
Surface modeling is dependent on the data input (point cloud,
noise, outlier, etc), output (point cloud, mesh, skeleton), and
types of shape (man-made shape, organic shape). Point cloud,
skeleton, and mesh grid are the widely used man-made shape
type for face reconstruction. Lu et al. (2016) present an a
stepwise tracking method approach to reconstruct 3D B-spline
space curves from planar orthogonal views through minimizing
the energy function with weight values. Spatial transformation
method (Sun et al., 2013) estimates positions of sparse facial
feature points. Bundle adjustment builds the dense point cloud
for large scale rigid object with a great number of images
(Agarwal et al., 2011). Heo and Savvides (2009) reconstruct face
dense mesh based on skeleton and 3DMM. Kemelmacher and
Seitz (2011) apply integration of normals to get discrete surface
points, which may produce incredible depth when the recovered
normals are unreliable. Roth et al. (2015) reconstruct face mesh
based on Laplace mesh editing, which may produce local mesh
distortion after several iterations of local optimization. In work
of mesh reconstruction, surface-smoothness priors is also needed
to guarantee the smoothness of discrete mesh based on point
cloud, e.g., radial basis function (Carr et al., 2001) and Poisson
surface reconstruction (Kazhdan et al., 2006). Due to the fact
that the point cloud and 3D mesh are discontinuous geometric
shape, they cannot approximate the true shape of a face of
arbitrary precision. There have been works of fitting B-splines
to noisy 3D data, like Hoch et al. (1998). B-spline face model is
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FIGURE 2 | Geometric optics of multiple BP imaging.

a continuous free-form surface that can be reconstructed from
images directly, instead of intermediate point data, but it is not a
detailed model by only using structure optimization (Peng et al.,
2016). Because B-spline surface is a special case of NURBS (Non-
Uniform Rational B-Spline) (Piegl and Tiller, 1997), it can also
be imported to 3D modeling software like Rhino3D for further
editing, analysis, and transformation conveniently by adjusting
the B-spline control points. It can also be converted into mesh
model with any precision according to appropriate parameter
interval, conveniently, which is meaningful for a system with
limited memory.

3. GEOMETRIC MODELING

Our problem modeling is illustrated in Figure 2. The domain
of input image Ii from a camera is Ii ⊂ R

2, i = 1, 2, . . . , n.
5−1 denotes the inverse operator of 5. The camera operator
5i ∈ C∞(R3,R2) map a point P ∈ S to p = 5i(P) ∈ Ii using
weak perspective projection, i = 1, 2, . . . , n. And5−1

i determines
the ray cluster Rays#i of BP imaging from Ii, i = 1, 2, . . . , n. Let
si, Ri, and ti denote scale, rotation, and translation parameter in
projection 5i. The ith projection operation is simply

5i(P)
1= si · Ri,[1,2] · P + ti. (1)

Ri,[1,2] expresses the first two rows of Ri.
Let U ⊂ R

2 denote the parameter domain of human face
surface. A certain embedding F ∈ C1(U ,R3) maps a point u ∈ U

to the 3D point P ∈ S . F−1 denote the inverse operator of F. It
is thus clear that different embedding F determine different face
shapes. According to the geometric optics of BP imaging, a image
point p ∈ Ii is back projected onto a point u = τi(p) ∈ U via
the operator

τi
1= F−1 ◦ 5−1

i . (2)

Therefore, an image Ii in the i-th view is mapped to surface S, and
then is mapped to texture space by

Ti
1= Ii ◦ τ−1

i , (3)

where we define

(I ◦ τ−1)(u)
1= I(5(F(u))), for u ∈ U . (4)

In fact, τi, i = 1, 2, . . . , n generate discrete and inconsistent rays
mapping in texture space because of the discrete and different
images domains, as well as the noises, seen in Figure 2.

3.1. 0th- and 1st-Order Consistency
Generally, the problem is how to determine F according to from
multiple images. If all images are the captures of a same S , all
{Ti}i=1 : n in texture space are hoped to be highly consistent in
the geometry.

First, that satisfies

< F̂, {5̂i} >= argmin
F,{5i}

rank([vec(T1), vec(T2), . . . , vec(Tn)]),

(5)
with Ti = (Ii ◦ τ−1

i )#, i = 1, 2, . . . , n. And (·)# is a composition
operator of fitting and sampling, to handle the inconsistency. It
firstly fits a texture function based on the discrete texture and
parameters mapped from one image, and then samples texture
intensity values at unified parameter points {uj}j=1 :Np .

Second, it satisfies






∂F
∂u×

∂F
∂v

∥

∥

∥

∂F
∂u×

∂F
∂v

∥

∥

∥

= n,

ρjnj · li = Ti|uj .
(6)

which describes the equivalence relation between normal n and
1st-order partial derivative in the first formulation, and the
equivalence relation among albedo ρ, normal n, light direction
l, and image intensity T in the second. This follows a linear
photometric model, as seen in Figure 3.

We refer to Equations (5) and (6) as 0th- and 1st- order
consistence equations in 3D surface reconstruction respectively.
Generally, researchers solve any one of the two consistence
problem to reconstruct 3D surface, classically, by multi-view
stereo (Seitz et al., 2006) for 0th-order consistence problem,
or by photometric stereo (Barsky and Petrou, 2003) for the
1st-order one.
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FIGURE 3 | The consistency mapping equivalence between embedding F and the image intensity.

3.2. Embedding F
There are several types of representation for embedding F,
such as discrete mesh and C2 parametric surface. In fact the
representation type of F also affects the reconstruction effect.
Intuitively for mesh, on one hand there exists mapping deviation
of rays from image points to vertices of mesh, which contributes
to inaccurate texture charts {Ti}i=1 : n and affects the accuracy of
reconstruction. On the other, discrete differential operator, i.e.,
LBO (Meyer et al., 2003), brings potential distortion error when
there exists obtuse triangles in the mesh caused by error local
normal. Additionally, the precision of mesh also limit the detail
of reconstruction.

We consider to apply C2 parametric surface as the
representation of face. Generally, B-spline surface is
recommended because of its advantages of good locality
over other types of surfaces such as polynomial surface and
Bessel surface. By B-spline surface, it doesn’t exist mapping
deviation in geometric optics, and it avoids the potential
distortion brought by discrete differential operator. Therefore,
accurate and continuous back projection texture charts {Ti}i=1 : n

can be generated based on Equations (2), (3), and (5). Then
accurate reconstruction can be implemented based on Equation
(6). What’s more, the precision can be enhanced for high-detailed
reconstruction by inserting control points.

4. B-SPLINE FACE EMBEDDING F, AND
THE 0TH-, 1ST-, 2ND–ORDER
REPRESENTATION

The human face is assumed to be a uniform B-spline surface S

of degree 4 × 4, with B = {bmn}M×N as its control points. In
parameter domainU , knotsU = {um}M+4

m=1 andV = {vn}N+4
n=1 split

uv parameter plane into uniform grid. Let u denote parameter
point (u, v). The surface function is

F(u) =
M

∑

m=1

N
∑

n=1

Rm,n(u)bmn,

with Rm,n(u) = Nm,4(u) · Nn,4(v) and











Ni,1(w) =
{

1 ui ≤ w < ui+1,

0 otherwise,

Ni,j(w) = (w−ui)·Ni,j−1(w)

ui+j−1−ui
+ (ui+j−w)·Ni+1,j−1(w)

ui+j−ui+1
, (j = 4, 3, 2).

F is C2, meaning that it can approximate the true shape
in arbitrary uv precision with deterministic k-ordered partial

derivative ∂kF
∂uk

and ∂kF
∂vk

, k = 1, 2, and ∂2F
∂u∂v .

4.1. 0th-Order Representation
We give a more brief formulation of 0th-order representation
as follows:

F|u = T|u · b, (7)

where b denotes a 3MN×1 vector storing B-spline control points,
and T|u denotes a sparse 3× 3MN matrix stacking the 0th-order
coefficients at parameter u ∈ U .

In fact, we needn’t consider all 3D points mapping to 2D
images when estimating a operator 5. Instead, we only consider
f landmark points on human face as shown in Figure 4, and their
brief formulation is

F|u(li) = T|u(li) · b, i = 1, 2, . . . , f , (8)

where u(li) is the parameter point of the i-th feature point, i =
1, 2, . . . , f . The landmarks cover a sparse structure of face.

4.2. 1st-Order Representation
The 1st-order partial derivatives of F w.r.t u and v are

F′u(u) =
M
∑

m=1

N
∑

n=1
N′
m,4(u) · Nn,4(v)bmn

=
M
∑

m=1

N
∑

n=1
( 4
um+4−ui

N′
m,3(u)− 4

um+5−um+1
N′
m+1,3(u)) · Nn,4(v)bmn
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FIGURE 4 | Face structure defined by 40 feature points: the left side shows

the point positions in a face image; the right side shows the structure topology

with eye center points of O1 (−25, 0, 0) and O2 (25, 0, 0) in 3D space, which

looks like a frontal 2D face structure from the direction of normal (0, 0, 1). (The

face image used in the figure comes from LFW database1).

and

F′v(u) =
M
∑

m=1

N
∑

n=1
Nm,4(u) · N′

n,4(v)bmn

=
M
∑

m=1

N
∑

n=1
Nm,4(u) · ( 4

un+4−un
N′
n,3(v)− 4

un+5−un+1
N′
n+1,3(v))bmn

respectively.
Similarly, we give a more brief formulation of 1st-order partial

derivative as follows:

{

F′u|u = T1|u · b
F′v|u = T2|u · b

, (9)

where T1|u and T2|u denote the matrixes stacking the 1st-order
coefficients w.r.t u and v, respectively.

Therefore, the surface normal vector at u can be computed by
the cross product

n|u = F
′
u|u × F

′
v|u

∥

∥F′u|u × F′v|u
∥

∥

= s|u · F′u|u × F
′
v|u, (10)

which is the key information for detailed reconstruction using
photometric stereo method.

4.3. 2nd-Order Representation
And similarly, the 2nd-order partial derivatives w.r.t. u and v,
respectively are

{

F′′uu|u = T11|u · b
F′′vv|u = T22|u · b

, (11)

where T11|u and T22|u denote the matrixes stacking the 2nd-
order coefficients w.r.t u and v, respectively. The 2nd-order
information can be used for smooth control during optimization.

Based on face surface embedded with B-spline function, we
present the pinpoint 0th- and 1st-order geometric consistency
conditions in the following section.

5. CONSISTENCY MODELING IN B-SPLINE
FACE RECONSTRUCTION

Reconstruction problem is to compute F by solving 0th-order
consistence of Equation (5) or 1st-order consistence of Equation
(6). Generally, two consistency conditions are combined for face
reconstruction considering that estimating abundant consistent
points in images is limited and that the estimated normals are
unfaithful. Furthermore, how to obtain the accurate registration
of 0th- and 1st-order information is the most important to
high-detailed B-spline reconstruction.

The well-registered textures are low-rank structures of the
back projection texture charts. But in practice, they can be easily
violated due to the presence of partial occlusions or expressions
in the images captured. Since these errors typically affect only
a small fraction of all pixels in an chart, they can be modeled
as sparse errors whose nonzero entries can have arbitrarily
large magnitude.

5.1. Modeling Occlusion and Expression
Corruptions in 0th-Order Consistence
Let ei represent the error corresponding to image Ii such that the

back projection texture charts Ti = (Ii ◦ τ−1
i )# − ei = T

e
i −

ei, i = 1, 2, . . . , n are well registered to the surface F, and free of
any corruptions or expressions. Also combining with 0th-order
representation of B-spline face in Equation (7), the formulation
(5) can be modified as follows:

< b̂, {5̂i}, D̂, Ê >= arg lim
b,{5i},D,E

‖D‖∗ + η ‖E‖1 ,

s.t.
∥

∥De −D− E
∥

∥

F ≤ ε.
(12)

where De =
[

vec(T e
1 ), vec(T

e
2 ), . . . , vec(T

e
n )

]

and E =
[vec(e1), vec(e2), . . . , vec(en)].

However, the solution b̂ of face surface S is not unique if all
images are in similar views. And the reconstruction is not high-
detailed even if we can make a unique solution by applying a
prior face template. So we also need to model high details in
1st-order consistence.

5.2. Modeling High Details in 1st-Order
Consistence
The resolution of reconstruction is determined by the density
of correctly estimated normals. To enhance the resolution of
B-spline surface, we use operator (·)# to sample Np dense
parameter points {uj}j=1 :Np on the domain U for the problem
of Equation (6).

Then the well-registered and dense texture are obtained by

Ti|uj = D̂ji, (13)

for i = 1, 2, . . . , n and j = 1, 2, . . . ,Np.
According to Lambertian illuminationmodel seen in Equation

(6), dense normals nj as well as light li can be computed from the
shading (intensity) of charts Ti by SVD method.

Finally, the high detailed reconstruction must satisfy

min
F

Np
∑

j=1

∥

∥nj − s|ujF′u|uj × F′v|uj
∥

∥

2

2
. (14)
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By putting Equation (9) into Equation (14), we get

min
b

Np
∑

j=1

∥

∥nj − s|uj (T1|uj · b)× (T2|uj · b)
∥

∥

2

2
. (15)

Conditions of both Equations (6) and (15) have to be considered
for a good reconstruction, which is very difficult. Therefore,
we propose a practical solution that combining both 0th- and
1st-order consistence.

6. PRACTICAL SOLUTION COMBINING
0TH- AND 1ST-ORDER CONSISTENCE

The problems of both 0th-order consistence and 1st-order
consistence are difficult to solve. For , Jacobian matrices
w.r.t. {τ−1

i }i=1 : n have to be computed, which is computing-
expensive. And the solution of Equation (15) is not unique,
either. Therefore, we aim to find a practical solution to handle
both two consistence conditions in this section. We first
define the subproblem for each condition, and then provide a
iterative algorithm.

6.1. 0th-Order Solution
In Equation (6), three kind of parameters including camera
parameters {5i}i=1 : n, surface parameters F (or b), and texture
parameters {Ti}i=1 : n (or D) need to be computed, but they are
difficult to be solved simultaneously. We adopt to optimize them
by turns, instead.

6.1.1. Estimating 5i

According to linear transformation from 3D to 2D in Equation
(1), we can estimate scale si, rotation Ri and translationti of
landmarks for each image Ii, i = 1, 2, . . . , n based on the and SVD
method (Kemelmacher and Seitz, 2011). The image landmarks
are detected by a state-of-art detector (Burgos-Artizzu et al.,
2013) that has a similar high performance to human. And the 3D
landmarks are defined on a B-spline face template with control
point parameter b0, according to Equation (8).

6.1.2. Estimating b

Let f denote a 2nf × 1 vector stacking f landmarks of n images,
and P denote a 2nf × 3f projection matrix stacking n views of
parameters siRi,[1,2], and t denote a 2nf × 1 vector stacking f
translation. The update of b can be implemented by solving:

min
b

∥

∥

∥
f− t− P · T#lb

∥

∥

∥

2

2
+ ζ

∥

∥(T#
11 + T#

22)(b− b0)
∥

∥

2

2
(16)

where the first and the second are 0th- and 2nd-order item,
respectively, and ζ is used to balance them. Operator (·)#l is a
sampling operator that selects B-spline coefficients of landmarks
at parameters {u(li)}i=1 : f , and (·)# selects B-spline coefficients at

{uj}i=1 :Np . In fact, T
#l is a 3f ×3MN matrix that stacks T|u(li), i =

1, 2, . . . , f , andT#
11 (orT

#
22) is a 3f×3MNmatrix that stacksT11|uj

(or T22|uj ), j = 1, 2, . . . ,Np.
The second item also work as a regularization measuring

the distance of local information between faces b and b0. It

helps eliminate affect of geometric rotation brought by 0st-
order warping, and guarantee a smoothness changing during
optimization. Particularly, ζ cannot be too small, otherwise a fast
changing may bring a local optimal.

6.1.3. Estimating Ti
τ−1
i and τi is determined by Equation (2) when 5i and b is
known. Then texture chart with noise is obtained by applying
consistent parameter sampling T

e
i = (Ii ◦ τ−1

i )#. Let De =
[vec(T e

1 ), vec(T
e
2 ), . . . , vec(T

e
n )]. The update of texture charts is

to minimize the following formulation

< D̂, Ê >= arg lim
D,E

‖D‖∗ + η ‖E‖1 ,
s.t. ‖De −D− E‖F ≤ ε.

(17)

which can be solved by Robust PCA (Bhardwaj and Raman,
2016). And let Ti|uj = D̂ji, for i = 1, 2, . . . , n, and j =
1, 2, . . . ,Np.

6.2. 1st-Order Solution
Firstly, texture charts based photometric stereo method is used
to estimate the local normals. Secondly, a normals driven
optimization strategy is proposed to optimize the B-spline face.

6.2.1. Estimating nj
According to Photometric stereo, the shape of each point can be
solved by the observed variation in shading of the images. Data
of n texture charts are input intoMn×Np for estimating the initial

shape S̃ and lighting L̃ by factorizing M = LS via SVD (Yuille
et al., 1999). L̃ = U

√
6 and S̃ =

√
6VT , where M = U6VT .

To approach the true normal information, we estimate the shape
S and ambiguity A by following the work of Kemelmacher and
Seitz (2011). Lastly, the normal at j-th point is nj = STj , where Sj
is the j-th row of S.

6.2.2. Estimating b
Wenormalize nj and stack them into a 3Np×1 vector h. Equation
(15) can be rewritten as

O1 = min
b

∥

∥h− 3|b · ((T#
1b)⊗ ((T#

2b))
∥

∥

2

2
,

where 3 is a 3Np × 3Np diagonal matrix that stores 3Np

reciprocals of lengths of the normals {nj}j=1 :Np ; and (·)# is a
selection operator that selects 3Np rows of 1st-order coefficients
at parameter {uj}j=1 :Np ; and b0 represent the control points
of a B-spline template face. Particularly, symbol ⊗ denotes a
composite operator of cross product, which makes w ⊗ v =
[w1 × v1;w2 × v2; . . . ;wNp × vNp ], where w and v are 3Np × 1
vectors containing Np normals.

However, there exists two issues: (1) the low-dimension hmay
not guarantee an unique solution of high-dimension b; and (2)
the system is not simply linear, which is difficult to be solved.
Therefore, a frontal constraint based on template b0 is applied
to make a unique solution; And a strategy of approximating to
linearization is also proposed to make a linear solution.
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6.2.2.1. Frontal Constraint
The frontal constraint is a distance measurement condition
between surface S and template w.r.t. x- and y-component:

O2 =
∥

∥T#xy(b− b0)
∥

∥

2

2
< ǫ,

where the matrix T#xy stacks 0th-order coefficients at parameter
{uj}j=1 :Np corresponding to x- and y- components. Operator

(·)#sxy also sets the coefficients corresponding to z- components
to zeros.

Particularly, the first item O1 is not a simple linear form, for
which an approximating to linearization is proposed.

6.2.2.2. Approximating to Linearization
According to the characteristics of the cross-product ⊗, the first
item in O1 can be rewritten as a linear-like formulation:

‖h− L|b · b‖22 or ‖h− R|b · b‖22 ,

where

{

L|b = 3|b ·
[

T#1b
]

⊗ · T#2
R|b = −3|b ·

[

T#2b
]

⊗ · T(sn)1 .

Particularly, the operation [·]⊗ makes a 3Np × 1 vector

w =
[

w
T
1 ,w

T
2 , . . . ,w

T
Np

]T
become a 3Np × 3Np sparse matrix

[w]⊗ = diag([w1]× , [w2]× , . . . ,
[

wNp

]

×), where [wi]× =
[0,−w

z
i ,w

y
i ;w

z
i , 0,−w

x
i ;−w

y
i ,w

x
i , 0], i = 1, 2, . . . ,Np.

If b is a known parameter, e.g., as b0, for L|b, the minimization
of

∥

∥h− L|b0 · b
∥

∥ will be a linear system. That is also true for R|b.
In fact, we can use formulation

∥

∥h− L|b0 · b
∥

∥ to optimize
the control points in parameter space of v by fixing u, and use
∥

∥h− R|b0 · b
∥

∥ to optimize in parameter space of u by fixing v.

Algorithm 1: Iterative Algorithm for B-spline Face Optimization

Input: Face images {Ii}i=1 : n, B-spline template face b0, and
landmark parameters {u(li)}i=1 : f in domain U .

1: Detect facial landmark points of images
2: while b is not converged do

3: do // LOOP1: 0th-order consistence

4: Estimate camera parameter {5i}i=1 : n according to
landmarks.

5: Estimate b via Equ(16), and update b0 with b.
// Obtain well-registered texture

6: Register images to texture space by {Ii ◦ τ−1
i }i=1 : n, and

buildDe based on unified parameter {uj}j=1 :Np .

7: Solve Equ(17) to obtain D̂.
8: while ‖D‖∗ + η ‖E‖1 is not converged // LOOP1 END

9: Extract texture charts {Ti}i=1 : n from D̂.
10: while b0 is not converged // LOOP2: 1st-order

consistence do

11: Estimate normals {nj} from {Ti}.
12: Estimate b via Equation (18.a), and update b0 with b.
13: Estimate b via Equation (18.b), and update b0 with b.
14: end while

15: end while

Output: Solution of B-spline objective face b.

A practical skill is to optimize the control points on u and v
parameter spaces by turns. The two iteration items are rewritten
as

{

∥

∥h− L|b0 · b
∥

∥

2
2
+ λ

∥

∥31|b0 · T
#
1 · (b− b0)

∥

∥

2
2
,

∥

∥h− R|b0 · b
∥

∥

2
2
+ λ

∥

∥32|b0 · T
#
2 · (b− b0)

∥

∥

2
2
.

where the second term for each formulation is unit tangent
vector constraint on the fixed the directions. 31|b0 (or 32|b0 )
is a 3Np × 3Np diagonal matrix that stores 3Np reciprocals of

lengths of tangent vector ∂F
∂u (or ∂F

∂v ) at {uj}j=1 :Np . During this
procedure b0 is updated step-by-step. As shown in Figure 5, two
partial derivatives ∂F

∂v and ∂F
∂u at (u, v) are updated until ∂F

∂v × ∂F
∂u

converges to n.
By integrating with O2, the final formulation of optimization

consists of two items as follows:















min
b

∥

∥

∥

∥

[

h

T#xyb0

]

−
[

L|b0
T#xy

]

b

∥

∥

∥

∥

2

2

+ λ
∥

∥31|b0 · T#
1(b− b0)

∥

∥

2

2
, (a)

min
b

∥

∥

∥

∥

[

h

T#xyb0

]

−
[

R|b0
T#xy

]

b

∥

∥

∥

∥

2

2

+ λ
∥

∥32|b0 · T#
2(b− b0)

∥

∥

2

2
. (b)

(18)
The b0 is initialized by value of b0. Then we can solve b and
update b0 orderly by minimizing (a) and (b) in Equation (18)
iteratively until convergence.

6.3. Algorithm
An iterative algorithm is presented for this practical solution
in Algorithm 1. Processes of 0th-order consistence and 1st-
order consistence are separately conducted in the inner loop.
And the outer loop guarantees a global convergence on two
consistence problem.

6.3.1. Computational Complexity
The computation in above Algorithm 1 involves linear least
square for solving Equations (16), (18.a), and (18.b), SVD for
estimating camera parameter, and Robust PCA for Equation (17).
In detail, the computational complexity for solving Equation (16)
is O(n2f 2MN), and that of both Equations (18.a) and (18.b) are
O(N2

pMN). The computational complexity of robust PCA comes

to be O(N2
pk), where k is the rank constraint. By assuming Np >

M > N >> f > n, computational complexity of the other parts
can be negligible. In addition, we need considering the number
of iteration for total computation of Algorithm 1.

7. EXPERIMENT

In this section experiments are presented to verify our automatic
free-form surface modeling method. We first describe the
pipeline to prepare a collection of face images of a person
for B-spline face reconstruction. And then we demonstrate the
quantitative and qualitative comparisons with recent baseline
methods on projected standard images from ground truth 3D
data (Zhang et al., 2017) with various expressions, illuminations
and poses. Finally, we conduct challenging reconstructions and
comparison based on real unconstrained data taken from the
challenging Labeled Faces inWild (LFW) database1 (Huang et al.,
2007).

1http://vis-www.cs.umass.edu/lfw/
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FIGURE 5 | Iterative adjustment on two partial derivatives: Process (1) to (2) adjusts ∂F
∂u

by fixing ∂F
∂v
, and process (3) to (4) adjusts ∂F

∂v
by fixing ∂F

∂u
, … until that ∂F

∂u
× ∂F

∂v

is infinitely close to objective n; Process A implements a practically and iteratively linear handle for B-spline surface adjustment in B.

7.1. Data Pipeline and Evaluation
7.1.1. Synthesized Data With Expression
The ground truth data are from the space-times faces (Zhang
et al., 2017) which contains 3D face models with different
expressions. We use the data because it is convenient to
evaluate our method with ground truth. And different poses
and illuminations can also be simulated by the spaces-
times faces, seen in Figure 6. Images with various poses and
illuminations are collected, and feature points manually labeled.
The reconstruction is evaluated by the error to the ground
truth model.

7.1.2. Real Data in the Wild
The wild data (Huang et al., 2007) has characteristics of subject
variations, illumination changes, various pose, background
clutter and occlusions. Images of each person are collected and
input into a facial point detector (Burgos-Artizzu et al., 2013) that
has a similar high performance to human, to find the 40 facial
points shown in Figure 4. The initial B-spline template face is
computed from a neutral model of space-time faces.

7.1.3. Comparison
To verify the accuracy of automatic surface reconstruction,
discrete points are sampled from the generated continuous
free-form shape, and are compared to the traditional discrete
reconstructions, e.g., work by Kemelmacher and Seitz (2011) and
Roth et al. (2015). For a memory-limited capture system, it is not
available to collect thousands of images as what Kemelmacher
and Seitz (2011) and Roth et al. (2015) have done, so we
limit all the reconstructions to less than forty images. We also
compare them with an end-to-end deep learning method by Sela
et al. (2017) qualitatively. Deep learning methods rely training

on a large amount of unconstrained data, so we just use the
model provided by Sela et al. (2017) that have been training on
unconstrained images, and test it on the images in the wild.

7.2. Synthesized Standard Images
We conduct five sessions of reconstructions: the first four are
used to reconstruct expression S1, S2, S3, and S4 by using their
corresponding images, and the fifth session S5 is based on images
with different expressions. Each session contains 40 images with
various illumination and different poses. Reconstruction results
are compared with the re-implemented method Kemel_meth
by Kemelmacher and Seitz (2011) and Roth_meth by Roth
et al. (2015). Kemel_meth generates frontal face surface based
on integration in image domain of size 120 × 110. We clip it
according to the peripheral facial points and interpolate points
to get more vertices. Roth_meth generates a face mesh based on a
template with 23,725 vertices. In our method, control point grid
of 102× 77 is optimized for a B-spline face surface.

7.2.1. Quantitative Comparison
To compare the approaches numerically, we compute the
shortest point-to-point distance from ground truth to
reconstruction. Point clouds are sampled from B-spline
face and aligned according to absolute orientation problem. As
done in work of Roth et al. (2015), mean Euclidean distance
(MED), and the root mean square (RMS) of the distances, after
normalized by the eye-to-eye distance, are reported in Table 1.
Particularly, evaluation of Roth_meth is based on surface clipped
with same facial points like the other twomethods by considering
a fair comparison. In the table, the best results are highlighted in
boldface, and the underlined result has no significant difference
with the best. To our knowledge, Roth_meth is the state-of-art
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FIGURE 6 | Sample data simulated by the spaces-times faces (Zhang et al., 2017) : images and 3D model with various poses and illuminations are available; data of

sample S1, S2, S3, and S4 are used for evaluation.

TABLE 1 | Distances of the reconstruction to the ground truth.

Meth. Index S1 S2 S3 S4 S5

Kemel_meth MED (%) 8.08 8.18 8.18 10.75 8.65

RMS (%) 6.64 6.93 4.29 7.11 6.90

Roth_meth MED (%) 5.25 7.06 5.43 6.63 6.96

RMS (%) 4.36 5.79 4.54 4.42 4.62

Ours MED (%) 6.31 6.49 4.43 6.46 6.98

RMS (%) 4.10 4.66 2.91 4.06 4.34

The bold means the best value of MED and RMS, while the underline indicates the values

next to the best.

method for face reconstruction from unconstrained images.
Its re-implementation version is affected by the noisy normal
estimation because of limited number images, showing results
that are not good like as in its original paper. But it still performs
good on all sessions. As a whole, results by both Roth_meth and
our method have lower errors than Kemel_meth. On session
S1 and S5, Roth_meth obtains the lowest mean error 5.21 and
6.96%, respectively. However, we obtains lower RMS 4.10 and
4.34% while its errors is quite close to the best especially on
session S5. And on session S2, S3, and S4, our method obtains
the best results, 6.49 ± 4.66, 4.43 ± 2.91, and 6.46 ± 4.06%. In
contrast, the errors by Kemel_meth exceed 8%, and the RMS is
also very large on every session. These numerical comparisons
supply highly persuasive evidence that our B-spline method can
build promising reconstructions based on face images.

7.2.2. Visual Comparison
The visual results in Figure 7. We show 3D models in mesh
format for three methods on different sessions, and vertex
numbers of models are also presented. It also demonstrates that
our method has a promise performance by comparisons in the
figure. An important fact is that Kemel (Kemelmacher and Seitz,
2011) cannot make a credible depth information and global
shape, e.g., the global shape of reconstruction S2 and the mouse
and nose of S3 are obviously incorrect, but our method solves
global and local problem by optimization of 0th- and 1st-order

consistency. And while Roth (Roth et al., 2015) generates more
detailed information of an individual, it also produces distortion
at the detailed shape, e.g., the eye of reconstruction S2 and the
nose of reconstruction S3 and S4. In contrast, ourmethod obtains
realistic shape both globally and locally.

7.2.3. Characteristic Comparison
We give statistics of characteristics of the results generated by
the three methods in Table 2, covering the global shape, local
detail, credible depth, smoothness, distortion, and derivability.
Depending on the quantitative and qualitative comparisons, we
also give a rough rating. One star, two stars, and three stars
represents bad, general, and good reconstruction respectively
in the rating system. Both Roth_meth and our method obtain
good scores on global shape, local detail, and credible depth.
And both Kemel_meth and our method obtain a good score
on smoothness. Because of the bad depth, Kemel_meth also
gets bad score on global shape and distortion, and gets general
scores on local detail. In addition, B-spline face model has better
smoothness than the models by Kemel_meth and Roth_meth,
because it is C2 differentiable parametric surface while the
other two are discrete model. Conclusively, 0th- and 1st-
order consistency modeling using B-spline surface is efficient to
reconstruct parametric surface of individual face.

7.3. Real Unconstrained Images
Our method is also tested based on real unconstrained data.
Unconstrained data mean that the images are captured under
uncertain condition, and the faces in the images are different in
expression, pose and illumination condition. It is difficult to build
the geometrical consistency for reconstruction using such data.
Unlike the experiments in the work by Kemelmacher and Seitz
(2011) using hundreds of images, we conduct reconstruction with
limited number of images, because a large mount of face images
for one person are not always available for small sample size
tasks such as criminal investigation. In the experiment, uniformly
35 images are collected for each person from LFW database1

covering different poses, illuminations and expressions.
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FIGURE 7 | Visual reconstructions and comparisons for session S1, S2, S3, S4, and S5: for each session of reconstructions, a column lists the 3D results of

Kemelmacher and Seitz (2011), Roth et al. (2015), and us, as well as ground truth. (VrxNum means vertex number; TempVtxNum means vertex number of template;

and Ctrl.Point Num means the control point number of B-spline face surface. Particularly, the vertices of B-spline face are points sampled from the reconstructed

parametric surface).

TABLE 2 | A characteristics summarization of three methods by rough rating with

number of ✰.

Characteristics Kemel_meth Roth_meth Ours

Global shape ✰×1 ✰×3 ✰×3

Local detail ✰×2 ✰×3 ✰×3

Credible depth ✰×1 ✰×3 ✰×3

Smoothness ✰×3 ✰×2 ✰×3

No distortion ✰×1 ✰×2 ✰×3

C2 differentiable NO NO YES

Visual face reconstructions for Colin Powell, Donald
Rumsfeld, George W. Bush, Hugo Chavez, and Gloria Macapagal
Arroyo are compared with other two methods, as shown in
Figure 8. Let A label the results generated by the reimplemented
Kemel_meth, and let B label the results generated by the
reimplemented Roth_meth, and let C label the method
Seta_meth of deep learning by Sela et al. (2017) and let D
label our results. Particularly, the input for Seta_meth is one

image selected from the 35 images. Images in column 1, 5, and
8 are corresponding mean textures and two views of images
respectively. By comparing these results, we observe some
phenomena as follows:

(1) In frontal viewpoint,A andD showmore vivid details than B,
e.g., eyes and nose of Colin Powell. But in an other viewpoint,
D shows more credible shape than A, e.g., the eyes and the
forehead of Colin Powell, and the forehead and the mouth of
Donald Rumsfeld.

(2) When the normals are incorrectly estimated from a limited
number of images, e.g., for Gloria Macapagal Arroyo, A
loses the local information completely, but B, C, and D still
maintain general geometrical shape of face. For all methods,
reconstructing nose is a challenge because the geometric
curvature of the nose varies greatly. When the images are not
enough, the noise could be amplified. So B shows bad results
at nose being limited by number of input images.

(3) The input of C is a approximately frontal face image selected.
As the model of C is learning on a set of 3D face data, it may
not handle the uncertain noise and identity of inputs. So the
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FIGURE 8 | Visual reconstructions and comparisons for Colin Powell, Donald Rumsfeld, George W. Bush, Hugo Chavez, and Gloria Macapagal Arroyo: (1) Images in

column 1, 5, and 9 are corresponding mean textures and two views of images, respectively; (2) Columns labeled by A show the results generated by the

reimplemented Kemel_meth, and columns labeled by B show the results generated by the reimplemented method Roth_meth, and columns labeled by C show the

results generated by the Seta_meth, and columns labeled by C show our results. (The face images used in the figure come from LFW database1 ).

details in reconstruction by C don’t look real, although their
global shapes are stable and like human faces.

(4) By comparison, our method steadily produces better looking
results than others from different viewpoints in the dataset.
Clear and vivid details can be seen at key components such
as eyes, nose and mouth, forehead, and cheek.

8. DISCUSSION

All the above experiments prove that our method can build
pinpoint geometrical consistency on the limited number of real
unconstrained data. Our method may not be best method in
area of 3D reconstruction from multiple images, as the results
in the original work by B looks better. It could deal with 3D
reconstruction with limited number of images. Because we may
not obtain large amount of images for reconstruction as done
by Roth et al. (2015), for some condition restricted system. The
shortcomings of A are mainly resulted from the inauthentic
depth generated by integration method. And the bad results of
B are caused by that the mesh template cannot build correct
geometric consistency of number limited of unconstrained
images and that the discrete differential operating on estimated
noisy normal brings distortion errors. In contrast, we build
pinpoint geometric consistency using B-spline surface. B-spline
can smooth the noise in estimated normal better. So D can

reconstruct correct face shape with little distortion, showing
better result as a whole.

In the comparison, we don’t consider other deep learning
methods based methods appeared in recent years (Dou et al.,
2017; Richardson et al., 2017; Lin et al., 2020; Sengupta et al.,
2020; Shang et al., 2020). Because almost all recent works
are focused on deep learning methods for single image based
3D face reconstruction (Dou et al., 2017; Richardson et al.,
2017; Lin et al., 2020; Sengupta et al., 2020), as well as using
a 3DMM model as prior. And the multi-view deep learning
method only handle constrained face images (Shang et al.,
2020). It means the deep learning methods can use a large
amount of training data, and also a good prior. The input are
different between these learning based methods and our method.
So we conduct comparison with the classic optimization-
based approaches for the sake of fairness. Nevertheless, we
also select one representative method by Sela et al. (2017)
to show result by deep learning as a reference in the
comparison. It proves that if the test are not satisfactory to
the prior and distribution of training data, it may obtain
bad result.

9. CONCLUSIONS

This study set out to present high-detailed face reconstruction
from multiple images based on pinpoint 0th- and 1st-order
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geometric consistence using B-spline embedding. Based
on the good consistence modeling in geometric optics,
the method works well for data with different poses and
expressions in the wild. The key contribution of this
study is that surface modeling adapts the correct rays in
geometric optics by using B-spline embedding. This makes
the high-detailed B-spline modeling from a number limited
of face images captured under wild condition become
reality. The method could also be applied to expression
tracking and assisting face recognition in a monitoring or
robot system.

DATA AVAILABILITY STATEMENT

The original contributions presented in the
study are included in the article/supplementary
material, further inquiries can be directed to the
corresponding author/s.

AUTHOR CONTRIBUTIONS

WP and ZF has contributed equally to the core idea as well
as the experiment design and results analysis. YS, KT, and CX
has provided assistance in experiments and analysis, under ZF’s
supervision. Besides, KT and MF provided the research group
with financial support and experimental equipments. KT and ZF
are supportive corresponding authors. All authors contributed to
the article and approved the submitted version.

FUNDING

This research was partly supported by Science and Technology
Program of Guangzhou, China (No. 202002030263), Shenzhen
Science and Technology Foundation (JCYJ20170816093943197),
Guangdong Basic and Applied Basic Research Foundation
(2020A1515110997), National Natural Science Foundation of
China (Nos. 61772164 and 62072126), and National Key R&D
Program of China (No. 2019YFB1706003).

REFERENCES

Agarwal, S., Furukawa, Y., Snavely, N., Simon, I., Curless, B., Seitz, S. M.,

et al. (2011). Building Rome in a day. Commun. ACM 54, 105–112.

doi: 10.1145/2001269.2001293

Artificial, L. A., and Aryananda, L. (2002). “Recognizing and remembering

individuals: Online and unsupervised face recognition for humanoid robot,”

in Proc. of IROS (Lausanne), 1202–1207.

Barsky, S., and Petrou, M. (2003). The 4-source photometric stereo

technique for three-dimensional surfaces in the presence of highlights

and shadows. IEEE Trans. Pattern Anal. Mach. Intell. 25, 1239–1252.

doi: 10.1109/TPAMI.2003.1233898

Bhardwaj, A., and Raman, S. (2016). Robust PCA-based solution to image

composition using augmented lagrange multiplier (ALM). Visual Comput. 32,

591–600. doi: 10.1007/s00371-015-1075-1

Blanz, V., Mehl, A., Vetter, T., and Seidel, H. P. (2004). “A statistical method

for robust 3D surface reconstruction from sparse data,” in International

Symposium on 3D Data Processing, Visualization and Transmission (3DPVT)

(Thessaloniki), 293–300. doi: 10.1109/TDPVT.2004.1335212

Blanz, V., and Vetter, T. (1999). “Amorphable model for the synthesis of 3D faces,”

in Proceedings of Conference on Computer Graphics and Interactive Techniques

(New York, NY), 187–194. doi: 10.1145/311535.311556

Burgos-Artizzu, X. P., Perona, P., and Dollár, P. (2013). “Robust face landmark

estimation under occlusion,” in IEEE International Conference on Computer

Vision (ICCV), (Sydney, VIC), 1513–1520. doi: 10.1109/ICCV.2013.191

Carr, J. C., Beatson, R. K., Cherrie, J. B., Mitchell, T. J., Fright, W. R., Mccallum,

B. C., et al. (2001). Reconstruction and representation of 3D objects with radial

basis functions. ACM Siggraph 67–76. doi: 10.1145/383259.383266

Deng, Y., Yang, J., Xu, S., Chen, D., Jia, Y., and Tong, X. (2019). “Accurate

3D face reconstruction with weakly-supervised learning: From single image

to image set,” in IEEE Computer Vision and Pattern Recognition Workshops.

Long Beach, CA. doi: 10.1109/CVPRW.2019.00038

Dou, P., Shah, S. K., and Kakadiaris, I. A. (2017). “End-to-end 3D face

reconstruction with deep neural networks,” in 2017 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR) (Honolulu, HI), 1503–1512.

doi: 10.1109/CVPR.2017.164

Gecer, B., Ploumpis, S., Kotsia, I., and Zafeiriou, S. (2019). “Ganfit: generative

adversarial network fitting for high fidelity 3D face reconstruction,” in IEEE

Computer Vision and Pattern Recognition (CVPR) (Long Beach, CA), 1155–

C1164. doi: 10.1109/CVPR.2019.00125

Gonzalez-Mora, J., De la Torre, F., Guil, N., and Zapata, E. L. (2010).

Learning a generic 3D face model from 2D image databases using

incremental structure-from-motion. Image Vis. Comput. 28, 1117–1129.

doi: 10.1016/j.imavis.2010.01.005

Heo, J., and Savvides, M. (2009). “In between 3D active appearance models and 3D

morphable models,” inComputer Vision and Pattern Recognition (Miami Beach,

FL). doi: 10.1109/CVPRW.2009.5204300

Hoch, M., Fleischmann, G., and Girod, B. (1998). Modeling and animation

of facial expressions based on b-splines. Vis. Comput. 11, 87–95.

doi: 10.1007/BF01889979

Huang, G. B., Ramesh, M., Berg, T., and Learned-Miller, E. (2007). Labeled

Faces in the Wild: A Database for Studying Face Recognition in Unconstrained

Environments. Technical Report 07-49, University of Massachusetts, Amherst.

Kazhdan, M., Bolitho, M., and Hoppe, H. (2006). “Poisson surface reconstruction,”

in Proceedings Symposium on Geometry Processing (SGP) 06 (Goslar), 32.

Kemelmacher Shlizerman, I. and Basri, R. (2011). 3d face reconstruction from

a single image using a single reference face shape. IEEE Trans. Pattern Anal.

Mach. Intell. 33, 394–405. doi: 10.1109/TPAMI.2010.63

Kemelmacher Shlizerman, I. and Seitz, S. M. (2011). “Face reconstruction in

the wild,” in IEEE International Conference on Computer Vision (ICCV)

(Barcelona), 1746–1753. doi: 10.1109/ICCV.2011.6126439

Khraisat, A., Gondal, I., Vamplew, P., Kamruzzaman, J., and Alazab, A. (2019). A

novel ensemble of hybrid intrusion detection system for detecting internet of

things attacks. Electronics 8:1210. doi: 10.3390/electronics8111210

Koo, H.-S., and Lam, K.-M. (2008). Recovering the 3D shape and poses of face

images based on the similarity transform. Pattern Recogn. Lett. 29, 712–723.

doi: 10.1016/j.patrec.2007.11.018

Li, M., Sun, Y., Lu, H., Maharjan, S., and Tian, Z. (2019). Deep reinforcement

learning for partially observable data poisoning attack in crowdsensing systems.

IEEE Intern. Things J. 7, 6266–6278. doi: 10.1109/JIOT.2019.2962914

Lin, J., Yuan, Y., Shao, T., and Zhou, K. (2020). “Towards high-fidelity 3D face

reconstruction from in-the-wild images using graph convolutional networks,”

in 2020 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

5891–5900. doi: 10.1109/CVPR42600.2020.00593

Lu, Y., Yong, J. H., Shi, K. L., Song, H. C., and Ye, T. Y. (2016). 3D b-spline curve

construction from orthogonal views with self-overlapping projection segments.

Comput. Graph. 54, 18–27. doi: 10.1016/j.cag.2015.07.010

Maejima, A., Kuratate, T., Pierce, B., Morishima, S., and Cheng, G. (2012).

“Automatic face replacement for humanoid robot with 3D face shaped display,”

in 2012 12th IEEE-RAS International Conference on Humanoid Robots (Osaka),

469–474. doi: 10.1109/HUMANOIDS.2012.6651561

Meng, M., Lan, M., Yu, J., Wu, J., and Tao, D. (2020). Constrained discriminative

projection learning for image classification. IEEE Trans. Image Process. 29,

186–198. doi: 10.1109/TIP.2019.2926774

Frontiers in Neurorobotics | www.frontiersin.org 13 April 2021 | Volume 15 | Article 652562

https://doi.org/10.1145/2001269.2001293
https://doi.org/10.1109/TPAMI.2003.1233898
https://doi.org/10.1007/s00371-015-1075-1
https://doi.org/10.1109/TDPVT.2004.1335212
https://doi.org/10.1145/311535.311556
https://doi.org/10.1109/ICCV.2013.191
https://doi.org/10.1145/383259.383266
https://doi.org/10.1109/CVPRW.2019.00038
https://doi.org/10.1109/CVPR.2017.164
https://doi.org/10.1109/CVPR.2019.00125
https://doi.org/10.1016/j.imavis.2010.01.005
https://doi.org/10.1109/CVPRW.2009.5204300
https://doi.org/10.1007/BF01889979
https://doi.org/10.1109/TPAMI.2010.63
https://doi.org/10.1109/ICCV.2011.6126439
https://doi.org/10.3390/electronics8111210
https://doi.org/10.1016/j.patrec.2007.11.018
https://doi.org/10.1109/JIOT.2019.2962914
https://doi.org/10.1109/CVPR42600.2020.00593
https://doi.org/10.1016/j.cag.2015.07.010
https://doi.org/10.1109/HUMANOIDS.2012.6651561
https://doi.org/10.1109/TIP.2019.2926774
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Peng et al. B-Spline 3D Face

Meyer, M., Desbrun, M., Schroder, P., and Barr, A. H. (2003). Discrete Differential-

Geometry Operators for Triangulated 2-Manifolds. Berlin; Heidelberg: Springer.

doi: 10.1007/978-3-662-05105-4_2

Mian, A., Bennamoun, M., and Owens, R. (2006). “Automatic 3D face detection,

normalization and recognition,” in Third International Symposium on 3D Data

Processing, Visualization, and Transmission (3DPVT’06) (Chapel Hill, NC)

735–742. doi: 10.1109/3DPVT.2006.32

Peng, W., Feng, Z., Xu, C., and Su, Y. (2017). “Parametric t-spline face

morphable model for detailed fitting in shape subspace,” in IEEE Computer

Vision and Pattern Recognition (CVPR) (Honolulu, HI), 5515–5523.

doi: 10.1109/CVPR.2017.585

Peng, W., Xu, C., and Feng, Z. (2016). 3D face modeling based on structure

optimization and surface reconstruction with b-spline. Neurocomputing 179,

228–237. doi: 10.1016/j.neucom.2015.11.090

Piegl, L., and Tiller, W. (1997). The Nurbs Book. Monographs in Visual

Communication. doi: 10.1007/978-3-642-59223-2

Piotraschke, M., and Blanz, V. (2016). “Automated 3D face reconstruction from

multiple images using quality measures,” in Proc. IEEE Computer Vision and

Pattern Recognition (Las Vegas, NV), doi: 10.1109/CVPR.2016.372

Prados, E., and Faugeras, O. (2005). “Shape from shading: a well-posed problem?,”

in IEEE Computer Vision and Pattern Recognition (CVPR), Vol. 2, (San Diego,

CA), 870–877.

Qiu, J., Tian, Z., Du, C., Zuo, Q., Su, S., and Fang, B. (2020). A survey on access

control in the age of internet of things. IEEE Intern. Things J. 7, 4682–4696.

doi: 10.1109/JIOT.2020.2969326

Richardson, E., Sela, M., and Kimmel, R. (2016). “3D face reconstruction by

learning from synthetic data,” in International Conference on 3D Vision (3DV)

(Stanford, CA), 460–469. doi: 10.1109/3DV.2016.56

Richardson, E., Sela, M., Or-El, R., and Kimmel, R. (2017). “Learning detailed

face reconstruction from a single image,” in IEEE Computer Vision and Pattern

Recognition (CVPR) (Honolulu, HI), 5553–5562. doi: 10.1109/CVPR.2017.589

Roth, J., Tong, Y., and Liu, X. (2015). “Unconstrained 3D face reconstruction,”

in IEEE Computer Vision and Pattern Recognition (CVPR) (Boston, MA).

doi: 10.1109/CVPR.2015.7298876

Roth, J., Tong, Y., and Liu, X. (2016). “Adaptive 3D face reconstruction from

unconstrained photo collections,” in Proc. IEEE Computer Vision and Pattern

Recognition. doi: 10.1109/CVPR.2016.455

Seitz, S. M., Curless, B., Diebel, J., Scharstein, D., and Szeliski, R. (2006). “A

comparison and evaluation of multi-view stereo reconstruction algorithms,”

in 2006 IEEE Computer Society Conference on Computer Vision and Pattern

Recognition (CVPR’06) (New York, NY), 519–528.

Sela, M., Richardson, E., and Kimmel, R. (2017). “Unrestricted facial geometry

reconstruction using image-to-image translation,” in 2017 IEEE International

Conference on Computer Vision (ICCV) (Venice). doi: 10.1109/ICCV.2017.175

Sengupta, S., Lichy, D., Kanazawa, A., Castillo, C. D., and Jacobs, D. W. (2020).

SfSNet: Learning shape, reflectance and illuminance of faces in the wild. IEEE

Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2020.3046915

Shang, J., Shen, T., Li, S., Zhou, L., Zhen,M., Fang, T., et al. (2020). “Self-supervised

monocular 3D face reconstruction by occlusionaware multi-view geometry

consistency,” in Proceedings of the European Conference on Computer Vision

(ECCV) (Glasgow). doi: 10.1007/978-3-030-58555-6_4

Sun, Z.-L., Lam, K.-M., and Gao, Q.-W. (2013). Depth estimation of face images

using the nonlinear least-squares model. IEEE Trans. Image Process. 22, 17–30.

doi: 10.1109/TIP.2012.2204269

Tomasi, C., and Kanade, T. (1992). Shape and motion from image streams

under orthography: a factorization method. Int. J. Comput. Vis. 9, 137–154.

doi: 10.1007/BF00129684

Tran, A. T., Hassner, T., Masi, I., and Medioni, G. (2017). “Regressing robust

and discriminative 3D morphable models with a very deep neural network,”

in IEEE Computer Vision and Pattern Recognition (CVPR), (Honolulu, HI).

doi: 10.1109/CVPR.2017.163

Wang, H., Wei, H., and Wang, Y. (2003). “Face representation under different

illumination conditions,” in International Conference on Multimedia and Expo

(ICME) (Baltimore, MD), 285–288.

Wu, F., Bao, L., Chen, Y., Ling, Y., Song, Y., Li, S., et al. (2019). “MVF-

net: multi-view 3D face morphable model regression,” in IEEE Computer

Vision and Pattern Recognition (CVPR) (Long Beach, CA), 959–968.

doi: 10.1109/CVPR.2019.00105

Yang, C., Chen, J., Su, N., and Su, G. (2014). “Improving 3D

face details based on normal map of hetero-source images,”

in IEEE Computer Vision and Pattern Recognition Workshops

(CVPRW) (Columbus, OH), 9–14. doi: 10.1109/CVPRW.

2014.7

Yuille, A. L., Snow, D., Epstein, R., and Belhumeur, P. N. (1999). Determining

generativemodels of objects under varying illumination: shape and albedo from

multiple images using SVD and integrability. Int. J. Comput. Vis. 35, 203–222.

doi: 10.1023/A:1008180726317

Zhang, L., Mistry, K., Jiang, M., Chin Neoh, S., and Hossain, M. A. (2015).

Adaptive facial point detection and emotion recognition for a humanoid

robot. Comput. Vis. Image Understand. 140, 93–114. doi: 10.1016/j.cviu.2015.

07.007

Zhang, L., Snavely, N., Curless, B., and Seitz, S. M. (2017). “Spacetime faces: high-

resolution capture for modeling and animation,” in Data-Driven 3D Facial

Animation eds Deng, Z., and Neumann, U. (Los Angeles, CA: Springer),

248–276. doi: 10.1007/978-1-84628-907-1_13

Zhang, R., Tsai, P.-S., Cryer, J. E., and Shah, M. (1999). Shape-from-

shading: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 21, 690–706.

doi: 10.1109/34.784284

Zhou, Y., Deng, J., Kotsia, I., and Zafeiriou, S. (2019). “Dense 3D face

decoding over 2500 fps: joint texture shape convolutional mesh decoders,” in

IEEE Computer Vision and Pattern Recognition (CVPR) (Long Beach, CA),

1097–1106. doi: 10.1109/CVPR.2019.00119

Zhu, X., Lei, Z., Liu, X., Shi, H., and Li, S. Z. (2016). “Face alignment across

large poses: a 3D solution,” in 2016 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), (Las Vegas, NV), 146–155. doi: 10.1109/CVPR.

2016.23

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Peng, Su, Tang, Xu, Feng and Fang. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neurorobotics | www.frontiersin.org 14 April 2021 | Volume 15 | Article 652562

https://doi.org/10.1007/978-3-662-05105-4_2
https://doi.org/10.1109/3DPVT.2006.32
https://doi.org/10.1109/CVPR.2017.585
https://doi.org/10.1016/j.neucom.2015.11.090
https://doi.org/10.1007/978-3-642-59223-2
https://doi.org/10.1109/CVPR.2016.372
https://doi.org/10.1109/JIOT.2020.2969326
https://doi.org/10.1109/3DV.2016.56
https://doi.org/10.1109/CVPR.2017.589
https://doi.org/10.1109/CVPR.2015.7298876
https://doi.org/10.1109/CVPR.2016.455
https://doi.org/10.1109/ICCV.2017.175
https://doi.org/10.1109/TPAMI.2020.3046915
https://doi.org/10.1007/978-3-030-58555-6_4
https://doi.org/10.1109/TIP.2012.2204269
https://doi.org/10.1007/BF00129684
https://doi.org/10.1109/CVPR.2017.163
https://doi.org/10.1109/CVPR.2019.00105
https://doi.org/10.1109/CVPRW.2014.7
https://doi.org/10.1023/A:1008180726317
https://doi.org/10.1016/j.cviu.2015.07.007
https://doi.org/10.1007/978-1-84628-907-1_13
https://doi.org/10.1109/34.784284
https://doi.org/10.1109/CVPR.2019.00119
https://doi.org/10.1109/CVPR.2016.23
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

	Geometrical Consistency Modeling on B-Spline Parameter Domain for 3D Face Reconstruction From Limited Number of Wild Images
	1. Introduction
	2. Related Work
	2.1. 3D Face Required Scenes
	2.2. 2D Images Based Face Reconstruction
	2.3. Shape in Shading and Structure in Motion
	2.4. Facial Surface Modeling

	3. Geometric Modeling
	3.1. 0th- and 1st-Order Consistency
	3.2. Embedding F

	4. B-Spline Face Embedding F, and the 0th-, 1st-, 2nd–Order Representation
	4.1. 0th-Order Representation
	4.2. 1st-Order Representation
	4.3. 2nd-Order Representation

	5. Consistency Modeling in B-Spline Face Reconstruction
	5.1. Modeling Occlusion and Expression Corruptions in 0th-Order Consistence
	5.2. Modeling High Details in 1st-Order Consistence

	6. Practical Solution Combining 0th- and 1st-Order Consistence
	6.1. 0th-Order Solution
	6.1.1. Estimating Πi
	6.1.2. Estimating b
	6.1.3. Estimating Ti

	6.2. 1st-Order Solution
	6.2.1. Estimating nj
	6.2.2. Estimating b
	6.2.2.1. Frontal Constraint
	6.2.2.2. Approximating to Linearization


	6.3. Algorithm
	6.3.1. Computational Complexity


	7. Experiment
	7.1. Data Pipeline and Evaluation
	7.1.1. Synthesized Data With Expression
	7.1.2. Real Data in the Wild
	7.1.3. Comparison

	7.2. Synthesized Standard Images
	7.2.1. Quantitative Comparison
	7.2.2. Visual Comparison
	7.2.3. Characteristic Comparison

	7.3. Real Unconstrained Images

	8. Discussion
	9. Conclusions
	Data Availability Statement
	Author Contributions
	Funding
	References


