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Immune checkpoint inhibitors (ICI) targeting CTLA-4 and the PD-1/PD-L1 axis have shown unprecedented clinical activity in several
types of cancer and are rapidly transforming the practice of medical oncology. Whereas cytotoxic chemotherapy and small molecule
inhibitors (‘targeted therapies’) largely act on cancer cells directly, immune checkpoint inhibitors reinvigorate anti-tumour immune
responses by disrupting co-inhibitory T-cell signalling. While resistance routinely develops in patients treated with conventional
cancer therapies and targeted therapies, durable responses suggestive of long-lasting immunologic memory are commonly seen in
large subsets of patients treated with ICI. However, initial response appears to be a binary event, with most non-responders to
single-agent ICI therapy progressing at a rate consistent with the natural history of disease. In addition, late relapses are now
emerging with longer follow-up of clinical trial populations, suggesting the emergence of acquired resistance. As robust biomarkers
to predict clinical response and/or resistance remain elusive, the mechanisms underlying innate (primary) and acquired (secondary)
resistance are largely inferred from pre-clinical studies and correlative clinical data. Improved understanding of molecular and
immunologic mechanisms of ICI response (and resistance) may not only identify novel predictive and/or prognostic biomarkers, but
also ultimately guide optimal combination/sequencing of ICI therapy in the clinic. Here we review the emerging clinical and
pre-clinical data identifying novel mechanisms of innate and acquired resistance to immune checkpoint inhibition.

CLINICAL RESPONSE AND RESISTANCE TO IMMUNE
CHECKPOINT INHIBITORS

Monoclonal antibodies targeting co-inhibitory immune check-
points (e.g., PD-1 and CTLA-4) have demonstrated clinical activity
in several malignances, including melanoma, non-small cell lung
cancer, renal cell carcinoma, bladder cancer, head and neck
squamous cell carcinoma, MSI-high colorectal carcinoma, Merkel
cell carcinoma, and Hodgkin lymphoma, and have changed the
practice of medical oncology (Pardoll, 2012; Topalian et al, 2015;
Sharma et al, 2017). Immune checkpoint inhibitor therapy has
been particularly successful in melanoma, for which approved
treatments now include anti-PD-1 (nivolumab and pembrolizu-
mab), anti-CTLA-4 (ipilimumab), and combination anti-PD-1/
CTLA-4 regimens (nivolumab–ipilimumab). Long-term survival
data for patients with melanoma treated with ipilimumab (anti-
CTLA-4) indicates 20% of patients show evidence of continued
durable disease control or response 5-10 years after starting
therapy (Schadendorf et al, 2015). The response rate for melanoma

patients treated with pembrolizumab (anti-PD-1) was 33% at 3
years with 70–80% of patients initially responding maintaining
clinical response (Ribas et al, 2016a). Combination immunother-
apy or dual immune checkpoint blockade (anti-PD-1þ anti-
CTLA-4) has recently shown dramatic response rates in patients
with metastatic melanoma (RR 58%); however, half of patients
experienced significant toxicity from the treatment regimen
(Larkin et al, 2015; Postow et al, 2015) and survival benefit for
this approach has to be demonstrated.

Analysis of clinical trial data can identify three broad
populations of patients – (1) those that respond initially and
continue to respond (responders), (2) those that fail to ever
respond (innate resistance), and (3) those that initially respond but
eventually develop disease progression (acquired resistance) (Pitt
et al, 2016; Restifo et al, 2016; O’Donnell et al, 2017; Sharma et al,
2017). Challenges remain in defining responders and non-
responders especially given the heterogeneity in patterns of
response that can be seen with ICI. Such heterogeneity can be
spatial (i.e., different response in different lesions) and/or temporal
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(e.g., stable disease followed by progression), manifesting within a
given patient as mixed responses, oligometastatic progression, and/
or stable disease with isolated progression. Despite these complex-
ities, the ‘tail’ on the survival curve suggests long-term disease
control is possible in a significant proportion of patients
successfully treated with ICI. This possibility of expanding this
long-term clinical benefit to more patients with advanced cancer is
thus fueling more focused investigation into the elusive mechan-
isms of response and resistance to ICI therapy.

MECHANISMS OF ACTION OF IMMUNE CHECKPOINT
INHIBITORS

Mechanisms of innate and acquired resistance to ICI therapy are
not fully understood, owing in part to the incomplete under-
standing of the full complement of clinical, molecular, and
immunologic factors associated with clinical response and long-
term benefit to ICI therapy. In addition, few immune competent
pre-clinical models exist in which tumour regression is induced by
ICIs (Zitvogel et al, 2016), limiting the ability to recapitulate the
diversity of tumour-immune interactions in patients. To frame the
discussion of innate (primary) and acquired (secondary) resistance,
we must first revisit the model of ‘response’ to ICI to focus on
crucial steps that can be inhibited, bypassed, or blocked by the
tumour, or co-opted by stromal and immune elements of the
tumour microenvironment (TME), to subvert the efforts of the
immune system to restrain tumour growth.

Although our understanding of the role of PD-1 and PD-L1 on
tumour and immune cells continues to evolve (Juneja et al, 2017;
Lau et al, 2017), it is generally accepted that successful anti-tumour
immune responses following PD-1/PD-L1 blockade require
reactivation and clonal-proliferation of antigen-experienced T cells
present in the TME (O’Donnell et al, 2017; Sharma et al, 2017).
Generation of tumour-reactive CD8 T cells requires successful
processing and presentation of tumour-associated peptide antigens
by antigen-presenting cells (APCs, e.g., dendritic cells) and
recognition of these antigenic peptides displayed by MHC I/II. A
unique T-cell receptor recognises MHC-bound tumour antigen
providing the first signal for T-cell activation and full T-cell
activation follows the engagement of the co-stimulatory CD28
receptor on T cells by B7 on the APC (Schumacher and Schreiber,
2015). Tumour-specific CD8 T cells subsequently differentiate into
effector T-cells, undergo clonal expansion, traffic to the TME, and
ultimately kill tumour cells displaying tumour-associated antigen
on HLA, via release of cytolytic effector molecules (e.g., granzyme
A/B and perforin) (O’Donnell et al, 2017). For long-term
immunologic memory (and presumably durable disease control),
a subset of effector T cells must differentiate into effector memory
T cells (TEM) (Ribas et al, 2016b), under the guidance of CD4þ
helper T cells and dendritic cells; these are maintained for life and
respond to re-challenge with antigen (Harty and Badovinac, 2008;
Farber et al, 2014).

Failure of ICI therapy can result from defects in any of the steps
mentioned above, which can be thought of in three simple
categories: (1) insufficient generation of anti-tumour T cells, (2)
inadequate function of tumour-specific T cells (Marincola et al,
2000; Bronte et al, 2005), or (3) impaired formation of T-cell
memory (O’Donnell et al, 2017; Sharma et al, 2017) (Figure 1).
Lack of sufficient or suitable neoantigens, impaired neoantigen
processing, and/or impaired presentation of neoantigens can all
lead to impaired formation of tumour-reactive T cells (O’Donnell
et al, 2017). Inadequate T-cell function can arise through diverse
tumour-intrinsic and tumour-extrinsic immune suppressive com-
ponents of the TME (Pitt et al, 2016), and recent studies have
begun to elucidate mechanisms of durable ICI response (Pauken
et al, 2016; Sen et al, 2016). We will explore each of these steps in

the context of innate and acquired resistance, as well as strategies
to overcome these mechanisms of resistance.

INNATE (PRIMARY) AND ACQUIRED (SECONDARY)
RESISTANCE

Insufficient anti-tumour T-cell generation. Tumours can evolve
to evade both innate and adaptive arms of the immune system
(Gajewski et al, 2013), thereby rendering ICI therapy ineffective
(Pitt et al, 2016; Restifo et al, 2016). Tumour-intrinsic mechanisms
of immune evasion include genetic and epigenetic alterations to
influence neoantigen formation, presentation, and/or processing,
as well as alterations in cellular signalling pathways that disrupt the
action of cytotoxic T cells (Pitt et al, 2016). Tumour-extrinsic
mechanisms involve non-cancerous stromal or immune cells, or
other systemic influences (e.g., host microbiota) (Joyce and Fearon,
2015; Pitt et al, 2016) that can act in concert with cancer cells to
promote growth and resistance to ICI.

Successful ICI treatment reactivates T cells directed at tumour-
specific mutant proteins (Gubin et al, 2014), and lack of suitable
neoantigens and alterations in antigen processing and/or presenta-
tion is associated with impaired anti-tumour immune response
(Schumacher and Schreiber, 2015). Mutational burden is a
tumour-intrinsic feature correlated with anti-tumour immune
response and response to ICI, presumably by virtue of enhanced
neoantigen formation from increased number of non-synonymous
single nucleotide variants (Schumacher and Schreiber, 2015; Van
Allen et al, 2015). Tumour types harbouring high levels of non-
synonymous mutations (e.g., melanoma, lung, and bladder)
(Lawrence et al, 2013) are among those with highest response
rates to ICI. Consistent with this notion, DNA-mismatch repair
deficiency leading to microsatellite instability is associated with
enhanced response to PD-1 blockade (Le et al, 2015, 2017).

Importantly, alterations in genes encoding components of the
antigen processing and/or presentation apparatus (e.g., class I
MHC, b2-microglobulin (B2M)) can also lead to ICI resistance.
Downregulation of HLA class I molecules and loss of (B2M)
expression have been described. Loss of B2M expression results in
impaired cell surface expression of MHC class I, which in turn
impairs antigen presentation to cytotoxic T cells (Zaretsky et al,
2016). Neoantigen evolution may underlie aspects of acquired
resistance (a) via outgrowth of tumour cell clones that never
expressed the neo-Ag, despite effective killing of all other clones, or
(b) acquisition of genetic changes that result in loss of neo-Ag
expression. Although clonal neoantigens are associated with
response to ICI therapy (McGranahan et al, 2016), evolution of
the mutational landscape has been described in patients who
developed acquired resistance to ICI (Anagnostou et al, 2016).

Strategies to promote immunogenic cell death (e.g., chemother-
apy and radiation) or to enhance antigen presentation by
stimulating innate immune responses and dendritic cell function
(e.g., type I IFN, TLR ligands, LIGHT, and oncolytic viruses) may
promote formation or presentation of suitable neoantigens in
tumours with a non-inflamed, immune cell poor TME (Pitt et al,
2016; O’Donnell et al, 2017). In addition, promoting dendritic cell
migration, maturation, and function via blockade of immunosup-
pressive factors (e.g., VEGF, IL-10, and TGF-b), may permit
adequate T-cell priming and cooperate with ICI (Pitt et al, 2016;
O’Donnell et al, 2017). HLA-independent tumour killing via
natural killer cells (e.g., anti-KIR) (Guillerey et al, 2016) may be an
option in tumours in which HLA neoantigen presentation is
insufficient to promote cytotoxic T-cell killing.

Specific oncogenic signalling pathways can also influence the
extent and type of intratumoural immune infiltration. Loss of
PTEN is associated with increased levels of CCL2 and VEGF,
diminished infiltration of T cells, and resistance to PD-1 blockade
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(Peng et al, 2016), and biallelic PTEN loss was recently reported in
an isolated non-responding lesion in a patient with near complete
response to PD-1 blockade (George et al, 2017). Alterations in b-
catenin/WNT signalling caused decreased CCL4 production, which
led to diminished infiltration of CD103þ dendritic cells and
impaired anti-tumour immune responses (Spranger et al, 2015).
The context of these mutations also influences that type of immune
infiltration. For example, loss of STK11/LKB1 in the setting of an
oncogenic KRas mutation promotes elaboration of IL-6, which
recruits neutrophils, decreases T-cell infiltration, and was asso-
ciated with higher levels of T-cell exhaustion markers (PD-1,
CTLA-4, and TIM3), and lower expression of PD-L1 on tumour
cells (Koyama et al, 2016a). The recently described innate PD-1
resistance (IPRES) gene signature identified a set of immune
suppressive cytokines, EMT transcription factors, and pro-
angiogenic factors associated with innate resistance to PD-1
blockade (Hugo et al, 2016). Of note, gene signatures enriched in
non-responding patients also include signatures for wound-
healing, EMT, and treatment/resistance to MAPK pathway
inhibition (Hugo et al, 2015, 2016). Intriguingly, the receptor
tyrosine kinase AXL, whose upregulation is associated with a
reversible cell state marked by NF-kB activation and resistance to
BRAFi/MEKi (Konieczkowski et al, 2014) is a component of the
IPRES (Hugo et al, 2016). It is tempting to speculate that the IPRES
may be part of a multigenic, reversible transcriptional program that
could be modulated to influence sensitivity to ICI therapy.

Cell state changes are tumour intrinsic, epigenetic events that
often result from reversible chromatin modification through
removal or addition of methyl or acetyl marks to DNA or
histones. Epigenetic modifying agents (EMAs), including DNA-

methyltransferase inhibitors and histone modifiers, can act on
tumour cells influencing expression of components of antigen-
processing and presentation machinery (e.g., TAP, HLA class
molecules, and B2M), novel tumour-associated antigens (e.g.,
cancer-testis antigens), and cytokines (Heninger et al, 2015).
Restoration of Th1 cytokine production and enhanced responsive-
ness to checkpoint blockade has been demonstrated following
treatment with DNMT or EZH2 inhibitors (Peng et al, 2015).
Altered methylation of non-coding regions of the genome may also
impact response to immunotherapy. Hypomethylating agents (e.g.,
5-aza cytidine) can induce innate immune responses (Roulois et al,
2015), influence T-cell priming and effector function, modulate
immune suppressive cells within the TME (Kim et al, 2014), and
enhance response to ICI through induction of endogenous
retroviral elements (ERVs) (Chiappinelli et al, 2015). Interestingly,
tumour-specific ERVs have been associated with anti-tumour
cytolytic activity and immune gene cell enrichment (Rooney et al,
2015). Although the strength and directionality of this relationship
between ERVs and immune infiltration and activation, as well as
the role for EMAs as adjuvants for ICI therapy via ERV
modulation, requires further investigation, there is growing interest
in the role of ERV induction as a mechanism to enhance response
to PD-1 blockade (Goel et al, 2017).

Inadequate anti-tumour T-cell effector function. Following
successful neoantigen presentation/cross-presentation and T-cell
priming, the expanded repertoire of anti-tumour T cells faces an
inhospitable TME that may preclude proper T-cell function,
thereby limiting the efficacy of ICI therapy (Pitt et al, 2016; Sharma
et al, 2017). These tumour-intrinsic and tumour-extrinsic factors
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Figure 1. Response and resistance to ICI therapy. Upper panel: schematic detailing basic steps involved in generation of tumour-specific T cells,
effector T-cell function, and formation of memory T cells. Lower panel: schematic detailing putative mechanisms of innate and/or acquired
resistance to ICI therapy.
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include mutations in key effector pathways, high levels of PD-L1
on tumour cells (and immune cells), high levels of alternate
immune checkpoints or co-inhibitory receptors on T cells (e.g.,
PD-1, CTLA-4), high levels of immune suppressive cytokines or
metabolites, and associated recruitment of immune suppressive
cells (e.g., myeloid-derived suppressor cells (MDSCs) and regula-
tory T cells (Tregs)) (O’Donnell et al, 2017).

Mutations in immune effector signalling pathways are capable
of nullifying the impact of tumour-specific T cells. Whole exome
sequencing of tumours from patients that developed resistance
following initial clinical response to PD-1 blockade revealed
mutations in Janus kinases 1 and 2 (JAK1/JAK2) (Zaretsky et al,
2016). These mutations were detected in association with deletion
of the wild-type allele resulting in total loss-of-function and loss of
interferon responsiveness. This study also described a truncating
mutation in B2M, the loss of which resulted in impaired cell
surface expression of MHC class I, and defective antigen
presentation. The frequency of such mutations appears low based
on limited studies to date, but more widespread sequencing may
identify additional mutations that lead to innate and/or acquired
resistance to ICI therapy (Zaretsky et al, 2016; Shin et al, 2017).
Consistent with these reports of loss-of-function mutations in
JAK1/2 as an innate and acquired resistance mechanism, in vivo
CRISPR screening using a mouse model of melanoma demon-
strated that deletion of IFNg receptors (Ifrngr1 and Ifngr2) and
JAK/STAT pathway components (Jak1, Jak2, and Stat1) resulted in
resistance to PD-1 blockade (Manguso et al, 2017). An intriguing
pre-clinical observation in an immune-competent melanoma
model is that acquired resistance to ICI blockade could be
overcome by inhibiting JAK1/JAK2 signalling, suggesting that
JAK/STAT signalling may have a more complex role in mediating
response and resistance to ICI (Benci et al, 2016). Importantly, the
impact of systemic JAK1/2 inhibition with a small molecule
inhibitor (e.g., ruxolitinib) almost certainly differs from tumour-
specific loss of functional JAK1 and/or JAK2 signalling. Moreover,
ICI-resistant cells were derived using anti-CTLA-4 antibody
treatment, which promotes Treg depletion (Simpson et al, 2013),
a property yet to be demonstrated for human anti-CTLA-4
antibodies (e.g., ipilimumab). In light of reports of acquired
resistance to cancer immunotherapy through immunoediting
(Takeda et al, 2017) or acquired resistance via induction of a
multigenic resistance programme (Benci et al, 2016), further
studies will be required to evaluate the impact of interferon
signalling as a driver of resistance to ICI therapy.

Within the TME, PD-L1 is constitutively expressed in response
to oncogenic signalling, or induced in response to inflammatory
cytokines. The physiologic role of immune checkpoints is to
maintain self-tolerance and minimise the extent and duration of
inflammatory responses, but is co-opted by tumours to promote
immune escape via adaptive immune resistance (Keir et al, 2008;
Pardoll, 2012). Amplification of a region on chromosome 9p24.1
(containing PD-L1, PD-L2, and JAK2) in Hodgkin lymphoma
leads to constitutive overexpression of PD-L1 and is thought to
explain high clinical response rate to PD-1 blockade (Ansell et al,
2015). PD-L1 expression is induced in response to both cell-
intrinsic signalling and in response to immune cell-derived soluble
factors, such in response to IFN-g released by effector T cells, and
may actually develop in response to T-cell infiltration rather than
because of it (Spranger et al, 2013). Although intratumoural PD-L1
expression can enrich for responders (e.g., NSCLC) (Reck et al,
2016), PD-L1 remains an imperfect biomarker and PD-L1 status
neither guarantees nor precludes response to PD-1/PD-L1
blockade (Kluger et al, 2017). Although the impact of PD-L1
expression on tumour cells vs immune or stromal cells in patients
remains unclear, murine studies have confirmed the contribution
of PD-L1 on both tumour and immune cells as critical to
determine response to PD-1 blockade (Juneja et al, 2017; Lau et al,

2017). In addition, preliminary evidence in serial tumour biopsies
of PD-1 antibody-treated melanoma patients suggests that
induction of PD-L1 expression on tumour cells early in the course
of therapy improves response prediction (Chen et al, 2016).

Functional exhaustion of CD8þ T cells has been well described
in chronic viral infections and in cancer, but great heterogeneity
exists evidenced by distinct different populations of PD-1þ CD8þ

T cells that respond differently to anti-PD-1 treatment (Blackburn
et al, 2008; Paley et al, 2012). For example, partially exhausted PD-
1þ CTLA-4þ CD8þ infiltrating T cells have been correlated with
PD-1 response (Daud et al, 2016). Exhausted PD-1þ CD8þ T cells
display a distinct chromatin landscape compared with effector T
cells and TEM cells (Pauken et al, 2016; Sen et al, 2016), and these
epigenetically distinct T-cell states influence whether or not
exhausted PD-1þ T cells can be reprogrammed to avoid terminal
exhaustion and dysfunction (Philip et al, 2017). Evaluation of the
specific subsets of CD8þ T cells that are expanded in response to
PD-1/PD-L1 blockade identified a unique subset of CD8þPD-1þ

T cells that share features of T-follicular helper cells, CD8 memory
precursors, and stem cells (Im et al, 2016), and resemble CXCR5þ

CD8þ follicular T cells (He et al, 2016; Leong et al, 2016;
Utzschneider et al, 2016). Recent profiling of tumour-infiltrating T
cells using mass cytometry revealed distinct mechanisms of action
of PD-1 and CTLA-4 blockade, demonstrating that PD-1 blockade
reinvigorates CD8þ T-cell responses, and CTLA-4 blockade
results in the expansion of Th1-like CD4þ cells expressing the
co-stimulatory ligand ICOS (Wei et al, 2017). Expression of
alternative co-inhibitory immune checkpoints (e.g., CTLA-4, TIM-
3, LAG-3, and VISTA) has been associated with resistance to PD-1
blockade (Thommen et al, 2015; Koyama et al, 2016b), and
combination checkpoint blockade using LAG-3þPD-1 (Woo et al,
2012) and TIM-3þPD-1 (Sakuishi et al, 2010) has demonstrated
improved responses in preclinical models. Although these studies
suggest crucial roles for distinct sub-populations of PD-1þCD8þ

T cells, further investigation will be required to determine how to
target specific CD8 and CD4 T-cell subsets to overcome primary
and acquired resistance.

PD-L1-independent mechanisms of immune escape include
alternate immune checkpoints or co-inhibitory receptors, immune
suppressive cytokines, immune inhibitory metabolites, and
immune suppressive cells (Pitt et al, 2016; O’Donnell et al, 2017;
Sharma et al, 2017). Immune suppressive cell types that have
been shown to influence ICI efficacy in pre-clinical models
include Tregs, MDSCs, Th2 CD4þ T cells, and M2-polarised
tumour-associated macrophages (Pitt et al, 2016; O’Donnell et al,
2017; Sharma et al, 2017). These cell types individually
and collectively promote an immune suppressive TME that
prevent anti-tumour cytotoxic and Th1-directed T-cell activities,
primarily through the release of cytokines, chemokines, and
other soluble mediators (Pitt et al, 2016; Sharma et al, 2017).
Depletion of these immune suppressive cell types (e.g., MDSCs and
Tregs) has experimentally been shown to enhance anti-tumour
immune responses overcoming innate resistance (Highfill et al,
2014; Ngiow et al, 2015). Myeloid- and cancer-cell derived
indolamine-2,3-dioxygenase (IDO) catabolises tryptophan to the
immune suppressive kynurenine (Platten et al, 2014). Interestingly,
another immune suppressive enzyme, arginase 1, was recently
shown to cooperate with the IDO pathway to inhibit dendritic cell
function (Mondanelli et al, 2017). Recently, tumour-associated
macrophages were demonstrated to directly limit PD-1 blockade
by removing anti-PD-1 antibodies from PD-1þ CD8þ T cells in a
FcgR-dependent manner (Arlauckas et al, 2017). There is also
emerging data that additional metabolic (e.g., glucose consump-
tion, lactate production, and cholesterol metabolism) and inflam-
matory pathways (e.g., cyclooxygenase-2/prostaglandin E2) can
simultaneously impact both tumour cells and immune cells (Pitt
et al, 2016).
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Impaired formation of T-cell memory. The most compelling
clinical evidence for the success of ICI relates to the potential for
long-term, durable clinical benefit. Thus, although ICI may
temporarily re-invigorate CTLs to enhance tumour control, if
formation of TEM cells is impaired then clinical response could fade
leading to acquired resistance or recurrence of disease following
discontinuation of therapy. Expansion of intratumoural T(EM) in
response to PD-1 blockade has been demonstrated, and is more
pronounced in patients responding to therapy (Ribas et al, 2016b),
suggesting a key role for TEM cells in anti-PD-1 action and clinical
response (O’Donnell et al, 2017). The cellular and molecular
mechanisms of TEM expansion following PD-1 blockade are not
fully understood, however, recent studies have identified distinct
transcriptional programmes associated with naive, acute effector,
memory, and exhausted T-cell states (Pauken et al, 2016; Sen et al,
2016). There is emerging evidence that T-cell exhaustion is
associated with epigenetic changes that promote a transcriptional
landscape distinct from effector or memory CD8 T cells (Sen et al,
2016). Importantly, these epigenetic changes appear to limit the
durability of CD8 T-cell function following PD-1 blockade
(Pauken et al, 2016). Reacquisition of memory T-cell response
may be limited during conditions if tumour antigen persists, as
occurs in patients with higher tumour burden (Huang et al, 2017),

indicating that future efforts to augment existing new T-cell
responses or prime new populations of T cells may be required to
generate durable anti-tumour T-cell memory.

SUMMARY AND FUTURE DIRECTIONS

Several clinical trials of combinations of immunotherapeutic agents
with targeted agents, cytotoxic chemotherapy, and/or radiation are
underway, all in the effort to provide long-lasting disease control to
more patients (Buque et al, 2015) (Figure 2). Combination
therapies to overcome innate resistance by targeting putative
mechanisms of immune evasion within the TME are in various
stages of development (Spranger and Gajewski, 2013; Smyth et al,
2016). Cancer vaccines (Ott et al, 2017; Sahin et al, 2017) are
showing promise as a means of personalising cancer immunother-
apy and potentially enhancing immune memory. Additional
research efforts are underway to identify biomarkers associated
with resistance and response to ICI, in parallel with early phase
clinical testing of novel immune modulatory agents and novel
combinations of immune modulators and ICI with other cancer
therapies (Mahoney et al, 2015).
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ICI + immune
stimulating agents

ICI + metabolic inhibitors

ICI + targeted therapies

ICI + epigenetic modifiers

ICI + chemotherapy

ICI + radiation

Alternate immune checkpoints

Immune suppressive cells

Metabolic/inflammatory mediators

T-cell epigenetic changes

Severe T-cell exhaustion

Figure 2. Combination therapies to overcome resistance to ICI therapy. Putative mechanisms of innate and/or acquired resistance to ICI therapy.
Table listing select approaches for ICI combination therapeutic approaches (Sharma et al, 2017).
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To date, precision medicine has largely been synonymous with
use of molecular and largely genomic features of the tumour to
administer specific targeted small molecules and biologics;
however, novel and functional precision medicine platforms may
offer additional opportunities to tailor therapies for individual
patients or patient populations (Friedman et al, 2015). As the
mechanisms of response and resistance to immune checkpoint
inhibitors are further elucidated, molecular and functional
technologies can and should be integrated to develop novel
precision immuno-oncology platforms. In addition, development
of functional assays to evaluate response and resistance to ICI
therapy and novel combinations may require bio-engineering
expertise to appropriately model the native tumour immune
microenvironment (Hirt et al, 2014). In the short-term, composite
biomarkers (e.g., CD8 T-cell abundanceþ tumoural/stromal PD-
L1 staining) will likely supplant individual biomarkers (e.g., PD-L1
staining), whereas next-generation molecular and/or functional
diagnostics are in development. Ultimately, such precision
approaches would be anticipated to identify specific therapies, or
therapeutic combinations, to optimise clinical activity and
durability of clinical response for individual patients.
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