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Abstract
In this study, a deterministic model for the transmission dynamics of yellow fever (YF) in a
human–mosquito setting in the presence of control measures is constructed and rigorously
analyzed. In addition to horizontal transmissions, vertical transmission within mosquito pop-
ulation is incorporated. Analysis of the mosquito-only component of the model shows that
the reduced model has a mosquito-extinction equilibrium, which is globally-asymptotically
stable whenever the basic offspring number (N0) is less than unity. The vaccinated and type
reproduction numbers of the full-model are computed. Condition for global-asymptotic sta-
bility of the disease-free equilibrium of the model when N0 > 1 is presented. It is shown that,
fractional dosing of YF vaccine does not meet YF vaccination requirements. Optimal control
theory is applied to the model to characterize the controls parameters. Using Pontryagin’s
maximum principle and modified forward–backward sweep technique, the necessary con-
ditions for existence of solutions to the optimal control problem is determined. Numerical
simulations of the models to assess the effect of fractional vaccine dosing on the disease
dynamics and global sensitivity analysis are presented.

Keywords Yellow fever virus · Basic offspring number · Vaccination reproduction number ·
Metzler matrix · Stability analysis · Optimal control

Introduction

Yellow fever (YF) is an acute viral haemorrhagic fever that is transmitted bymosquitoes of the
Aedes and Haemogogus species. It is endemic in Africa, Central and South America, where
approximately onebillion people in fourty seven countries are at risk. Symptomsof the disease
include fever, headache, jaundice, muscle pain, nausea, vomiting and fatigue [5,44,47,48].
In broad terms, YF can either be jungle or urban. Jungle YF occurs in tropical rain-forest. In
Africa, it is usually transmitted by Aedes africanus while in South America by Haemagogus
species [6,47,48]. Urban YF is transmitted by Aedes aegypti, that it characterized by rapid
amplification, capacity for international spread and has devastating effect on public health,
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socio-economic and political life [47]. Once a mosquito is infected, it lives with the disease
for the rest of its life and hence they can be considered as the reservoir for the virus. On the
other hand, monkeys have brief viremia and can be considered to be amplifying hosts [6].

Unfortunately, the threats posed by YF have largely been forgotten, just a bit more than a
century ago, it was a source of terror, decimating populations of cities, destroying economies
and driving political chaos. Extensive, repeated epidemics in North American and European
port cities during the 18th and 19th centuries spread panic, shutting down affected cities and
killing hundreds of thousands of people [47]. Despite the availability of very effective YF
vaccine, the disease has however continuously persist in Africa and South America, often
with high mortality rate [5]. In general terms, fourty seven countries are either YF endemic
or have some regions that are YF endemic, thirty four of those countries are in Africa with
thirteen in South and Central America. A modeling study based on African data sources
estimated that, the burden of YF in the year 2013 was between 84,000 to 170,000 severe
cases, and 29,000 to 60,000 deaths [47].

Vertical transmission of YF virus occurs when orally infected female mosquitoes pass the
virus to their progeny (transovarial transmission) [13]. First evidence of vertical transmission
of YF virus was reported as far back as 1997 [20]. Apart from experimental proof for the
vertical transmission of YF, entomological surveys also provide more evidences of vertical
transmission of YF virus in mosquitoes. The virus was isolated from wild mosquitoes and
recently emerged adults from larvae collected in the field [13]. In fact, during dry seasons
(when mosquito breeding is not favorable), YF virus survival can be attributed to vertical
transmission from infected female mosquitoes to their eggs, at which point the viral particles
are stable for long periods and can be reactivated when the progeny emerges under better
conditions [6,45]. Thus, vertical transmission is incorporated in this study.

There is no specific treatment for YF infection, but care to specifically treat cases of dehy-
dration, liver failure, fever and kidney failure is often administered to improve outcomes.
Thus, early detection and good supportive treatment in hospitals improve possibility of sur-
vival. In the case of bacterial infections, it can also be treated with antibiotics [48]. Mosquito
control is an important (perhaps themost important) component of preventing and controlling
transmission of vector borne diseases. It requires knowledge of both mosquito biology and
local conditions to be used in choosing the best interventions (habitat modification, water
management, sanitation or pesticides) on a site-specific basis [42]. In this study, we only
consider the use of pesticides, which can be achieved either by the use of adulticides (agents
to clear adult mosquitoes) or larvicides (agents aimed at eliminating potential mosquito
breeding sites) [42,48]. Adulticides are most often applied as a very fine ultra low-volume
(ULV) droplet spray from a truck or aircraft, it is usually organophosphate insecticides and/or
synthetic pyrethroids and their combinations [40,42]. Some larvicide agents are specific to
mosquitoes and when use according to directions will have relatively little impact on the
environment and human health. They can prevent the emergence of adult mosquitoes for up
to 1 month, which decreases labour costs [42].

After the isolation of YF in 1927, there were unsuccessful efforts to produce inactivated
vaccines in the early twentieth century, thus, subsequent developments focused on live virus
products and yield the production of a safe, effective vaccine against YF called the 17D
strain (originally developed by Theiler and Smith in 1936) [5,33]. One vaccine dose can
provide life-long immunity at an affordable rate of 1 US dollar. Angola was in 2016 hit by
an unprecedented outbreak of urban YF which spread to beyond its boarders and generates
local transmissions. The epidemic creates an urgent need for more than 28 million doses of
YF vaccines, the demand exhausted the existing global vaccine supply. It also diverted health
authorities from tackling other important public health issues, which impacted on health care
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delivery in general [47,48]. In order to ensure adequate supply of vaccine especially in high
risk regions, the Eliminate Yellow Fever Epidemics (EYE) strategy, steered byWorld Health
Organization, UNICEF and Gavi, the Vaccine Alliance was inaugurated. The vision of EYE
is to have a world without YF epidemics. Its mission is to coordinate international action and
help countries at risk of the disease to prevent outbreaks and prepare for the inevitable cases, to
minimize suffering, damage and spread through early and reliable detection as well as a rapid
and appropriate response. The initiative has three strategic objectives: they include protecting
at-risk populations, preventing international spread, and containing outbreaks rapidly [47].

Yellow fever has attracted less modeling studies when compared with other mosquito
borne diseases such as malaria, dengue, West Nile and Zika virus. To study population
dynamics of Aedes aegypti (mosquitoes responsible for YF transmission), Dye [17] proposed
an appropriate continuous timemodel that described a field population of adult Aedes aegypti
mosquito.Recently,Martorano et al., constructed and analysed a compartmentalmodel for the
transmission of YF with vaccination [32], although vertical transmission is not accounted for
in theirmodel, both aquatic andnon-aquatic stages ofmosquito developmentwere considered.
An urban YF epidemic model was also formulated and used to study the 2016 YF outbreak
in Luanda, Angola by Zhao et al. [50]. Their model successfully fits the time series of weekly
reported YF cases and deaths during the epidemic in Angola [50]. Monica et al. [34] looked
at a YF model in a human-vector-primate setting with vaccination in human population. To
estimate the incubation periods of YF virus in both human and mosquito populations, four
statistical models of incubation periods were fitted with historical data in [26].

In this work, we extend the model in [32] by incorporating vertical transmission in
mosquito population. In addition to vaccination of susceptible humans, the proposed model
also incorporates the use of treated bed nets, larvicides and adulticides in mosquito control.
The work is organized as follows: Introduction and short review of relevant literature is pre-
sented in “Introduction” section. A deterministic model for the transmission dynamics of YF
is constructed and analyzed for its basic dynamical features in “Model Formulation” section.
Analyses of the full model is provided in “Analysis of the Full Model” section. Threshold
quantities and stability analysis of equilibria are also explored in this section. Optimal control
form of the model is presented and analyzed in “YF Model for Optimal Control” section.
Sensitivity analysis and numerical simulations are presented in “Sensitivity Analysis and
Numerical Simulation” section.

Model Formulation

Following compartmental modeling approach, the total human population at time t , denoted
by, NH (t), is divided into five mutually exclusive compartments of susceptible (SH (t)),
vaccinated (VH (t)), exposed (EH (t)), infected (IH (t)) and recovered (RH (t)) humans. So
that

NH (t) = SH (t) + VH (t) + EH (t) + IH (t) + RH (t).

Mosquito population is split into aquatic (immature) and non-aquatic (mature) stages. For
mathematical tractability, different development stages of the aquatic mosquito population
(eggs, larvae and pupae) are lumped into a single compartment A(t). Furthermore, to incorpo-
rate vertical transmission, the aquatic mosquito population are further divided into infectious
(AI (t)) and non-infectious (AN (t)) mosquitoes. So that the total mosquito population at the
aquatic stage at time t , is given by
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A(t) = AI (t) + AN (t).

Similarly, the total mosquito population at non-aquatic stage (adult) at time t , denoted by
NV (t), is sub-divided into susceptible (SV (t)) and infectious (IV (t)) mosquitoes. So that

NV (t) = SV (t) + IV (t).

Incidence Function

The frequency-dependent (standard) incidence function is the most widely used form of
incidence in vector borne disease models. Infection from mosquitoes to humans occur after
an infectious mosquito bites a susceptible human at a rate bV H , let ρV H be a transmission
probability from an infectious mosquito to susceptible human, then the infection rate of
humans is βV H = ρV HbV H . Therefore the force of infection in humans is given by

λH = ρV HbV H
IV
NV

= βV H
IV
NV

. (1)

Similarly, let βHV = ρHV bHV be the rate at which susceptible mosquitoes acquire infection
from infectious human, where ρHV is the probability of transmission from an infectious
human to a susceptible mosquito and bHV is the biting rate of a susceptible mosquito. Then
the force of infection in mosquito population (due to horizontal transmission) is given by

λV = ρHV bHV
IH
NH

= βHV
IH
NH

. (2)

Since mosquitoes bite both susceptible and infected humans, for the total number of bites to
be conserved, it is assumed that the total number of bites by the mosquitoes must be equal
to the total number of bites received by humans (and this depends on the total sizes of the
populations of humans and mosquitoes), see [8,10,12,21,22,36]. Thus

βV H (NH , NV )NH = βHV NV , so that, NV = βV H (NH , NV )

βHV
NH , (3)

Substituting Eq. (3) into Eq. (1), we have

λH = βHV
IV
NH

. (4)

The population of susceptible humans is generated by birth (or immigration) at a constant rate
bH . Fraction of this population are vaccinated at a rate cV , since the vaccine is not perfect, it
wanes at a rate ωH . This population is decreased through infection at a rate (1 − rBεB)λH

(where rB is the rate of using treated bed-nets and εB is the efficacy of bed nets). Natural
mortality occurs in all human classes at a rate μH . The population of vaccinated humans is
generated by vaccination of susceptible individuals at the rate cV . This population decreases
due to waning of vaccine at the rate ωH , by infection at the rate (1− rBεB)(1− ε)λH (where
0 < ε < 1 is a vaccine efficacy) and due to natural death. The populations of exposed
humans (EH ) is generated by the infection of susceptible (SH ) and vaccinated (VH ) humans
at the rates (1−rBεB)λH and (1−rBεB)(1− ε)λH , respectively. These populations reduces
by progressing to infectious class at a rates γH , and by natural death. The populations of
infectious humans (IH ) is generated by progression of exposed individuals to the infectious
class at the rate γH . It decreases by recovery at the rate τH , natural death and disease-induced
death at the rate δH . Recovered humans population increases by the recovery of infectious
humans at the rate τH and decreases due to natural death.
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Fig. 1 Schematic diagram of the model (5)

The population of aquatic mosquitoes (eggs, larvae and pupae) increases through ovipo-
sition by reproductive mosquitoes (infected and non-infected) at a rate φV . The aquatic
mosquitoes mature to adulthood at a rate bV , die naturally at a rate μA and due to the use
of larvicides at a rate cL = rLeL (where rL is the rate of applying larvicides and eL is the
efficacy of larvicides).

The population of susceptible adult mosquitoes is generated by maturation of non-
infectious mosquitoes from the aquatic stage at the rate bV and decreases by infection and
move to infectious class at a rate (1 − rBεB)λV , they die naturally at a rate μV and due to
the use of adulticides at a rate cA = rAeA (where rA is the rate of applying adulticides and
eA is the efficacy of adulticides). Finally, The population of infectious adult mosquitoes is
generated by maturation of infected mosquitoes from the aquatic stage at the rate bV and by
infection of susceptible mosquitoes. This population is reduced by natural death at the rate
μV and due to the use of adulticides at a rate cA.

The time independent YF transmission model with vaccination (and vertical transmission
in mosquitoes) is represented by the following system of non-linear ordinary differential
equations (a flow diagram of the model is depicted in Fig. 1 and the state variables and
parameters of the model are described in Table 1):

H
um

an
s

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSH
dt

= bH + ωHVH − cV SH − βHV (1 − rBεB)
IV
NH

SH − μH SH ,

dVH

dt
= cV SH − βHV (1 − rBεB)(1 − ε)

IV
NH

VH − ωHVH − μHVH ,

dEH

dt
= βHV (1 − rBεB)

IV
NH

SH + βHV (1 − rBεB)(1 − ε)
IV
NH

VH − γH EH − μH EH ,

d IH
dt

= γH EH − δH IH − τH IH − μH IH ,

dRH

dt
= τH IH − μH RH ,

(5)
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M
os
qu
ito

es

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d AN

dt
= φV

(
1 − A

K
)
SV + φV (1 − ηV )

(
1 − A

K
)
IV − bV AN − μA AN − cL AN ,

d AI

dt
= φV ηV

(
1 − A

K
)
IV − bV AI − μA AI − cL AI ,

dSV
dt

= bV AN − βHV (1 − rBεB)
IH
NH

SV − μV SV − cASV ,

d IV
dt

= βHV (1 − rBεB)
IH
NH

SV + bV AI − μV IV − cA IV .

It is assumed that, all themodel parameters are positive and initial conditions are non-negative.
In addition, let AN + AI = A so that

d A

dt
= φV

(
1 − A

K
)
[SV + IV ] − bV A − μA A − cL A, (6)

which is the standard formulation for aquatic mosquitoes with density dependent and inde-
pendent death rate, see for instance [15,16].

Lemma 2.1 The following biologically feasible region of the model (5)

� =
{

SH , VH , EH , IH , RH , AN , AI , SV , IV ∈ R
9+ : SH + VH + EH + IH + RH ≤ bH

μH
,

AN ≤ K, AI ≤ K, SV + IV ≤ KbV
μV + cA

}

(7)
is positively-invariant and attracting.

Proof It is easy to see that solution to the system (5) exists locally and it is unique (system (5)
is C1 in R

10+ ). Observe that AN + AI ≤ K, thus AN (t) ≤ K and AI (t) ≤ K. Therefore by
Gronwall’s lemma we have

NH (t) ≤ NH (0)e−μH (t) + bH
μH

(
1 − e−μH (t)

)
,

NV (t) ≤ NV (0)e−(μV +cA)(t) + KbV
μV + cA

(
1 − e−(μV +cA)(t)

)
,

(8)

which are bounded and hence solution exists for all t ≥ 0. In addition, NH (t) ≤ bH
μH

if NH (0)

≤ bH
μH

and NV (t) ≤ KbV
μV +cA

if NV (0) ≤ KbV
μV +cA

. Consequently, solution of the system (5) with
initial condition in � remains in � for all t > 0 (the ω-limits set of the system are contained
in �). ��

Having obtained the positively-invariant and attracting domain for the system (5), it is
sufficient to consider the asymptotic properties of dynamics of the flow generated by the
system.

Mosquito-Only Equilibria

Consider the mosquito component of the model given by (5) in the absence of interaction
with humans. By direct computation, we obtained a threshold termed as the basic offspring
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Table 1 Description of the variables and parameters for the model (5)

Var. Interpretation

SH Susceptible humans

VH Vaccinated humans

EH Exposed humans

IH Infected humans

RH Recovered humans

AN Non-infected aquatic mosquitoes

AI Infected aquatic mosquitoes

SV Susceptible mosquitoes

IV Infected mosquitoes

NH Total human population

NV Total matured mosquitoes

NM Total mosquito population

Par. Interpretation Range Ref.

cV Successful rate of vaccination 0 − 0.043 [32,37,44]

ε Vaccine efficacy 0.8–0.99 [24,33,37]

ωH Waning rate of vaccine (0, 1) [32]

cB Rate of successful use of bed net 0–0.95 [9]

bH Recruitment rate of humans 10–800 [4,8]

μH Natural death rate of humans 3×10−5–6×10−5 [1,21,23,32]

γH Progression rate of exposed humans 0.167–0.3 [26,48,50]

δH Disease induced death rate of humans 0.0001–0.0004 [12,32]

τH Recovery rate of humans 0.25–0.33 [32,48,50]

μA Natural death rate of aquatic mosquito 0.2–0.33 [15,16]

μV Natural death rate of mosquitoes 0.0287–0.25 [1,32,50]

cL Mosquito death rate due to larvicides (0, 1) Assumed

cA Mosquito death rate due to adulticides (0, 1) [7,9]

φV Mosquito oviposition rate (1, 50) [2,15,16]

ηV Vertical transmission rate (0, 1) [13,20]

bV Mosquito maturation rate 0.05–0.1 [2,15,16]

K Mosquito carrying capacity 5 × 101–9.8 × 107 [4,32]

bHV Biting rate of mosquitoes 0.3–1 [1,15,50]

ρHV Transmission probability from IH to SV 0.5–1 [1,50]

ρV H Transmission probability from IV to SH 0.1–0.75 [1,15,50]

βV H Infection rate of humans 0.03–0.75 [1,50]

βHV Infection rate of mosquitoes 0.15–1 [1,50]

123



  105 Page 8 of 34 Int. J. Appl. Comput. Math            (2020) 6:105 

number (N0) given by

N0 = φV bV
(bV + μA + cL)(μV + cA)

. (9)

It is defined as the average number of offspring produced by a female mosquito in her entire
lifespan in the absence of interaction with humans. It can be interpreted as follows. The
average time spent by mosquito in the aquatic stage is given by 1

bV +μA+cL
, where bV is the

rate at which aquatic mosquitoes mature into an adult mosquito, so that the probability that
an aquatic mosquito develops into an adult female mosquito is given by

bV
bV + μA + cL

. (10)

The average life expectancy of an adult female mosquito is given by 1
μV +cA

, so that the
average eggs laid by an adult female mosquito throughout her life span is given by

φV

μV + cA
. (11)

where φV is the oviposition rate of a female mosquito. Thus, the product of (10) and (11)
gives (9), the basic offspring number of the mosquito-only population model.

Themosquito component of model (5) has an extinction disease-free equilibrium obtained
when N0 ≤ 1, denoted by E0, given by

E0 =
(
A∗
N , A∗

I , S
∗
V , I ∗

V

)
=
(
0, 0, 0, 0

)
,

and non-extinction disease-free equilibrium obtained when N0 > 1, denoted by E1, that is
given by

E1 =
(
A∗
N , A∗

I , S
∗
V , I ∗

V

)
=
[
K
(

1 − 1

N0

)

, 0,
bVK

μV + cA

(

1 − 1

N0

)

, 0
]
.

Theorem 2.2 The mosquito extinction equilibrium, E0, is globally-asymptotically stable
(GAS) when N0 ≤ 1 and unstable otherwise. The equilibrium E1 exists and it is locally-
asymptotically stable (LAS) when N0 > 1.

The proof of the theorem is given in “Appendix A”. The epidemiological implication of
Theorem (2.2) is that, if the basic offspring number can be brought to a value below unity,
then the mosquito population goes to extinction and horizontal transmission can be avoided.
It is worth mentioning that this result is not attainable.

Analysis of the Full Model

Disease-Free Equilibria

The disease-free equilibrium of the model given by (5) depends on N0. If N0 ≤ 1 a mosquito
extinction DFE (E2) is obtained, while a mosquito persistent equilibrium (E3) is obtained
when N0 > 1. Thus

E2 =
(
S∗
H , V ∗

H , E∗
H , I ∗

H , R∗
H , A∗

N , A∗
I , S

∗
V , I ∗

V

)
=
(bH (ωH + μH )

K1μH
,
cV bH
K1μH

, 0, 0, 0, 0, 0, 0, 0
)
,
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and

E3 =
(
S∗
H , V ∗

H , E∗
H , I ∗

H , R∗
H , A∗

N , A∗
I , S

∗
V , I ∗

V

)
,

=
[bH (ωH + μH )

K1μH
,
cV bH
K1μH

, 0, 0,K
(

1 − 1

N0

)

, 0,
KbV
K5

(

1 − 1

N0

)

, 0, 0
]
,

where K1 = cV + ωH + μH , K2 = γH + μH , K3 = δH + τH + μH , K4 = bV + μA + cL
and K5 = μV + cA.

For the case, when N0 < 1, the associated reproduction number obtained by linearizing
the system about E2 is given by Rvv = φV ηV bV

N0K4K5
= ηV . The detail computation is provided in

“Appendix B”.

Lemma 3.1 The mosquito extinction DFE given by, E2, is locally-asymptotically stable if
the vectorial vertical transmission reproduction number Rvv = ηV ≤ 1 and unstable other-
wise [46].

Remark The DFE, E2, can be shown to be globally-asymptotically stable under the same
condition. It is worth mentioning that, the mosquito extinction DFE, E2, is less tractable (due
to the absence of mosquito in the population).
For the DFE, E3, obtained in the presence of mosquitoes (N0 > 1), the vaccinated reproduc-
tion number (R0v) is given by

R0v = ηV

2
+
√
(ηV

2

)2 + β2
HV S

∗
V (1 − cB)2γH

N∗
H K2K3K5

(

1 − V ∗
H ε

N∗
H

)

, (12)

where cB = rBεB is the rate of reducing contact between humans and mosquitoes through
the use of bed nets. The threshold quantity, R0v is the average number of new secondary
cases that one infected individuals can produce in a totally naive population, where a fraction
of the population is vaccinated. The computation of the threshold is presented in “Appendix
C”.

The disease can be controlled in a community through appropriatemeasures such as reduc-
ing the carrying capacity of mosquito population, use of larvicides, adulticides or repellents
to the extent of lowering R0v to a value below unity. Effective mosquito control strives to pre-
vent large swarms of adult mosquitoes in an environment through the application of chemical
substances called adulticides. They can be applied either aerially or on the ground. Droplets
of the chemicals that make physical contact with mosquitoes usually kill them, while large
droplets that missed target and settle on surfaces may cause undesirable harm. To achieve
small droplets, adulticides are mostly applied in the air as a very fine ultra low-volume (ULV)
droplet spray from a truck or aircraft, it is usually organophosphate insecticides and/or syn-
thetic pyrethroids and their combinations [40,42]. Through aerial or ground applications of
larvicides, large population of aquatic mosquitoes can be killed. This method is often more
effective and environmentally friendly than the use of adulticides. It should be noted that, lar-
vicides are only administered at identified suspected breeding sites, where they are expected
to clear populations of aquatic mosquitoes, conventional larvicides kill aquatic mosquitoes at
every stage and therefore, they can be applied whenever necessarily. Some larvicides agents
are specific to mosquitoes and when used according to directions will have relatively lit-
tle impact on the environment and human health. They can prevent the emergence of adult
mosquitoes for up to 1 month, which decreases labour costs [47]. In essence, larvicides can
be specific for mosquitoes, they have minimal impact on other organisms and often penetrate
even dense objects.
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Threshold Analysis andVaccine Impact

Here we analyse the potential impact of a single dose and a fractional dosing of vaccine.
Since not all vaccine have positive impact in a population, it is therefore instructive to first
of all assess the impact of vaccine.

In the absence of vaccination (S∗
H = N∗

H when V ∗
H = 0), the vaccinated reproduction

reduces to

R0 = R0v

∣
∣
∣
∣
V ∗
H=0

= ηV

2
+
√
(ηV

2

)2 + β2
HV S

∗
V (1 − cB)2γH

N∗
H K2K3K5

. (13)

Notice that R0v ≤ R0 since
V ∗
H ε

N∗
H

≥ 0. Thus, vaccination of individuals will have positive

impact in the community by reducing the value of the associated reproduction number R0.
Furthermore, the impact of vaccination can be analysed qualitatively by differentiating

R0v with respect to the fraction of vaccinated individuals (V ). It can be shown that

∂R0v

∂V
= −β2

HV S
∗
V (1 − cB)2γH ε

2K2K3K5N∗
H

√
[ ηV

2

]2 + β2
HV S

∗
V (1−cB )2γH

(N∗
H )2K2K3K5

[
S∗
H + V ∗

H (1 − ε)
]

< 0. (14)

Thus, R0v is a decreasing function of V . Since the reproduction number measures disease
burden, the vaccination will have a positive impact in disease control.

Standard Dosing

Based on the available clinical data [47], the minimum standard dose administered should
preferentially contains 3000 international units (IU)/dose, but no less than 1000 IU/dose. Let

V = V ∗
H

N∗
H

(V ≤ 1) be the fraction of the vaccinated individuals at steady-state (when standard

dose of YF vaccine is issued). Then solving for R0v = 1 we obtained

Vc = 1

ε

[
1 −
{
1 − ηV

}
N∗
H K2K3K5

β2
HV S

∗
V (1 − cB)2γH

]
. (15)

Thus, for the vaccination to be effective in bringing R0v < 1, the fraction of vaccinated
individuals (Vc) at steady-state must be greater than the vaccinated threshold ratio (V > Vc)
defined in Eq. (15). Notice that if ηV = 1, that is the case when all eggs laid by infected
female mosquitoes are infected, then it is highly unlikely for any vaccine coverage to bring
R0v to a value less than unity (in this settings) since the critical vaccination rate reduces to
Vc = 1

ε
.

Lemma 3.2 The DFE, E3, of the model (5) is locally-asymptotically stable if ηV < 1 and
V > Vc. It is unstable otherwise.

The proof follows from Theorem 2 of [46] and the fact that R0v < 1 if and only if ηV < 1
and V > Vc.

Backward Bifurcation

Consider the model (5) with N0 > 1.We claim the following result (the proof of the Theorem
is presented in “Appendix D”).
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Theorem 3.3 The yellow fever model (5) undergoes backward bifurcation at R0v = 1 when-
ever the bifurcation coefficient a, given by (D.3) is positive.

The epidemiological implication of the phenomenon of backward bifurcation is that the
classical requirement ofR0V < 1 is, although necessary, no longer sufficient for the effective
control of the disease in the population [3]. Hence, the presence of backward bifurcation
makes the feasibility of the effective control of YF in a population difficult. In the next
section, the possible cause(s) of this phenomenon is(are) explored.

Global Asymptotic Stability of E3

Here, a global asymptotic stability of the non-extinction equilibrium, (E3), is presented To
confirm the absence of backward bifurcation in the model (5) for a special case when disease
induced mortality in human is negligible (δH = 0). Consider the model (5) with N0 > 1 and
δH = 0.

Lemma 3.4 Consider the subset �∗ of � defined in (7) given by

�∗ =
{

SH , VH , EH , IH , RH , AN , AI , SV , IV ∈ R
9+ : SH + VH + EH + IH + RH ≤ bH

μH
,

AN ≤ K, AI ≤ K, SV + IV ≤ KbV
μV + cA

,

SV ≤ S∗
V = KbV

μV + cA

(

1 − 1

N0

)

, 1 − 1

N0
≤ A

K
}

.

We claim the following result

Theorem 3.5 The non-extinction equilibrium (E3) of the model (5) is globally-asymptotically
stable in the positively invariant set �∗ if δH = 0 and R0v ≤ 1.

The proof of the Theorem is presented in “Appendix E”. This result shows that, in the absence
of disease induced death, the DFE of the model (5) is GAS. Hence, the classical requirement
ofR0v ≤ 1 is necessary and sufficient condition for disease elimination from the community
provided δH = 0 (thus, YF will be effectively controlled or eliminated from the population if
R0v ≤ 1). This result is consistent with that in [21], which suggests that disease induced death
in humans is the main cause for the emergence of the backward bifurcation phenomenon in
this setting.

Fractional Dosing

The best way to stretch vaccine supplies and protect as many people as possible to stop
the spread of yellow fever in emergency situations is by using fractional dosing. Based on
the available evidence, the Strategic Advisory Group of Experts (SAGE) on Immunization
affirms that a fractional dose can be used as part of an exceptional response when there
is a large outbreak and a shortage of vaccine [47,48]. In the case of dose fractionation, a
smaller amount of antigen would be used per dose in order to increase the number of persons
who can be vaccinated with a given quantity of vaccine. Studies show that the yellow fever
vaccine given as one fifth of the regular dose, still provides full immunity against the disease
for at least 12 months and likely longer [47,48]. This strategy was previously proposed
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Fig. 2 Vaccinated reproduction number (R0v) as a function of efficacy of vaccination with standard dose and
fractionated threefold vaccines

to extend pre-pandemic influenza vaccine supplies [49]. Suppose each dose of vaccination
is fractioned into m number of doses, so that the efficacy of the fractioned vaccine (eV f )

becomes eV f = ε
m , then

Vcf = m

ε

[
1 −
{
1 − ηV

}
N∗
H K2K3K5

β2
HV S

∗
V (1 − cB)2γH

]
= m × Vc > Vc

and

eVcf = m

V

[
1 −
{
1 − ηV

}
N∗
H K2K3K5

β2
HV S

∗
V (1 − cB)2γH

]
= m × eVc > eVc.

Figure 2 shows the simulation of the vaccinated reproduction number as a function of vaccine
efficacywith single dose and fractionated threefold. Althoughwhen ε = 0, all the simulations
have the same value of R0v = R0 (about 1.143), the vaccinated reproduction number becomes
less than unity when the vaccine efficacy, ε > 0.4 (for a single dose), while for threefold
fractionated vaccine, a higher vaccine efficacy, ε is required to possibly bring R0v to a
value below unity. This result is consistent with those in [47], which stated that a fractional
YF vaccination does not meet YF vaccination requirements under the International Health
Regulations (IHR) (Fig. 3).

Type Reproduction Numbers

For homogeneous population, controlling the basic reproduction number will be sufficient
for disease control. In the case of heterogeneous populations (usually vector borne diseases)
with more than one host types, control is often targeted at one host. The type-reproduction
number (T) is a threshold quantity that correctly determines the critical control effort for
a heterogeneous populations [25]. A method that is used to estimate the required effort(s)
for controlling disease by targeting a specific sub-population of hosts, under the premise
that infection may pass through other sub-populations before causing secondary infections
is described in [25,41]. If K is the next generation matrix with large domain and hosts 1, 2
and 3 represent the populations of EH , AI and IV . The type i reproduction number is given
by

Ti = eT K (I − (I − P)K )−1e, (16)
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1

4 3

2

Fig. 3 Connected di-graph associated with the matrix A22(x)

where I is an identity matrix, P is a projection matrix and e is a unit vector with all elements
equal to zero except the i th. Let

K =

⎛

⎜
⎜
⎝

0 0 k13 k14
0 0 0 0
0 0 k33 k34
k41 k42 0 0

⎞

⎟
⎟
⎠ ,

where

k13 =βHV bV (1 − cB)
[
S∗
H + (1 − ε)V ∗

H

]

N∗
H K4K5

, k14 = βHV (1 − cB)
[
S∗
H + (1 − ε)V ∗

H

]

N∗
H K5

,

K33 =ηV , k34 = φV ηV

N0K5
, k41 = βHV S∗

V (1 − cB)γH

N∗
H K2K3

, k42 = βHV S∗
V (1 − cB)

N∗
H K3

.

Notice that ki j is the expected number of cases of type i produced by one infected individual
of type j , so that from (16) the type-reproduction number for exposed humans is

T1 = k14k41 + k13k34k41
1 − k33

= β2
HV (S∗

V )2(1 − cB)2

(N∗
H )2K 2

2

+ β2
HV S

∗
V (1 − cB)2bV γVφV ηV

[
S∗
H + (1 − ε)V ∗

H

]

(N∗
H )2N0K2K3K4K 2

5 (1 − ηV )
.

Observe that R0v < 1 implies

β2
HV S

∗
V (1 − cB)2

[
S∗
H + (1 − ε)V ∗

H

]

(N∗
H )2K2K5

+ ηV < 1 (17)

Thus T1 < 1 implies R0v < 1. Similarly, it can be shown that the infected aquatic mosquito
type-reproduction number (T2) satisfies T2 < 1 and the infectious adult mosquito type-
reproduction number (T3) also satisfies T3 < 1 whenever R0v < 1. Ti , (i = 1, 2, 3) is the
expected number of cases in compartment i caused by one infected individual of type i in a
population where fractions of susceptible individuals are vaccinated, the infection might be
directly or through chains of infections passing through individuals of other types, it singles
out the required control effort when targeting the population of type i [25].
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YFModel for Optimal Control

Usually, incidences ofYF and other vector borne diseases are seasonality dependentwith their
peaks during warm and rainy seasons, therefore it is reasonable to integrate time dependent
controls in the model, the goal of which is to show the possibility of implementing time
dependent controls while minimizing implementation cost.

Let the time dependent effort in preventing human–mosquito contacts through the use of
treated bed nets be u1(t), so that the contact rate between mosquitoes and humans reduces
by a factor (1 − u1(t)) where 0 ≤ u1(t) ≤ 1. The effort in vaccinating humans is u2(t) :
0 ≤ u2(t) ≤ 1. Similarly, the effort in the application of larvicides is u3(t) : 0 ≤ u3(t) ≤ 1,
while that of spraying adulticides is u4(t) : 0 ≤ u4(t) ≤ 1. For instance, there is no
any effort in controlling mosquitoes when u3(t) = u4(t) = 0, while aquatic and mature
mosquitoes die at maximum possible rates cL and cA respectively, when u3(t) = u4(t) = 1.
Maximum control is attained by the use of bed nets and vaccination when u1(t) = 1 and
u2(t) = 1, respectively and no effort invested when u1(t) = u2(t) = 0. The autonomous
system given by (5) is extended to include the aforementioned time dependent controls. Let
�(t) = ωH (1 − u2(t)), then the non-autonomous version of the model (5) is given by

H
um

an
s

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSH
dt

= bH + �(t)VH − βHV (1 − u1(t))(1 − cB)
IV SH
NH

− cV u2(t)SH − μH SH ,

dVH

dt
= cV u2(t)SH − βHV u1(t)(1 − cB)(1 − ε)

IV VH

NH
− �(t)VH − μHVH ,

dEH

dt
= βHV (1 − u1(t))(t)(1 − cB)

IV
NH

[
SH + (1 − ε)VH

]
− γH EH − μH EH ,

d IH
dt

= γH EH − δH IH − τH IH − μH IH ,

dRH

dt
= τH IH − μH RH ,

(18)

M
os
qu
ito

es

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d AN

dt
= φV

(
1 − A

K
)[

SV + (1 − ηV )IV
]

− bV AN − μA AN − u3(t)cL AN ,

d AI

dt
= φV ηV

(
1 − A

K
)
IV − bV AI − μA AI − u3(t)cL AI ,

dSV
dt

= bV AN − βHV u1(t)(1 − cB)
IH
NH

SV − μV SV − u4(t)cASV ,

d IV
dt

= βHV u1(t)(1 − cB)
IH
NH

SV + bV AI − μV IV − u4(t)cA IV .

Following the non-autonomous system given by (18), an optimal control problem is formu-
lated with the following objective (cost) function.

J
(
u1(t), u2(t), u3(t), u4(t)

) =
∫ T

0

(
B1EH + B2 IH + B3A + B4NV + B5cV SH+

D1u
2
1 + D2u

2
2 + D3u

2
3 + D4u

2
4

)
dt .

(19)
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The interval [0, T ] represents the time through which various control measures are imple-
mented. The cost incurred due to human infection of YF (which is proportional to the number
of infected individuals) over the period of intervention is given by

∫ T

0

(
B1EH + B2 IH

)
dt,

where B1 and B2 are positive weight constants associated with exposed and infected humans,
respectively. Similarly, the cost due to the presence of mosquitoes in the community, which
is proportional to the number of aquatic and adult mosquitoes is given by

∫ T

0

(
B3A + B4NV

)
dt,

where B3 and B4 are positive weight constants. Because of the short supply of YF vaccine,
in order to optimize the available vaccines, there is need to minimize the total number of
vaccines used over the period of intervention, thus the integral

∫ T

0
B5cV (t)SHdt,

which measures the total number of vaccinated individuals during the period of intervention
included in the objective functional, with B5 being a positive weight constant. The positive
terms D1, D2, D3 and D4 are weight constants for efforts in the use of bed nets, vaccination,
larvicides and adulticides, respectively, and regularize the optimal control. D1u21, D2u22,
D3u23, and D4u24 describe the cost associated with the aforementioned prevention and control
measures. The degree of the cost functions follow from the non-linearity of controls and the
convexity of quadratic functions [43]. Similar assumption has been used in optimal control
problems in epidemiology, see for instance [7,29,35,39,43] and someof the references therein.

The aim is to minimize the number of infected humans and total mosquito population
while optimizing limited vaccines and keeping the cost of vaccination, use of treated nets
and application of pesticides low. Therefore we seek to optimize u∗

1, u
∗
2, u

∗
3 and u

∗
4 such that

J (u∗
1, u

∗
2, u

∗
3, u

∗
4) = min

u1,u2,u3,u4

{
J (u1, u2, u3, u4)|u1, u2, u3, u4 ∈ G

}
(20)

where

G =
{
(u1, u2, u3, u4)|ui : [0, T ] −→ [0, 1] is Lebesgue measurable, i = 1, 2, 3, 4

}

is the control set. The impact of each control does depends on adherence and effort, if for
example u1 = 1, production and distribution of bed nets is at maximum, but its impact also
depends on cB , likewise the remaining control functions.

Existence of Optimal Control

The existence of optimal control solution can be established using Theorem 4.1 andCorollary
4.1 of [19].

Theorem 4.1 There exist an optimal control u∗
1, u

∗
2, u

∗
3, u

∗
4 and corresponding solution S∗

H ,
V ∗
H , E

∗
H , I

∗
H , R

∗
H , A

∗
N , A

∗
I , S

∗
V and I ∗

V that minimizes J (u1, u2, u3, u4) over G.
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Proof Clearly the set of controls and state variables are non-empty and the control set G is
closed and convex. The integrand of the objective functional is convex on G. Furthermore, the
model is linear in the control variables and bounded by a linear system in the state variables,
thus, the existence of an optimal control is guaranteed [7,19]. ��

Optimality System

The necessarily conditions that optimal controls and their corresponding states must satisfy
are derived using Pontryagin’s Maximum Principle [35,38], where the problem of finding
time-dependent control variables u∗

1(t), u
∗
2(t), u

∗
3(t) and u

∗
4(t) that minimize J is equivalent

to the problem of minimizing the Hamiltonian function defined as

H(t, x,u, λ) = g(t, x,u) + λ(t) f (t, x,u)

where g(t, x,u) is the integrand of the objective functional (19) and λ(t) is the adjoint vector

such that λ(t) =
(
λSH (t), λVH (t), λEH (t), λIH (t), λRH (t), λAN (t), λAI (t), λSV (t), λIV (t)

)

satisfies
dλSH

dt
= − ∂H

∂SH
,

dλVH

dt
= − ∂H

∂VH
, . . . ,

dλIV

dt
= − ∂H

∂ IV
.

The optimality equation is given by

∂H

∂u1
= ∂H

∂u2
= ∂H

∂u3
= ∂H

∂u4
= 0,

and transversality conditions as λSH (T ) = λVH (T ) = . . . = λIV (T ) = 0. Therefore,

H =B1EH + B2 IH + B3A + B4NV + B5cV SH + D1u
2
1 + D2u

2
2 + D3u

2
3 + D4u

2
4

+ λSH

[
bH + �(t)VH − cV u2(t)SH − βHV (1 − u1(t))(1 − cB)

IV
NH

SH − μH SH
]

+ λVH

[
cV u2(t)SH − βHV (1 − u1(t))(1 − cB)(1 − ε)

IV
NH

VH − �(t)VH − μHVH

]

+ λEH

[
βHV (1 − u1(t))(1 − cB)

IV
NH

{
SH + (1 − ε)VH

}
− γH EH − μH EH

]

+ λIH

[
γH EH − δH IH − τH IH − μH IH

]
+ λRH

[
τH IH − μH RH

]

+ λAN

[
φV

(
1 − A

K
)[

SV + (1 − ηV )IV
]

− bV AN − μA AN − u3(t)cL AN

]

+ λAI

[
φV ηV

(
1 − A

K
)
IV − bV AI − μA AI − u3(t)cL AI

]

+ λSV

[
bV AN − βHV (1 − u1(t))(1 − cB)

IH
NH

SV − μV SV − u4(t)cASV
]

+ λIV

[
βHV (1 − u1(t))(1 − cB)

IH
NH

SV + bV AI − μV IV − u4(t)cA IV
]
,

(21)
where λSH , ...λIV are adjoint functions.

Theorem 4.2 Given an optimal control (u∗
1, u

∗
2, u

∗
3, u

∗
4) and the corresponding state solutions

of the non-autonomous system given by (18), there exist adjoint functions satisfying

dλSH
dt

= μHλSH + u2(t)cV
[
λSH − λVH

]+ βHV (1 − u1(t))(1 − cB )
[
λSH − λEH

] IV
NH

+ βHV
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(1 − u1(t))(1 − cB )
[
λIV − λSV

] IH SV
(NH )2

+ βHV (1 − u1(t))(1 − cB )
[
λEH − λSH

]

IV SH
(NH )2

+ βHV (1 − u1(t))(1 − cB )(1 − ε)
[
λEH − λVH

] IV VH
(NH )2

− B5cV ,

dλVH
dt

= μHλVH + βHV (1 − u1(t))(1 − cB )
[
λEH − λSH

] IV SH
N2
H

+ βHV (1 − u1(t))(1 − cB )

[
λIV − λSV

] IH SV
N2
H

+ βHV (1 − u1(t))(1 − cB )(1 − ε)
IV
NH

[
λVH − λEH

]+ βHV

(1 − u1(t))(1 − cB )(1 − ε)
[
λEH − λVH

] IV VH
N2
H

− ωH (1 − u2(t))
[
λVH − λSH

]
,

dλEH

dt
= μHλEH + γH

[
λEH − λIH

]+ βHV (1 − u1(t))(1 − cB )
[
λEH − λSH

] IV SH
N2
H

+ βHV

(1 − u1(t))(1 − cB )
[
λIV − λSV

] IH SV
N2
H

+ βHV (1 − u1(t))(1 − cB )(1 − ε)
[
λEH − λVH

]

IV VH
N2
H

− B1,

dλIH
dt

= (δH + μH )λIH + τH
[
λIH − λRH

]+ βHV (1 − u1(t))(1 − cB )
[
λEH − λSH

] IV SH
N2
H

+ βHV

(1 − u1(t))(1 − cB )
[
λSV − λIV

] SV
NH

+ βHV (1 − u1(t))(1 − cB )(1 − ε)
[
λEH − λVH

]

IV VH
N2
H

+ βHV (1 − u1(t))(1 − cB )
[
λIV − λSV

] IH SV
N2
H

− B2,

dλRH

dt
= μHλRH + βHV (1 − u1(t))(1 − cB )

[
λEH − λSH

] IV SH
N2
H

+ βHV (1 − (1 − u1(t)))(1 − cB )

[
λIV − λSV

] IH SV
N2
H

+ βHV (1 − u1(t))(1 − cB )(1 − ε)
[
λEH − λVH

] IV VH
N2
H

,

dλAN

dt
= (μA + u3cL )λAN + bV

[
λAN − λSV

]+ λAN φV (SV + IV )

K + IV φV ηV

K
[
λAI − λAN

]

−B3,

dλAI

dt
= (μA + u3cL )λAI + bV

[
λAI − λIV

]+ λAN φV (SV + IV )

K + IV φV ηV

K
[
λAI − λAN

]

−B3,
dλSV
dt

= (μV + u4cA)λSV + βHV (1 − u1(t))(1 − cB )
[
λSV − λIV

] IH
NH

− φV

(
1 − A

K
)
λAN − B4,

dλIV
dt

= (μV + u4cA)λIV + βHV (1 − u1(t))(1 − cB )(1 − ε)
[
λVH − λEH

] VH
NH

+ βHV (1 − u1(t))

(1 − cB )
[
λSH − λEH

] SH
NH

+
(
1 − A

K
)
φV ηV
[
λAN − λAI

]− φV

(
1 − A

K
)
λAN − B4,

with final time condition as λi (T ) = 0, i = 1, . . . , 9. In addition, the optimal control
u∗
j , j = 1, 2, 3, 4 are given by

u∗
1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0, if
(

βHV (1−cB )
2NH D1

)
Q0 < 1

(
βHV (1−cB )
2NH D1

)
Q0, if 0 <

βHV (1−cB )
2NH D1

Q0 < 1

1, if
(

βHV (1−cB )
2NH D1

)
Q0 > 0

(22)

123



  105 Page 18 of 34 Int. J. Appl. Comput. Math            (2020) 6:105 

where Q0 =
(
IV SH
[
λSH −λEH

]+ IV VH (1− ε)
[
λVH −λEH

]+ IH SV
[
λSV −λIV

])
, while

u∗
2 is given by

u∗
2 =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, if (cV SH+ωH VH )
2D2

[
λSH − λVH

]
< 0

(cV SH+ωH VH )
2D2

[
λSH − λVH

]
, if 0 <

(cV SH+ωH VH )
2D2

[
λSH − λVH

]
< 1

1, if (cV SH+ωH VH )
2D2

[
λSH − λVH

]
> 1,

(23)

also u∗
3 is given by

u∗
3 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0, if cV
2D3

(
λAN AN + λAI AI

)
< 0

cV
2D3

(
λAN AN + λAI AI

)
, if 0 <

cV
2D3

(
λAN AN + λAI AI

)
< 1

1, if cV
2D3

(
λAN AN + λAI AI

)
> 1,

(24)

and u∗
4 is given by

u∗
4 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0, if cL
2D4

[
λSV SV + λIV IV

]
< 0

cL
2D4

[
λSV SV + λIV IV

]
, if 0 < cL

2D4

[
λSV SV + λIV IV

]
< 1

1, if cL
2D4

[
λSV SV + λIV IV

]
> 1.

(25)

Proof The non-autonomous system given by (18) together with the objective functional given
by (19) and (20) are converted into a problem of minimizing the Hamiltonian, H , defined
by (21). Therefore applying Pontryagin’s Maximum Principle [35,38], the proof follows. ��

Sensitivity Analysis and Numerical Simulation

In this section, global sensitivity analysis using partial rank correlation coefficient (PRCC) for
the basic offspring number and vaccinated reproduction number are conducted. Numerical
simulations for the optimal control model given by (18) is also presented.

Sensitivity Analysis

Local sensitivity analysis is used to provide direct information on the effect of small param-
eter perturbation, it evaluates the relative change in a function due to change in a single
parameter, where other parameters are kept at constant values. It does not indicate the effect
of simultaneous large perturbations in all model parameters. Thus, the need for a more robust
form of sensitivity analysis for a multidimensional parameter space. The PRCC is a robust
sensitivity measure for a non-linear but monotonic relationships between inputs and output,
with little correlation between the inputs [31].

The PRCC of the basic offspring number (N0) and that of the vaccinated reproduction
number (R0v) are computed with parameter ranges as presented in Table 1. The PRCC values
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Fig. 4 Partial rank correlation coefficient plots of the various parameters of the model (5) using N0 as the
output function

of the parameters of the YF model, using N0 as the response function are depicted in Fig. 4.
The Fig. show that the top parameters thatmost influences the values of the threshold quantity,
N0, are mosquito death rates due to adulticides and larvicides (cA and cL , respectively) and
the vertical transmission rate (ηV ). It can be be seen from the figure that cA and cL are
negatively correlated and φV is positively correlated to N0. On the other hand, R0v is most
positively correlated to ηV , which is followed by βHV then K, and it is most negatively
correlated to cA, cB and then bH as presented in Fig. 5.

Numerical Simulations

Using the forward–backward sweep method as described in [30], solution of the optimal
control problem can be obtained numerically. An initial guess for the optimal control is
used to solve the state system in forward time, after which the guessed optimal control and
the obtained solution to the state system are used as input to the adjoint system, which is
solved numerically in backward scheme using the transversality condition. The controls are
then updated using convex combination of the previous controls and the value from the
characterizations.

The following numerical values for the model parameters are used as in Table 1: bH = 50;
βHV = 0.375; cB = 0.5; ωH = 0.01; μH = 0.0000421; cV = 0.3; ε = 0.95; γH = 0.3;
δH = 0.0001; τH = 0.143; bV = 0.1; φV = 50; κ = 800,000; ηV = 0.01; μA = 0.22;
μV = 0.29; cA = 0.2; and cL = 0.2. For the numerical values of the weight constants in the
objective functional J , it is important to note that the choices are made only for simulation
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Fig. 5 Partial rank correlation coefficient plots of the various parameters of the model (5) using R0v as the
output function
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Fig. 6 Simulations of the model (18) showing control profiles U1 and U2 for the case when B1 = 0.1;
B2 = 0.1; B3 = 0.001; B4 = 0.005; B5 = 0.1; D1 = 500; D2 = 500; D3 = 500; D4 = 500

purposes, different choices were made and simulated. Simulations for 200 days were carried
out. Using initial populations of SH (0) = 2000; VH (0) = 500; EH (0) = 500; IH (0) = 200;
RH (0) = 50; AN (0) = 25,000; AI (0) = 200; SV (0) = 1000 and IV (0) = 500, impact
of control and that of using different weight constants for the objective function is assessed.
In order to regularize the objective function, smaller values were chosen for the coefficients
of the populations while larger values for the control functions. Two different scenarios
for weight constants are considered, in both instances, minimizing the number of infected
humans is given more priority over minimizing adult mosquitoes, then aquatic mosquitoes
i.e B2 ≥ B1 > B4 > B3 but with the same cost (D1 = D2 = D3 = D4), thus we have

123



Int. J. Appl. Comput. Math            (2020) 6:105 Page 21 of 34   105 

0 20 40 60 80 100 120 140 160 180 200
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Time (days)

u 3

0 20 40 60 80 100 120 140 160 180 200
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

Time (days)

u 4

Fig. 7 Simulations of the model (18) showing control profiles U3 and U4 for the case when B1 = 0.1;
B2 = 0.1; B3 = 0.001; B4 = 0.005; B5 = 0.1; D1 = 500; D2 = 500; D3 = 500; D4 = 500
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Fig. 8 Simulations of the model (18) showing exposed humans and infected humans for the case when
B1 = 0.1; B2 = 0.1; B3 = 0.001; B4 = 0.005; B5 = 0.1; D1 = 500; D2 = 500; D3 = 500; D4 = 500
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Fig. 9 Simulations of the model (18) showing recovered humans and populations of infected mosquitoes for
the case when B1 = 0.1; B2 = 0.1; B3 = 0.001; B4 = 0.005; B5 = 0.1; D1 = 500; D2 = 500; D3 = 500;
D4 = 500
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Fig. 10 Simulations of the model (18) showing control profiles U1 and U2 for the case when B1 = 0.01;
B2 = 0.01; B3 = 0.0001; B4 = 0.0005; B5 = 0.1; D1 = 50; D2 = 50; D3 = 50; D4 = 50
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Fig. 11 Simulations of the model (18) showing control profiles U3 and U4 for the case when B1 = 0.01;
B2 = 0.01; B3 = 0.0001; B4 = 0.0005; B5 = 0.1; D1 = 50; D2 = 50; D3 = 50; D4 = 50

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

300

350

400

450

500

Time (days)

Ex
po

se
d 

hu
m

an
s 

( E
H )

No control
With controlA

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

300

350

400

450

Time (days)

In
fe

ct
io

us
 h

um
an

s 
( I

H )

No control
With controlB

Fig. 12 Simulations of the model (18) showing exposed humans and infected humans for the case when
B1 = 0.01; B2 = 0.01; B3 = 0.0001; B4 = 0.0005; B5 = 0.1; D1 = 50; D2 = 50; D3 = 50; D4 = 50
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Fig. 13 Simulations of the model (18) showing recovered humans and populations of infected mosquitoes for
the case when B1 = 0.01; B2 = 0.01; B3 = 0.0001; B4 = 0.0005; B5 = 0.1; D1 = 50; D2 = 50; D3 = 50;
D4 = 50

1. Case 1: Simulations of the optimal controlmodelwhen B1 = 0.1; B2 = 0.1; B3 = 0.001;
B4 = 0.005; B5 = 0.1; D1 = 500; D2 = 500; D3 = 500; D4 = 500 is carried out.
Control profiles of the model are presented in Figs. 6 and 7. Simulation of the model for
the populations of exposed, infected and recovered humans and infected mosquitoes are
depicted in Figs. 8 and 9. Figures 8a, b present simulations of the model for populations
of exposed and infected humans with and without control, respectively. The figures
show that the populations of exposed and infected humans reaches the DFE at a faster
rates with control than without control. Figure 9a shows the population of recovered
humans where the population with control is larger than those without control, this may
be attributed to the fact that recovery confers permanent immunity. Simulation of the
model for the population of infectious mosquitoes (both aquatic and non-aquatic) is
presented in Figure 9b.

2. Case 2: In this case, the weight constants are taken to be B1 = 0.01; B2 = 0.01;
B3 = 0.0001; B4 = 0.0005; B5 = 0.1; D1 = 50; D2 = 50; D3 = 50; D4 = 50.
Similarly, control profiles of the model are depicted in Figs. 10 and 11. The simulation
of the model for population of exposed humans shows similar dynamics as that of Case
1 as presented in Fig. 12a. Simulation of model for infected humans, where population
with control shoot up before falling to the DFE is presented in Fig. 12b. The population
of recovered humans shows wider margin between cases with and without control in
this instance compared to Case 1 as depicted in Fig. 13a, also, population of infected
mosquitoes sporadically bumps up before reaching DFE as shown in Fig. 13b. Notice
that, less effort and less costs are expended (in this case) in comparison to Case 1.

Conclusion

A deterministic model for the transmission dynamics of yellow fever in a population is
constructed and rigorously analysed. The model with standard incidence formulation incor-
porates the use of treated bed nets and vaccination as forms of prevention in humans, while
the use of larvicides and adulticides are used in controlling mosquito population. Some of
the key results obtained include:
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• The mosquito-only model has a threshold quantity called the basic offspring number
(N0) which described the extinction or persistence of mosquito population.

• The model has two disease-free equilibriums, the mosquito-extinction equilibrium (E2)
which is globally-asymptotically stable (GAS) when the basic offspring number (N0)

is less than unity and the non-mosquito-extinction equilibrium, (E3), which is locally-
asymptotically stable when R0v ≤ 1.

• The YF model undergoes the phenomenon of backward bifurcation (a dynamic phe-
nomenon characterized by the co-existence of two stable attractors when the associated
reproduction number of the model is less than unity). A condition for the emergence of
this phenomenon have been identified.

• The DFE, E3, of the model is shown to be GAS in the positively-invariant region �,

provided RHV RV H
N0N∗

H (δH+μH )

(N0−1)bH
+ RVV N0 < 1.

• For standard dosing of YF vaccine, a high vaccine efficacy (at-least 40%) would be
required to reduce R0v to value below unity.

• Fractional dosing of YF vaccine does not meet YF vaccination requirements of yellow
fever elimination. This result is consistent with that of International Health Regulations
(IHR). However, the vaccine will always have a positive impact in a community.

• Using Pontryagin’s maximum principle and modified forward–backward sweep tech-
nique, the necessary conditions for existence of solutions to the optimal control problem
is determined.

• Numerical simulations of the non-autonomous model (with optimal control) using dif-
ferent weight constants show that slight increase in control effort show wide difference
in the impact of control.

• Using sensitivity analysis, it is shown that the vaccinated reproduction is most sensitive
and positively correlated to the rate of vertical transmission, thus making it the most
important parameter to target in controlling the disease.
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Appendix A: Proof of Theorem 2.2

Proof Let f : �∗ −→ R
4 be continuous, where �∗ ⊆ R

n . Consider a system given by
ẋ = f (x), we use the following theorem in [2] in the proof of Theorem 2.2 ��

Theorem 5.1 [2] Let a, b ∈ �∗ be such that a < b, [a, b] ⊆ �∗ and f (b) ≤ 0 ≤ f (a).
Then ẋ = f (x) defines a (positive) dynamical system on [a, b]. Moreover, if [a, b] contains
a unique equilibrium q then q is globally asymptotically stable on [a, b].

By rewriting the mosquito component of (5) in the form of ẋ = f (x) and considering
the interval [a, b] = [0, b] ∈ R

2+, where b = (q,
(bV +μA+cL )q

φV
) with q > 0. Clearly

f (a) = f (0) = 0 while

f (b) =
⎛

⎜
⎝

− q2

K
[
bV + μA + cL

]

bV q[1 − 1
N0

]

⎞

⎟
⎠ < 0 provided N0 ≤ 1. (A.1)
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Therefore f (b) ≤ 0 ≤ f (0) provided N0 ≤ 1, thus by Theorem (5.1), the mosquito
component of the systemgiven by (5) defines a positive dynamical systemon [0, b],moreover,
the equilibrium (E0) is GAS on [0, b]. Because q is arbitrary, b can be chosen such that its
bigger than any x ∈ R

2+. Hence the result holds on R2+. The second part of the proof follows
by linearization. ��

Appendix B: Computation of mosquito extinction basic reproduction
number

For E2, the matrix of new infection terms and that of transition terms are respectively given
by

F =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 0 0
βHV (1−cB )

[
S∗
H+V ∗

H (1−ε)
]

N∗
H

0 0 0 0
0 0 0 φV ηV

N0

0
βHV (1−cB )S∗

V
N∗
H

0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

V =

⎛

⎜
⎜
⎝

K2 0 0 0
−γ K3 0 0
0 0 K4 0
0 0 −bV K5

⎞

⎟
⎟
⎠ .

(B.1)

The next generation matrix with large domain (KL = FV−1) is

KL =

⎛

⎜
⎜
⎜
⎜
⎝

0 0
βHV bV (1−cB )

[
S∗
H+V ∗

H (1−ε)
]

N∗
H K4K5

βHV (1−cB )
[
S∗
H+V ∗

H (1−ε)
]

N∗
H K5

0 0 0 0
0 0 φV bV ηV

N0K4K5

φV ηV
N0K5

0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠

, (B.2)

Thus using the approach of [14] with an auxiliary matrix E , the NGM (K ) is

K = ET KL E = ET FV−1E =
⎛

⎝0
βHV bV (1−cB )

[
S∗
H+V ∗

H (1−ε)
]

N∗
H K4K5

0 φV ηV bV
N0K4K5

⎞

⎠ , (B.3)

where

E =

⎛

⎜
⎜
⎝

1 0
0 0
0 1
0 0

⎞

⎟
⎟
⎠ ,

Therefore the mosquito extinction basic reproduction number, which is the dominant eigen-
value of K is Rvv = φV ηV bV

N0K4K5
= ηV .
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Appendix C: Computation of vaccinated reproduction number

For the case of E3, applying similar method to that of Appendix B, the NGM with large
domain KL is given by

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 0
βHV bV (1−cB )

[
S∗
H+V ∗

H (1−ε)
]

N∗
H K4K5

βHV (1−cB )
[
S∗
H+V ∗

H (1−ε)
]

N∗
H K5

0 0 0 0
0 0 φV ηV bV

N0K4K5

φV ηV
N0K5

βHV S∗
V (1−cB )γH

N∗
H K2K3

βHV S∗
V (1−cB )

N∗
H K3

0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

(B.1)
Thus using the approach of [14] with an auxiliary matrix E , the NGM (K ) is

K =

⎛

⎜
⎜
⎜
⎝

0
βHV bV (1−cB )

[
S∗
H+V ∗

H (1−ε)
]

N∗
H K4K5

βHV (1−cB )
[
S∗
H+V ∗

H (1−ε)
]

N∗
H K5

0 φV ηV bV
N0K4K5

φV ηV
N0K5

βHV S∗
V (1−cB )γH

N∗
H K2K3

0 0

⎞

⎟
⎟
⎟
⎠

, (B.2)

where

E =

⎛

⎜
⎜
⎝

1 0 0
0 0 0
0 1 0
0 0 1

⎞

⎟
⎟
⎠ .

Thus, the vaccinated reproduction number which is the dominant eigenvalue of K is given
by

R0v = ηV

2
+
√
(ηV

2

)2 + β2
HV S

∗
V (1 − cB)2γH

N∗
H K2K3K5

(

1 − V ∗
H ε

N∗
H

)

(B.3)

Appendix D: Proof of Theorem 5.3 Backward bifurcation

Proof We apply a method which is based on the Centre Manifold Theory [11,46] to prove
the existence of backward bifurcation for the model (5). Let,

(
SH , EH , IH , RH , AN , AI , SV , IV

) = (x1, x2, x3, x4, x5, x6, x7, x8
)
,

so that the total human and mosquito populations are:

NH = x1 + x2 + x3 + x4, and NV = x5 + x6 + x7 + x8.
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The transformed model (5) is represented by,

dx1
dt

= bH − σ x1 − ( βHV (1 − u)x9
x1 + x2 + x3 + x4 + x5

)
x1 − μH x1,

dx2
dt

= σ x1 − ( βHV (1 − u)(1 − ε)x9
x1 + x2 + x3 + x4 + x5

)
x2 − μH x2,

dx3
dt

= βHV (1 − u)x9
( x1 + x2(1 − ε)

x1 + x2 + x3 + x4 + x5

)− γH x3 − μH x3,

dx4
dt

= γH x3 − δH x4 − τH x4 − μH x4,

dx5
dt

= τH x4 − μH x5,

dx6
dt

= φV

(
1 − x6 + x7

K
)(

x8 + (1 − ηV )x9
)

− bV x6 − μAx6 − cL x6,

dx7
dt

= φV

(
1 − x6 + x7

K
)
ηV x9 − bV x7 − μAx7 − cL x7,

dx8
dt

= bV x6 − βHV x4x8
x1 + x2 + x3 + x4 + x5

− μV x8 − cAx8,

dx9
dt

= βHV x4x8
x1 + x2 + x3 + x4 + x5

+ bV x7 − μV x9 − cAx9.

(D.1)

The forces of infections in human and mosquito populations are respectively given by,

βHV (1 − u)x9
( x1 + x2(1 − ε)

x1 + x2 + x3 + x4 + x5

)
, and,

βHV x4x8
x1 + x2 + x3 + x4 + x5

+ bV x7.

Thus, the Jacobian matrix (J ∗) at the DFE with βHV = β∗
HV is,

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−K1 0 0 0 0 0 0 0 −Z19

σ −μH 0 0 0 0 0 0 −Z29

0 0 −K2 0 0 0 0 0 Z39

0 0 γH −K3 0 0 0 0 0
0 0 0 τH −μH 0 0 0 0
0 0 0 0 0 −K4N0 −Z67

φV
N0

φV (1−ηV )
N0

0 0 0 0 0 0 −K4 0 φV ηV
N0

0 0 0 −β∗
HV S

∗
V (1−u)

S∗
H+V ∗

H
0 bV 0 −K5 0

0 0 0
β∗
HV S

∗
V (1−u)

S∗
H+V ∗

H
0 0 bV 0 −K5

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

where

Z19 = β∗
HV S

∗
H (1−u)

S∗
H+V ∗

H
, Z29 = β∗

HV V
∗
H (1−ε)(1−u)

S∗
H+V ∗

H
, Z39 = β∗

HV (1−u)
[
S∗
H+V ∗

H (1−ε)
]

S∗
H+V ∗

H
, Z67 = K4

(
1 −

1
N0

)
.

At R0v = 1 we have,

β2
HV S

∗
V (1 − u)2γH

[
S∗
H + V ∗

H (1 − ε)
]

(N∗
H )2K2K3K5

+ ηV = 1, (D.2)
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under which we obtained the left eigenvector (v) and the right eigenvector (w) corresponding
to the zero eigenvalue given by

v1 = 0, v2 = 0, v3 = Z19γH

K2K3
v9, v4 = β∗

HV S
∗
V (1 − u)

N∗
H K3

v9, v5 = 0, v6 = 0,

v7 = bV
K4

v9, v8 = 0, v9 = K2K3K4

K5
,

and

w1 = − Z19

K1
w9 w2 = −

( Z19σ

K1μH
+ Z29

μH

)
w9, w3 =

(
Z19 + Z29

)

K2
w9,

w4 =
(
Z19 + Z29

)
γH

K2K3
w9 w5 =

(
Z19 + Z29

)
γH τH

K2K3μH
w9,

w6 = −
[
(
Z19 + Z29

)
β∗
HV S

∗
V γH (1 − u)

N∗
H K2K3K5

+ Z67
ηV

K4
− (1 − ηV )

] φVw9

(N0)2Z67
, w7 = φV ηVw9

N0K4
,

w8 = −
[
(
Z19 + Z29

)
β∗
HV S

∗
V γH (1 − u)N0

N∗
H K2K3K5

+ Z67
ηV

K4
− (1 − ηV )

] K4w9

N0Z67
,

w9 =
(
Z19 + Z29

)
β∗
HV S

∗
V γH (1 − u)

N∗
H K2K3K5

K4(K2 + K3) + K2K3(K4 + ηV ).

Clearly vI ≥ 0, w1 < 0, w2 < 0 while w6 and w8 can be positive or negative, such choice
is justified by Remark 1 of [11] which states; ��
Remark 5.2 The requirement that w is non-negative in the theorem is not necessary. When
some components in w are negative, we still can apply this theorem, but one has to compare
w with the actual equilibrium because the general parametrization of the Centre Manifold
before the coordinate change is,

Wc =
{

x0 + c(t)w + h(c, φV ) : v.h(c, φV ) = 0, |c| ≤ c0, c(0) = 0

}

,

provided that x0 is a non-negative equilibrium of interest (usually x0 is the disease-free
equilibrium). Hence, x0− 2bφV

a > 0 requires thatw j > 0 whenever x0( j) = 0. If x0( j) > 0,
then w( j) need not be positive [11].

It can be verified that vw = 1, thus all the necessarily conditions for the use of the Center
Manifold theory are satisfied, and

a =
n∑

k,i, j=1

vkwIw j
∂2 fk

∂xI ∂x j
(0, 0) = − 2w2

9v9

(N∗
H )2K

{

G4

{ηV (N0 − 1)2 + N0(1 − ηV )

N0

}
+

G0(N∗
H )2K

S∗
V (N0 − 1)

[
G0N0 + ηV (1 − 1

N0
)
]

+ G1

(
K3μH + γH {μH + τH }

)(
1 + K2K3

μH

)[
1 − V ∗

H

N∗
H

ε
]

+ G2γH ε
{
V ∗
H + S∗

HG3

}
− G0G4 − G1

[
S∗
H + G3

] (K2K3μH )2

N∗
H K1

− G0(N∗
H )2K

S∗
V (N0 − 1)

(1 − ηV )

}

,

(D.3)
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while

b =
n∑

k,i=1

vkwI
∂2 fk

∂xI ∂φV
(0, 0) = 2βHV S∗

V (1 − u)2γH

N∗
H K2K3

[
1 − V ∗

H

N∗
H

ε
]
w9v9 > 0 (D.4)

where

G0 =
[
βHV (1 − u)

]2
S∗
V γH

N∗
H K2K3K5

[
1 − V ∗

H

N∗
H

ε
]
, G1 =

[
βHV (1 − u)

]3
S∗
VKγH

(K2K3)2μH

[
1 − V ∗

H

N∗
H

ε
]

G2 =
[
βHV (1 − u)

]3
S∗
H S∗

VK
(N∗

H )2K1K2K3
, G3 =

[
S∗
Hσ + V ∗

H K1(1 − ε)
]

μH
, G4 = (N∗

H )2φ2
V bV ηV

K 2
4 N0(N0 − 1)

.

��
Theorem 5.3 The yellow fever model (5) undergoes backward bifurcation at R0v = 1 when-
ever the bifurcation coefficient a, given by (D.3) is positive

Since the bifurcation coefficient b is positive, the direction of the bifurcation depends on the
sign of a, which can be positive or negative, and a > 0 means the model (5) may undergoes
backward bifurcation at R0V = 1 [11].

Appendix E: Global stability of the DFE (E3)

Proof Conditions for global asymptotic stability of theDFE (E3) can be found using amethod
described in [27]. Similar approach was employed in [15,16,28]. Using the property of the
DFE, system (5) can be rewritten in a pseudo-triangular form as follows,

dSH
dt

= bH − cV SH − βHV (1 − cB)
IV
NH

SH − μH SH ,

= bH − cV SH − βHV (1 − cB)
IV
NH

SH − μH SH − bH + cV S
∗
H + μH S∗

H ,

= −K1(SH − S∗
H ) − βHV (1 − cB)

IV
NH

SH .

(E.1)

The equation of vaccinated humans is rewritten as

dVH

dt
= cV SH − βHV (1 − cB)(1 − ε)

IV
NH

VH − μHVH ,

= cV SH − βHV (1 − cB)(1 − ε)
IV
NH

VH − μHVH − cV S
∗
H + μHV

∗
H ,

= −μH (VH − V ∗
H ) + cV (SH − S∗

H ) − βHV (1 − cB)(1 − ε)
IV
NH

VH .

(E.2)

Similarly, the equation of non-infectious aquatic mosquitoes can be rewritten as

d AN

dt
=φV

(
1 − A

K
)
SV + φV

(
1 − A

K
)
(1 − ηV )IV − bV AN − μA AN − cL AN ,

= − (AN − A∗
N )
(
K4 + φV

SV
K
)

+ φV

N0
(SV − S∗

V ) + φV (1 − ηV )
(
1 − A

K
)
IV

− φV
SV
K AI ,

(E.3)
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and
dSV
dt

= bV AN − βHV (1 − cB)
IH
NH

SV − μV SV − cASV ,

= −K5(SV − S∗
V ) + bV (AN − A∗

N ) − βHV (1 − cB)
IH
NH

SV .

(E.4)

Following the above simplification, the system given by (5) can therefore be re-written in a
pseudo-triangular form as

{
ẋ1 = A11(x)

(
x1 − x∗

1

)+ A12(x)x2
ẋ2 = A22(x)x2

(E.5)

where x1 = (SH , VH , RH , AN , SV )T represents the naive (uninfected) component of
the model (5), x2 = (EH , IH , AI , IV )T represents the infectious part of (5), x∗

1 =
(S∗

H , V ∗
H , R∗

H , A∗
N , S∗

V )T is the DFE and

A11(x) =

⎛

⎜
⎜
⎜
⎜
⎝

−K1 ωH 0 0 0
cV −μH 0 0 0
0 0 −μH 0 0
0 0 0 −(K4 + φV SV

K )
φV
N0

0 0 0 bV −K5

⎞

⎟
⎟
⎟
⎟
⎠

,

A12(x) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 −βHV (1 − cB) SH
NH

0 0 0 −βHV (1 − cB)(1 − ε) SH
NH

0 τH 0 0
0 0 −φV SV

K φV (1 − ηV )
(
1 − A

K
)

0 −βHV (1 − cB)
SV
NH

0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

A22(x) =

⎛

⎜
⎜
⎜
⎝

−K2 0 0
βHV (1−cB )

[
SH+(1−ε)VH

]

NH

γH −K3 0 0
0 0 −K4 φV ηV

(
1 − A

K
)

0 βHV (1 − cB)
SV
NH

bV −K5

⎞

⎟
⎟
⎟
⎠

.

(E.6)

��
Theorem 5.4 Consider (5). Let � ⊂ R

n1+n2+ be a positively-invariant set. If

1. The system (5) is defined on the positively invariant set � ⊂ R
n1+n2+ .

2. The sub-system ẋ = A11(x)(x1 −x∗
1) is globally asymptotically stable at the equilibrium

x∗
1.

3. For any x ∈ �, the matrix A22(x) is Metzler and irreducible.
4. There exists an upper bound matrix Ā22 for the set M = {A22(x)/x ∈ �}, with the

property that either Ā22 /∈ M or if Ā22 ∈ M(i.e., Ā22 = max�M), then for x∗ ∈ �

such that Ā22 = A22(x∗), then x∗ ∈ R
7 ×{0} (the DFE sub-manifold contains the points

where the maximum is attained).
5. The stability modulus of Ā22 satisfies α( Ā22) ≤ 0.

Then, the associated DFE is GAS in � [15,27].

123



Int. J. Appl. Comput. Math            (2020) 6:105 Page 31 of 34   105 

Recall that the model given by (5) is defined on a positively invariant domain given by �

in (7). Also straightforward computation shows that the eigenvalues of A11(x) are real and
negative. Therefore conditions 1 and 2 of (5.4) are satisfied, for condition 3 of (5.4), the
following definition is used.

Definition 5.5 A square matrix A is said to be reducible if it has the form

A =
(
A1 A2

0 A3

)

(D.7)

where A1 and A3 are square matrices of order at least 1 or if A can be transformed into
the form (D.7) by simultaneous permutations of rows and columns [18]. It is irreducible
otherwise. Alternatively, A square matrix is irreducible if and only if its associated digraph
is strongly connected.

Fig. 3 is the associated digraph of thematrix A22(x), and it is clear that it is strongly connected.
Thus condition 3 is satisfied. Furthermore, since SV ≤ KbV

μV +cA
= S∗

V
N0

N0−1 in �, A ≤ K,

SH + (1 − ε)VH ≤ NH , and L∗
H = bH

δH+μH
≤ NH ≤ bH

μH
= N∗

H then the matrix

Ā22(x) =

⎛

⎜
⎜
⎜
⎝

−K2 0 0 βHV (1 − cB)

γH −K3 0 0
0 0 −K4 φV ηV

0
βHV (1−cB )S∗

V N0

L∗
H (N0−1) bV −K5

⎞

⎟
⎟
⎟
⎠

, (D.8)

is an upper bound of A22(x). For condition 5 of Theorem (5.4), the following result of [27]
is applied.

Lemma 5.6 Let M be a Metzler matrix which is block decomposed

M =
(
A B

C D

)

(D.9)

whereA andD are squarematrices. ThenM isMetzler stable if and only ifA andD−CA
−1

B

are Metzler stable.

In the case of Ā22(x) defined above, we have

A =
(−K2 0

γH −K3

)

, B =
(
0 βHV (1 − cB)

0 0

)

, C =
(
0 0

0
βHV (1−cB )S∗

V N0

L∗
H (N0−1)

)

,

D =
(−K4 φV ηV

bV −K5

)

, D − CA
−1

B =
(−K4 φV ηV

bV −K5
[
1 − β2

HV (1−cB )2S∗
V N0γH

L∗
H K2K3K5(N0−1)

]

)

.

(D.10)

Therefore, D − CA
−1

B is Metzler matrix if

β2
HV (1 − cB)2S∗

V N0N∗
HγH

L∗
H K2K3K5(N0 − 1)N∗

H
= RHV RV H

N0N∗
H

L∗
H (N0 − 1)

< 1 (D.11)

and it is stable if

K4K5

(
1 − RHV RV H

N0N∗
H

L∗
H (N0 − 1)

− RVV N0

)
> 0

which implies RHV RV H
N0N∗

H

L∗
H (N0 − 1)

+ RVV N0 ≤ 1.

(D.12)
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It should be noted that, condition (D.12) is a generalization of condition (D.11), which is
also equivalent to

RHV RV H <
L∗
H

N∗
H

(
1 − 1

N0

)
< 1, and RVV <

1

N0
< 1,

Hence

R0v <
1

2N0
+
√
(

1

2N0

)2

+ L∗
H

N∗
H

(
1 − 1

N0

)(
1 − V ∗ε

N∗
H

)
< 1.

Thus, satisfying condition (D.12) is sufficient for the GAS of the DFE. ��
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