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CT‑based radiomics combined with signs: 
a valuable tool to help radiologist discriminate 
COVID‑19 and influenza pneumonia
Yilong Huang1†, Zhenguang Zhang1†, Siyun Liu2, Xiang Li3, Yunhui Yang4, Jiyao Ma1, Zhipeng Li5, 
Jialong Zhou6, Yuanming Jiang1 and Bo He1*

Abstract 

Background:  In this COVID-19 pandemic, the differential diagnosis of viral pneumonia is still challenging. We aimed 
to assess the classification performance of computed tomography (CT)-based CT signs and radiomics features for 
discriminating COVID-19 and influenza pneumonia.

Methods:  A total of 154 patients with confirmed viral pneumonia (COVID-19: 89 cases, influenza pneumonia: 65 
cases) were collected retrospectively in this study. Pneumonia signs and radiomics features were extracted from the 
initial unenhanced chest CT images to build independent and combined models. The predictive performance of the 
radiomics model, CT sign model, the combined model was constructed based on the whole dataset and internally 
invalidated by using 1000-times bootstrap. Diagnostic performance of the models was assessed via receiver operating 
characteristic (ROC) analysis.

Results:  The combined models consisted of 4 significant CT signs and 7 selected features and demonstrated better 
discrimination performance between COVID-19 and influenza pneumonia than the single radiomics model. For the 
radiomics model, the area under the ROC curve (AUC) was 0.888 (sensitivity, 86.5%; specificity, 78.4%; accuracy, 83.1%), 
and the AUC was 0.906 (sensitivity, 86.5%; specificity, 81.5%; accuracy, 84.4%) in the CT signs model. After combining 
CT signs and radiomics features, AUC of the combined model was 0.959 (sensitivity, 89.9%; specificity, 90.7%; accuracy, 
90.3%).

Conclusions:  CT-based radiomics combined with signs might be a potential method for distinguishing COVID-19 
and influenza pneumonia with satisfactory performance.
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Background
In December 2019, a highly infectious disease caused by 
severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) infection broke out in Wuhan, China, known as 
coronavirus disease 2019 (COVID-19) [1, 2]. COVID-19 

is still spreading around the world at an alarming rate. 
Early studies have shown that almost all COVID-19 
patients have pneumonia [3, 4]. However, pneumonia 
caused by influenza pneumonia is also very common at 
the same period of year, and clinical symptoms are very 
similar [5–7]. And early diagnosis is of great signifi-
cance to the prognosis of COVID-19 patients, especially 
the occurrence of adverse events. Liu et  al. found that 
quantifying lung lesions early (0–4 days) can predict the 
severity of the disease [8]. Therefore, in this COVID-19 
pandemic, the differential diagnosis between COVID-19 
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and influenza pneumonia is difficult but highly impor-
tant in the early stages of the disease. Real-time reverse 
transcription-polymerase chain reaction (RT-PCR) is the 
gold standard for the diagnosis of viral pneumonia. How-
ever, recent reports have shown that RT-PCR detection 
of COVID-19 has low sensitivity [9], and the high false-
negative rate limits the rapid identification of viral pneu-
monia by RT-PCR.

Currently, computed tomography (CT) can play an 
important role in the diagnosis and treatment of viral 
pneumonia [10, 11]. Studies have shown that the CT 
signs of COVID-19 and influenza pneumonia are differ-
ent [12, 13]. However, little is known about the prediction 
performance of CT signs in distinguishing COVID-19 
from influenza pneumonia in previous studies. And radi-
ologists subjectively evaluate viral pneumonia through 
imaging signs, and the accuracy of diagnosis depends 
on the doctor’s diagnosis experience. Therefore, it is also 
necessary to further develop a rapid quantitative auxil-
iary diagnostic method to identify COVID-19 and influ-
enza pneumonia.

With the rapid development of computer technology, 
medical image processing technology is widely used in 
the diagnosis and treatment of COVID-19. Xu et al. used 
multiple CNN models to classify CT images of normal, 
COVID-19 and influenza A pneumonia, with accuracy 
ranging from 71.8% to 85.0% [14]. Radiomics is a new 
quantitative analysis technology based on medical imag-
ing, which could extract thousands imaging features 
including first-order statistical, shape, second- or higher 
order texture features. Compared with deep learning 
models, radiomics which is based on the mathematical 
description of image texture might be more interpret-
able, and can further help understanding their physi-
opathology by correlating with laboratory or pathological 
information. Previous studies have shown that radiomics 
has outstanding performance in tumor diagnosis, treat-
ment effect evaluation, and prognosis prediction [15–
17]. Recently, there had already been some constructed 
radiomics model based on deep-learning to predict the 
prognosis of COVID-19 patient [18]. Chen et al. and Wu 
et  al. found that radiomics model based on CT images 
is a feasible and promising method for monitoring poor 
prognostic outcome (acute respiratory distress syn-
drome, death, need for mechanical ventilation, or inten-
sive care unit admission) in patients with COVID-19 [19, 
20]. Besides, radiomics has been also used to identify 
focal organizing pneumonia and peripheral lung adeno-
carcinoma [21]. However, whether independent model 
or combined model of CT signs and radiomics can help 
radiologist distinguish identify COVID-19 and influenza 
pneumonia and improve the diagnostic performance still 
remains unclear.

Therefore, in present study, we aim to select significant 
chest CT signs and radiomics features that can effectively 
identify COVID-19 and influenza pneumonia, and deter-
mine whether a CT-based radiomics signature combined 
with CT signs could be used as a tool in the differentia-
tion of COVID-19 and influenza pneumonia.

Methods
Patients
This retrospective study was approved by our institu-
tional review board and patient consent was waived. 
This study retrospectively collected patients with viral 
pneumonia diagnosed in 15 hospitals in this province 
from March 1, 2015 to March 15, 2020. RT-PCR assays 
were performed to identify influenza A virus, influenza 
B virus, respiratory syncytial virus, parainfluenza virus, 
adenovirus, SARS coronavirus, SARS-CoV-2, Epstein-
Barr virus, measles virus, and other viruses from naso-
pharyngeal swabs or bronchoalveolar lavage fluid. The 
study only included pneumonia patients infected with 
single virus, and patients with multiple respiratory 
viruses or bacterial or fungal infections were excluded. A 
total of 375 viral pneumonia patients were diagnosed in 
this study. The further selection process for viral pneu-
monia patients is shown in Figs.  1, 2. All patients were 
admitted within 7  days after the onset of acute symp-
toms and completed the chest CT examination within 
48 h after admission. According to the virus type found 
in the lungs, the patients were divided into two groups: 
COVID-19 and influenza pneumonia. The number of 
cases included in each hospital is summarized in Addi-
tional file 4:  Table 1.

CT examination
HRCT examination: CT scanners with 16 or more detec-
tor rows (Siemens, Germany; Philips, the Netherlands; 
and GE, USA) were used. The patient was scanned in 
the supine position while holding his or her breath after 
inspiration. The scanning range was from the thoracic 
inlet to the costophrenic angles. Scanning parameters: 
detector collimation width 64 × 0.6 mm or 128 × 0.6 mm, 
tube voltage 120  kV, adaptive tube current, high-reso-
lution algorithm reconstruction, reconstruction layer 
thickness 1 or 1.5 mm, and layer spacing 1.5 mm.

Chest CT signs analysis
Three Chinese radiologists were blinded to the RT-
PCR results, all patient information, and type of viral 
pneumonia. First, two experienced thoracic radi-
ologists independently read the CT images. When 
their opinions were inconsistent, they discussed 
them and reached a consensus, which was reviewed 
and confirmed by the third senior radiologist in the 
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cardiothoracic group. The signs of the first CT exami-
nation after admission were analyzed. The CT imaging 
evaluation included lesion distribution (central, periph-
eral and mix), location (left upper lobe, left lower lobe, 
right upper lobe, right middle lobe and right lower 
lobe) and main signs [GGO (ground-glass opacities), 
partial consolidation, consolidation, septal thickening, 
intralobular interstitial thickening, crazy-paving pat-
tern, tree-in-bud, bronchial wall thickening, bronchi-
ectasis, air bronchogram, halo sign, reversed halo sign, 
mediastinal lymphadenectasis, and pleural effusion] 

[10–12, 22]. The window width and level were set to 
1600/-600 HU.

CT image processing and volume of interest (VOI) 
segmentation
The Lung Kit software (GE Healthcare, Version LK2.2) 
was used for pneumonia lesion segmentation. All 
the CT images were firstly resampled into isotropic 
1  mm × 1  mm × 1  mm voxel size using trilinear inter-
polation, to reduce the impact of different scanner and 
scanning parameters. Then, the images were processed 
by low-pass Gaussian filter to increase the reproducibility 

Fig. 1  Flow diagram of the study design and patient enrollment in the analysis
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of the radiomics features to be extracted [23]. During 
segmentation process, the five anatomic lung lobes were 
firstly automatically segmented by using Dense V-net-
works to further help positioning the pneumonia lesions. 
Next, the lesion segmentation was fulfilled by computer–
human collaboration. The pneumonia lesions which 
distributed in the whole lung was firstly segmented auto-
matically and considered as one integrated 3-dimensional 
volume of interest (VOI) by the LK software [24]. And 
then one experienced thoracic radiologist (ZG Zhang, 
5  years experience in chest imaging) checked the seg-
mentation and made any correction manually if neces-
sary. The resulted VOIs were double checked by another 
senior radiologist (B He, 15  years experience in chest 

imaging). The final VOIs were determined until the two 
radiologists reached consensus. Such segmented lesion 
VOI was used for radiomics feature extraction in the next 
step.

Radiomics feature extraction
A total of 1316 radiomics features were extracted based 
on the processed CT images and segmented VOIs by 
using open source of Python package Pyradiomics [25] 
at gray-level discretization bin width = 25 HU [26]. The 
extracted radiomics features were categorized into five 
groups: (1) First-order features including 18 intensity sta-
tistics and 14 shape features; (2) 75 multi-dimensional 
texture features including 24  Gy Level Co‐occurrence 

Fig. 2  The radiomic feature selection using the least absolute shrinkage and selection operator (LASSO) binary logistic regression model. a 
Parameter (Lambda) is tuned in the LASSO model using fivefold cross-validation via maximum area under the ROC curve criteria. AUC on each 
fold was drawn versus log (Lambda). Vertical line was drawn at the determined optical log (Lambda) with one standard error among fivefold 
cross-validation, where optimal Lambda resulted in nonzero coefficients. b A coefficient profile plotted against the log (Lambda)

Table 1  The predicting performance for CT signs model, radiomics model and combined model

AUC, area under curve

Model CT signs Radiomics CT signs + radiomics

Threshold 0.431 0.107 0.458

AUC (95% CI) 0.906 (0.86–0.953) 0.888 (0.8335–0.9417) 0.959 (0.930–0.987)

Sensitivity (95% CI) 0.865 (0.7774 to 0.9227) 0.865 (0.7774 to 0.9227) 0.899 (0.8168 to 0.9479)

Specificity (95% CI) 0.815 (0.7029 to 0.8927) 0.784 (0.6691 to 0.8683) 0.907 (0.8096 to 0.9603)

Positive prediction (95% CI) 0.865 (0.7774 to 0.9227) 0.846 (0.7569 to 0.9074) 0.930 (0.8532 to 0.9705)

Negative prediction (95% CI) 0.815 (0.7029 to 0.8927) 0.809 (0.6944 to 0.8891) 0.868 (0.7650 to 0.9310)

Accuracy (95% CI) 0.844 (0.7780 to 0.8936) 0.831 (0.7636 to 0.8826) 0.903 (0.8445 to 0.9411)
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Matrix (GLCM), 16  Gy Level Size Zone Matrix 
(GLSZM), 16  Gy Level Run Length Matrix (GLRLM), 
14 Gy Level Dependence Matrix (GLDM) and 5 Neigh-
boring Gray Tone Difference Matrix (NGTDM) Features; 
(3)1209 Transformed first-order and textural features 
including: 744 wavelet features in frequency channels 
LHL, LLH, HHH, HLH, HLL,HHL, LHH and LLL; 186 
Laplacian of Gaussian (LoG) filtered features with sigma 
of 2.0 and 3.0; 279 local binary pattern (LBP) filtered tex-
ture features.

Feature selection and model construction
The whole dataset (n = 154) was used for feature selec-
tion and model construction by considering the limited 
sample size. The radiomics feature data was firstly pre-
processed by replacing missing values with median val-
ues, and z-score normalization was followed. Next, the 
features with identical value or near-zero variance were 
excluded and redundant collinear features were reduced 
by correlation analysis at a cut-value of 0.7. In addition, 
Mann–Whitney U test was applied to select the fea-
tures with significant difference (P < 0.05) between the 
COVID-19 and influenza groups. To further reduce the 
redundancy and complexity of the model, minimum 
redundancy maximum relevance (mRMR) was per-
formed for feature selection [27, 28] and 20 important 
features were retained. By considering the sample com-
position ratio (negative:65, positive:89), the least abso-
lute shrinkage and selection operator (LASSO) logistic 
regression method with fivefold cross validation was 
applied for further feature selection and regularization 
to improve the model accuracy and avoid overfitting. 
The maximum area under ROC curve for model fitting 
among the 5 folds was utilized to determine the opti-
mized lambda values. Finally, the remaining features with 
non-zero coefficients were involved into multi-variate 
backward stepwise logistic regression with minimum 
AIC (Akaike Information Criterion) method for model 
construction. The radiomics signature “Radscore” was 
produced based on the regression coefficients. Besides, in 
order to test the reliability of the selected features and the 
logistic regression model, the 1000-times bootstrap [29] 
was conducted to obtain the feature appearing frequency 
and the model’s overall performance.

The independent predictors among CT signs were 
selected by using Chi-square test (or Fisher exact test), 
univariate and backward stepwise multivariate logistic 
regression methods [30–33]. Firstly, the CT signs with 
P-value less than 0.05 in Chi-square (or Fisher exact test) 
were retained to be further conducted with univariate 
and multivariate logistic regression. After sequentially 
selected by univariate (P < 0.05) and multivariate logistic 
regression, the independent predictors in differentiating 

COVID-19 and influenza were selected. These finally 
selected CT signs were used to construct “CT sign” 
model using logistic regression method.

In addition, the retained CT signs after univariate 
logistic regression were mixed with radiomics Radscore 
to be further selected by backward stepwise multivari-
ate logistic regression methods with minimum AIC. The 
“combined model” was constructed based on the retained 
features in the last step by using logistic regression 
method. The nomogram of such combined model was 
also established.

The classification performances of the radiomics, CT 
sign and combine models were evaluated by receiver 
operating characteristic (ROC) curve. The area under the 
curve (AUC), accuracy, sensitivity and specificity were 
derived. In addition, the calibration curves and decision 
curve analysis (DCA) curves were calculated to assess the 
models’ calibration and their clinical benefits. In addition, 
the reliability of the selected features and logistic regres-
sion model was tested by using 1000-times bootstrap 
among the whole dataset (detailed steps are described in 
Additional file 5:  Material 2).

Statistical analysis
The continuous variables or ordinal variables were com-
pared by t-test or Mann–Whitney U test. The distribu-
tion of different CT signs was compared by Chi-squared 
test or Fisher exact test when small sample sizes existed. 
For ROC analysis, the cut-off value in the training set at 
the maximum of Youden index of each model was calcu-
lated and the confusion matrix and sensitivity, specific-
ity, accuracy in the training and test cohorts were derived 
at such cut-off value. The Delong test was used for com-
parison of ROC curves between different models. The 
reported statistical significance levels were all two-sided 
with the statistical significance set as P < 0.05. The statis-
tical analyses were performed with SPSS Software (Ver-
sion 25, IBM, Chicago, IL) and R software (Version: 3.6.1, 
https: www.r-proje​ct.org). The following R packages were 
mainly involved including: “glmnet” for logistic regres-
sion including LASSO regression; “pROC” for ROC anal-
ysis; “rmda” for DCA analysis.

Results
Chest CT signs of viral pneumonia and their predictive 
performance
This study included 154 patients with viral pneumonia 
(male: 80; female: 74. Mean age: 44.89 ± 13.85), includ-
ing 89 cases of COVID-19 pneumonia and 65 cases of 
influenza pneumonia. The 16 CT signs of COVID-19 and 
influenza pneumonia were gradually screened by using 
Chi-square test or Fisher exact test (Additional file  5:  
Table  2), univariate and multivariate logistic regression 

http://www.r-project.org
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analysis (Additional file  6:  Table  3). Figures  3, 4 show 
representative cases of COVID-19 and influenza pneu-
monia. Four independent predictors were selected, 
including lesion distribution, GGO, intralobular inter-
stitial thickening, and halo sign. The CT signs model 
was constructed by using these independent predictors 
and the performance of the model was summarized in 
Table 1.

Extraction and selection of radiomics features and building 
of the radiomics prediction model
After the near-zero variance, colinear feature reduc-
tion (cut-value 0.7) and univariant Mann–Whitney 
U test (P < 0.05), there were 57 features retained. By 
using mRMR method, the selected 20 important fea-
tures were conducted with LASSO logistic regression 
with fivefold cross validation. As shown in Fig.  2, the 
optimized lambda value (0.017) was chosen at which 
the maximum AUC 0.807(95% CI 0.774–0.841) for 

model fitting among the 5 folds was obtained. And 16 
features were retained at such lambda value. Furtherly, 
the backward stepwise logistic regression was utilized 
to select the final 7 features to construct the logistic 
regression model.

Features dimension reduction was performed on 
1316 radiomics features and 11 reliable imaging fea-
tures were finally selected to identify COVID-19 from 
influenza pneumonia. The statistical difference of each 
radiomics feature between COVID-19 and influenza 
pneumonia and their decriptions are summarized in 
Additional file  7:  Table  4. The risk score formula of 
the radiomics model, CT sign model and the com-
bined model were calculated by using logistic regres-
sion coefficients and are listed in the Additional file 2:  
Material 1. Distributions of the risk score of each model 
and types of viral pneumonia in the whole database are 
shown in Fig. 5.

Table 2  1000-times Bootstrap estimate of  the  area under  the  ROC curve and  the  model optimism estimation 
for the radiomics and CT sign models

a  The AUC of predicting model developed in original whole dataset
b  The averaged model performance in the resampled training set after 1000-times bootstrap
c  The averaged model performance in the r “out-of-bag” test set after 1000-times bootstrap
d  The model’s averaged optimism as the difference between the bootstrap training set AUC and the test AUC​
e  The corrected AUC by subtracting the average optimism from the apparent AUC​

Model Apparent AUC​a AUC Bootstrap-Trainb 
(mean, 95% CI)

AUC Bootstrap-Testc 
(mean, 95% CI)

Average optimismd Optimism-
corrected 
AUC​e

Radiomics 0.888 0.899 (0.897–0.901) 0.838 (0.835–0.841) 0.061 0.827

CT sign 0.906 0.908 (0.907–0.910) 0.888 (0.886–0.890) 0.020 0.886

Fig. 3  Chest CT findings of COVID-19 pneumonia. a–d Male, 28 years old, 3 days after onset, axial view by CT scan. Multiple pure GGO in the upper 
left lobe (a, b), intralobular interstitial thickening and halo sign (c), vascular thickening and halo sign (d). E–H: Male, 25 years old, 2 days after onset, 
axial view by CT scan. Multiple pure GGO in the lower of both lobe (e, g), vascular thickening and halo sign (f); intralobular interstitial thickening and 
halo sign (h)
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Predictive performance of the radiomics model, CT signs 
model and combined model
The model predicting performance of the radiomics 
model, CT sign model and combined model are sum-
marized in Table  1. The ROC curves for each model 
are shown in Fig.  6a. After combining the radiomics 
feature and CT signs, the AUC values of were higher 
[0.959(95% CI 0.930–0.987)] than that of radiom-
ics model [0.888(95% CI 0.8335–0.9417)] or CT sign 
model alone [0.906(95% CI 0.86–0.953)]. The AUC 
was compared between each paired model by Delong 
test (as shown in Additional file 8:  Table 5). The AUC 
of combined model was significantly improved com-
pared with radiomics model (P = 0.002) or CT sign 
(P = 0.004) alone. While there was no significant dif-
ference between radiomics model and CT sign model 
(P = 0.5916). Moreover, the accuracy, sensitivity, 

specificity, precision, positive prediction, and nega-
tive prediction of radiomics features with CT signs are 
higher than that of radiomics features or CT features 
alone (Table  1). The calibration curves in Fig.  6b also 
shows a better agreement between the prediction and 
observation in combined model. The wide range of 
high-risk threshold (0–0.8) of the DCA curves in the 
combined model also indicated its clinical usefulness 
with standardized net benefits larger than 0.6, which 
is optimal compared to other two models. (Fig.  6c). 
Meanwhile, considering the applicability of the models, 
the nomogram for the radiomics model and combined 
model were also illustrated in Fig.  7. By using such 
nomograms, the Radscore or the risk score of com-
bined models involving Radscore component could be 
easily estimated in each input patient.

Fig. 4  Chest CT findings of influenza pneumonia. Male, 35 years old, 4 days after onset. Multifocal GGO, partial consolidation and consolidation 
in both lungs (a–d). Feale, 39 years old, 6 days after onset. Multifocal GGO, partial consolidation and consolidation in the right lower lungs (e, g). 
tree-in-bud (f), and consolidation (h)

Fig. 5  The bar chart of three models for patients with COVID-19 and influenza pneumonia. a CT signs model; b radiomics model; c combined 
model
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The overall performance of radiomics model and CT 
sign model among 1000-times bootstrap are summarized 
in Table  2. The appearing frequency of each radiom-
ics feature or CT sign retained in the logistic regression 
model during 1000-times bootstrap was illustrated 
in Additional file  1:  Fig.  1. The respective optimism-
corrected AUC (Radiomics: 0.827, CT sign: 0.886) and 
average optimism (Radiomics: 0.061, CT sign: 0.02) rep-
resents a relatively good reliability of the model estab-
lished from the selected feature. In addition, as shown 
in Additional file  1:  Fig.  1, the radiomics feature and 
CT signs in the model appeared over 600 times during 
1000-times bootstrap, which also reflected the reliability 
of the feature selection. The classifiers which might be 
appropriate for small sample size (Naïve Bayes, K Near-
est Neighbor, Decision Tree) were tested. The model per-
formance for supplementary models was summarized in 
Additional file 9:  Table 6. Among these modeling meth-
ods, KNN showed a better predicting performance. But 
as considering AUC and accuracy of KNN model was 
comparable with logistic regression model, the logis-
tic regression model which could construct nomogram 
might have more clinical application potential.

Discussion
Considering the similarity of period of year, clinical 
symptoms of COVID-19 and influenza pneumonia and 
the importance of differential diagnosis, previous stud-
ies have compared the clinical manifestations, routine 
blood tests and CT findings between COVID-19 and 
influenza pneumonia. Shen and Liu et al. found that the 
clinical manifestations of COVID-19 and influenza pneu-
monia were very similar, but the monocyte percentage 
increased and the eosinophil count decreased in COVID-
19 patients, and the GGO of COVID-19 on the CT 

image distributed in the periphery of the lung [8, 34]. In 
addition, the progression of chest CT findings is closely 
related to the prognosis of COVID-19. With the decrease 
of pure GGO, the increase of consolidation, the expan-
sion of the lesion area, and the appearance of crazy-pav-
ing pattern, the COVID-19 patient’s prognosis becomes 
worse [35, 36]. Diagnosing COVID-19 in the early stage 
is also beneficial to improve the prognosis. This study 
systematically analyzed the differences in CT signs and 
radiomics features COVID-19 and influenza pneumonia 
within 7  days. Our research found that four signs and 
seven radiomics features are related to COVID-19 infec-
tion. The selected CT signs and radiomics features can be 
used to construct CT signs model, radiomics models and 
combined model to distinguish COVID-19 and influenza 
pneumonia. In this study, the diagnostic performance of 
the radiomics model was not significantly better than the 
radiologists’ subjective judgments. However, the com-
bined model which was based on CT signs and radiom-
ics features, can distinguish COVID-19 from influenza 
pneumonia better than CT signs or radiomics features 
alone. And the combined model showed excellent and 
encouraging performance. The CT signs of COVID-19 
and influenza pneumonia were compared in this study. 
We found that peripheral lesion, GGO, intralobular inter-
stitial thickening and halo sign of COVID-19 pneumonia 
are more common than influenza pneumonia, which 
is consistent with previous studies [12, 13, 22, 37]. And 
the performance of CT signs to identify COVID-19 and 
influenza pneumonia is acceptable, which is consistent 
with Bai et al. (Accuracy 60–83%) [38]. The results of the 
radiologist’s subjective evaluation showed that CT signs 
are of clinical value in identifying viral pneumonia. Radi-
omics is the generation of minable high throughput data 
through conversion of digital medical images (e.g. CT, 

Fig. 6  Predictive performance of the CT signs model, radiomics model and the combined model. a Receiver operating characteristic (ROC) curves. 
b Calibration curves. c Decision curve analysis
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MRI, PET/CT, and Ultrasound) [15]. In previous studies, 
radiomics had outstanding performance in the diagnosis, 
staging, prognosis, and treatment response prediction of 
tumors [15–17]. In addition, radiomics can give rise to a 
deeper understanding of the heterogeneity of pneumonia 
lesions [21, 39, 40]. Therefore, radiomics is theoretically 
a feasible method to distinguish COVID-19 pneumonia 
from influenza pneumonia. In our study, we selected 
seven of the most predictive radiological features, and 
most of them were filtered or transformed first-order or 
texture features. It might indicate that the distinguish-
ment between such highly imaging overlapped pneu-
monia may need the emphasized features in the spatial 

or frequency domains or the relatively higher stability of 
these higher-order features. In clinical cancer research, 
radiomics features have been shown to reflect tumor 
invasiveness, malignancy, and lymph node metastasis 
potential and other biological characteristics [41–43]. 
However, we speculate that the cause of CT image het-
erogeneity between COVID-19 and influenza pneumo-
nia may be different from the tumor. Subsequently, the 
radiomics prediction model was constructed. The perfor-
mance of the classifier was 86.5% sensitivity, 78.4% speci-
ficity, 83.1% accuracy. In addition, the ROC curve was 
used for performance evaluation. The AUC was 0.888, 
indicating a relatively good performance.

Fig. 7  The nomogram representing radiomics model and combined model. a Radiomics model; b combined model. F1: "lbp.3D.k_ngtdm_
Contrast"; F2: "lbp.3D.k_ngtdm_Strength"; F3:"lbp.3D.m2_glszm_SmallAreaEmphasis"; F4: "wavelet.LLH_ngtdm_Contrast"; F5:"wavelet.
HLL_firstorder_Mean"; F6:"lbp.3D.m2_glszm_ZoneVariance"; F7: "wavelet.LHL_gldm_DependenceEntropy"; Radscore, radiomics score; GGO, 
ground-glass opacities; IIT, intralobular interstitial thickening. 0: negative, 1: positive in GGO and IIT, or 0: central, 1: peripheral, 2: mix in distribution
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In previous study, multiple CNN models were used 
to distinguish COVID-19 and influenza A pneumonia, 
And the Noisy-or Bayesian function model can make 
the accuracy reach 85.0% [14]. Zeng et  al. used radi-
omics model to distinguish COVID-19 and influenza 
A pneumonia [44], and obtained an AUC (0.87) simi-
lar to ours. In this study, we selected significant fea-
tures from more radiomics features (1316 in total), and 
included influenza A pneumonia and influenza B pneu-
monia, for which differential diagnosis is more difficult. 
Besides, in order to further improve the performance 
of the prediction model, we combined the radiologist’s 
subjective visual assessment and computed radiom-
ics features to construct the prediction model. It was 
found that the combined model has higher sensitivity, 
specificity, accuracy and AUC (0.959) than CT signs or 
radiomics model. The calibration curve and decision 
curve also showed that the reliability and stability of 
the combined prediction model were better. Shiri etal. 
used different radiomic features, feature selection and 
classifiers of multimodal images to construct prediction 
models and observed their performance in predicting 
the mutation status of EGFR and KRAS in non-small 
cell lung cancer [45]. The results show that the radi-
omic features extracted from different image feature 
sets can not only be used to predict the mutation sta-
tus of EGFR and KRAS, but also have higher predic-
tive power than conventional images. In addition, other 
previous studies have also shown that the combination 
of feature selection method and classification method 
can improve the predictive or prognostic performance 
of the model [46–49]. With the expansion of the study 
population and feature scale, the combination of mean-
ingful biological information, clinical data and imaging 
omics may further improve prediction or prognostic 
performance. In addition, it is very important to select 
features and establish models according to different 
diseases, and to perform correlation analysis between 
radiomics features and more physiological and patho-
logical features. Exploring the meaning of radiomics 
features in physiological or pathological mechanisms 
can make better use of radiomics features [45, 50].

This study has some limitations. First, as a retrospec-
tive study, there may be selection bias. But the results 
of our preliminary study are encouraging and will be 
verified in future larger studies. In addition, because 
of the small size of other single cases of pneumonia, 
we did not compare the characteristics of different 
viral pneumonia. Finally, the response of the lung to 
the virus is highly related to the host factor. CT data 
alone cannot completely distinguish the type of viral 
pneumonia, and more clinical features and laboratory 

examination data need to be considered. Combined 
with more clinical data, the predictive model may be 
better at identifying viral pneumonia.

In conclusion, we determined the chest CT signs and 
radiomics features that distinguished COVID-19 from 
influenza pneumonia and developed an effective pre-
dictive model. Our research shows that CT signs and 
radiomics features are effective tools for identifying 
COVID-19 and influenza pneumonia.
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