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Abstract 

Liver fibrosis is the common pathway from various chronic liver diseases and its progression leads to cirrhosis which carries a signif-
icant risk for the development of portal hypertension-related complications and hepatocellular carcinoma. It is crucial to identify 
and halt the worsening of liver fibrosis given its important prognostic implication. Liver biopsy is the gold standard for assessing the 
degree of liver fibrosis but is limited due to its invasiveness and impracticality for serial monitoring. Many noninvasive tests have 
been developed over the years trying to assess liver fibrosis in a practical and accurate way. The tests are mainly laboratory- or 
imaging-based, or in combination. Laboratory-based tests can be derived from simply routine blood tests to patented laboratory 
parameters. Imaging modalities include ultrasound and magnetic resonance elastography, in which vibration-controlled transient 
elastography is the most widely validated and adopted whereas magnetic resonance elastography has been proven the most accu-
rate liver fibrosis assessment tool. Nonetheless, noninvasive tests do not always apply to all liver diseases, nor does a common cut- 
off value of a test mean the same degree of liver fibrosis in different scenarios. In this review, we discuss the diagnostic and prognos-
tic performance, as well as the confounders and limitations, of different noninvasive tests on liver fibrosis assessment in various 
liver diseases.
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Introduction
Liver fibrosis is the common pathway from different chronic liver 
diseases to compensated advanced chronic liver disease (cACLD), 
decompensated cirrhosis and end-stage liver disease. The term 
cACLD is relatively new and was introduced at Baveno VI consen-
sus guidelines in 2015 to denominate patients with chronic liver 
disease at risk of developing clinically significant portal hyperten-
sion based on liver stiffness measurement (LSM), one of the most 
well-recognised noninvasive assessments for liver fibrosis. Liver fi-
brosis is the formation of scar tissue in response to 
parenchymal injury secondary to chronic liver disease, e.g. chronic 
hepatitis B (CHB) and chronic hepatitis C (CHC), metabolic 
dysfunction-associated steatotic liver disease (MASLD) or meta-
bolic dysfunction-associated fatty liver disease (MAFLD) 
(previously called non-alcoholic fatty liver disease [NAFLD]) or 
alcohol-related liver disease (ARLD). The continuous and progres-
sive replacement of hepatocytes by extracellular matrix and fi-
brous tissue leads to cirrhosis, which is a strong risk factor for 
hepatocellular carcinoma (HCC). Liver fibrosis also serves as an im-
portant treatment indication in various chronic liver diseases. 
International management guidelines mentioned that the pres-
ence of significant fibrosis is a key indication for antiviral treat-
ment of CHB, regardless of serum alanine aminotransferase (ALT) 

level [1–3]. There is now solid evidence supporting that liver fibrosis 
is potentially reversible. Therefore, it is important to diagnose and 
assess the severity of liver fibrosis in order to provide appropriate 
management for the prevention of further liver damage.

Liver biopsy has been the gold standard in assessing liver fi-
brosis in the last few decades and remains a non-disposable tool 
in many clinical trials. Nonetheless, it is impractical to perform 
liver biopsy on a large number of patients or to do it serially. 
Hence, various noninvasive assessments have been developed 
and adopted in some international management guidelines. 
While liver biopsy examination still has an important role in the 
diagnostic process, noninvasive assessments including vibration- 
controlled transient elastography (VCTE), magnetic resonance 
elastography (MRE), and serum biomarkers have high accuracy 
to diagnose advanced fibrosis and cirrhosis. This article focuses 
on the up-to-date noninvasive approaches for the diagnosis and 
assessment of liver fibrosis in 2024, with a special focus on the 
unique features of various chronic liver diseases.

Noninvasive testing for liver fibrosis
Noninvasive assessments of liver fibrosis are currently an inte-
gral part of the standard of care for patients with suspected or 
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confirmed liver diseases. Less than two decades ago, many of 
these noninvasive assessments just became available; they have 
been vigorously tested and validated in different liver diseases 
and diverse patient cohorts since then. This field has been one of 
the most rapidly advancing fields in hepatology in the last two 
decades. As the novel therapeutics for chronic viral hepatitis fo-
cus on viral suppression and clearance, liver fibrosis assessment 
is now rarely included as one of the key study endpoints [4]. More 
often, the improvement in the values of these noninvasive 
assessments of liver fibrosis is associated with better prognosis 
by reducing the risk of cirrhosis and HCC [5].

In contrast, improvement in liver fibrosis with no worsening 
of metabolic dysfunction-associated steatohepatitis (MASH; pre-
viously known as non-alcoholic steatohepatitis [NASH]), on top 
of the resolution of MASH alone, is another accepted histologic 
endpoint for conditional approval of MASH therapeutics [6]. 
Looking forward, with the florid novel MASH therapeutics under 
clinical development of different phases at present, there is an 
urgent need to employ noninvasive tests to identify patients 
needing treatment and monitor treatment response. Data on the 
performance of noninvasive tests in the current phase 3 clinical 
trials will be pivotal in shaping clinical care in the years to come.

As of date, various laboratory- and/or imaging-based noninva-
sive tests (NITs) have been validated with different diagnostic 
performance and clinical utility. Table 1 summarises the avail-
able NITs for liver fibrosis.

Simple fibrosis scores
APRI
Aspartate aminotransferase (AST) to platelet ratio index (APRI) is 
calculated by [AST (upper limit of normal (ULN)) × 100]/platelet 
(109/L). It was initially developed in CHC patients with an area 
under the receiver operating characteristic curve (AUROC) of 0.92 
to predict cirrhosis [7]. It performed better with higher AUROC 
and applied lower cut-off values to predict significant fibrosis or 
cirrhosis in patients aged ≥ 30 years than in those aged < 30 years 
[8]. In a cohort of patients with MASLD, APRI achieved an AUROC 
of 0.75 for identifying advanced fibrosis with negative predictive 
value (NPV) and positive predictive value (PPV) of 76.2% and 
61.4%, respectively [9]. APRI demonstrated the least prognostic 
accuracy compared with Fibrosis-4 (FIB-4), Hepascore, 
FibroMeter and LSM. Conditions that affect its components, such 
as haematological disorders (affecting platelet count), heavy al-
cohol intake and medications (affecting serum AST level), can in-
fluence the APRI score independent of liver fibrosis.

FIB-4 index
The fibrosis-4 (FIB-4) index is calculated by [age (years) × AST 
(U/L)]/[platelet (109/L) × ALT (U/L)1/2]. It was first developed in 
human immunodeficiency virus (HIV)/hepatitis C virus (HCV)– 
coinfected patients with AUROC of 0.765 to identify advanced fi-
brosis. It could rule out advanced fibrosis with a high NPV of 90% 
and sensitivity of 70% by a cut-off value of 1.45. In the validation 
group, 71% of individuals could avoid undergoing a liver biopsy 
[10]. For younger MASLD patients aged ≤35 years and those aged 
≥65 years, the diagnostic performance of FIB-4 for advanced fi-
brosis was suboptimal, characterised by low AUROCs and a sig-
nificant false positive rate due to its low specificity [11]. One 
cross-sectional study compared the diagnostic accuracy of NITs 
in patients with MASLD and showed that FIB-4 achieved a rela-
tively high NPV of 81.7% to exclude advanced fibrosis in patients 
with MASLD but a suboptimal PPV of 58.6%. FIB-4 showed com-
parable prognostic accuracy for clinical outcomes with LSM and 
Hepascore by the Harrell C-index [9]. Similar to APRI, potential 

confounding factors include haematological disorders, excessive 
alcohol consumption and specific medications, as they can affect 
the components of FIB-4.

Forns index
Forns index was developed in patients with CHC and is calcu-
lated by 7.811 − 3.131 × ln [platelet (109/L)] þ 0.781 × ln [gamma- 
glutamyl transferase (GGT) (IU/L)] þ 3.467 × ln [age (years)] − 
0.014 [cholesterol (mg/dL)]. It could accurately exclude signifi-
cant fibrosis with a high NPV of 96% and AUROC higher than 80% 
in both estimation and validation groups [12]. In a prospective co-
hort study involving patients with early compensated alcohol- 
related liver disease, the Forns index achieved a time-dependent 
AUROC of 0.84 to predict liver-related events over time in 
patients with alcohol-related liver disease [13]. Haematological 
disorders, alcohol consumption, metabolic factors and certain 
medications may affect the reliability of the index by altering 
liver enzymes and platelet counts. Additionally, as age is a com-
ponent of the index and can influence liver enzyme levels, it 
might change the precision of its predictions.

Fibroindex
Fibroindex was initially developed in patients with CHC to predict 
the stage of liver fibrosis and is calculated by 1.738 − 0.064 × 
[platelet (×104/mm3)] þ 0.005 × [AST (IU/L)] þ 0.463 × [gamma 
globulin (g/dL)]. The AUROC of Fibroindex to predict severe fibro-
sis was 0.82. It achieved a high PPV of 94% and specificity of 97% 
to identify significant fibrosis using the cut-off value of 2.25. It 
could eliminate the need for a liver biopsy in 35% of patients. 
There was a significant correlation between the change of 
Fibroindex and shafting stages of fibrosis [14]. Except for con-
founding factors that affect the platelet and AST, autoimmune 
disease and certain medications may affect the accuracy of the 
assessment by altering gamma globulin levels. While age is not 
part of the index, it may impact performance by affecting the 
baseline level of liver enzymes and blood cells.

NAFLD fibrosis score
NAFLD fibrosis score (NFS) was developed in patients with 
NAFLD (now called MASLD) and is calculated by 
−1.675þ 0.037 × age (years) þ 0.094 × body mass index (BMI) 
(kg/m2) þ 1.13 × impaired fasting glycemia/diabetes (yes¼1, 
no¼ 2) þ 0.99 × AST/ALT ratio − 0.013 × platelets (109/L) − 
0.66 × albumin (g/dL). The AUROC of the score to identify ad-
vanced fibrosis was higher than 0.8 [15]. It could exclude ad-
vanced fibrosis accurately with a high NPV of ≥88% and identify 
advanced fibrosis with a high PPV of ≥82% by using cut-off values 
of −1.455 and 0.68, respectively. This score could eliminate the 
need for a liver biopsy in 75% of patients while maintaining 90% 
prediction accuracy [15]. The prediction performance for ad-
vanced fibrosis declines in patients with MASLD aged ≤ 35 years 
and those aged ≥ 65 years [11]. This variation in predictive accu-
racy across different age groups highlights the need for age- 
specific considerations or adjustments when utilising this test to 
assess advanced fibrosis in patients with MASLD. In a retrospec-
tive analysis of patients with biopsy-proven MASLD, NFS 
achieved AUROCs of 0.72–0.92 to predict liver-related events and 
0.70–0.83 to predict mortality [16]. Platelet count and serum albu-
min level, which can be altered by many other aetiologies and 
ethnicity, are potential confounding factors for the prediction 
performance of the NFS. MAFLD fibrosis score (MFS), composed 
of age, BMI, INR, AST, GGT, platelet count and presence of type 2 
diabetes, has been recently developed and validated in an Asian 
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cohort with a high correct prediction rate of 90.4% using a dual 
cut-off approach [17].

BARD score
The BARD score, specifically developed for patients with MASLD, 
is calculated by summing points from three distinct criteria. It 
allocates one point for patients with a BMI exceeding 28, two 
points for those having an AST/ALT ratio greater than 0.80, and 
an additional point for individuals diagnosed with diabetes. It 
achieved AUROCs ranging from 0.81 to 0.83, indicating a high 
level of accuracy. Furthermore, the BARD score consistently 
maintained a high NPV, not falling below 95%, underscoring its 
reliability in ruling out advanced fibrosis [18]. The study revealed 
that, compared with other NITs like NFS, FIB-4 and APRI, it had a 
reduced ability to predict overall mortality and severe liver dis-
ease in patients with biopsy-confirmed MASLD. This was indi-
cated by AUROC of 0.62 over an average follow-up period of 
19.9 years [16]. Furthermore, the effectiveness of the BARD score 
appears to vary across different ethnic groups. The performance 
of the BARD score is reduced in Asian patients compared with 
Caucasians, which may be because of the variation in BMI.

SAFE score
Steatosis-associated fibrosis estimator (SAFE) score, composed of 
age, BMI, presence of diabetes, AST, ALT, globulin and platelet 
count, has the advantage of achieving a high NPV in primary care 
settings and hence facilitates triage of patients who are at low 
risk of having clinically significant fibrosis (F2 or above) [19].

2.2 Specific fibrosis biomarkers
ELF score
Enhanced liver fibrosis (ELF) score, created from a cohort mainly 
composed of CHC patients, is based on an algorithm that 
includes three serum biomarkers: tissue inhibitor of matrix 
metalloproteinase-1 (TIMP-1), hyaluronic acid, and aminotermi-
nal propeptide of type III procollagen (PIIINP). It achieved a high 
sensitivity of 90% to predict fibrosis and a high NPV of 92% to ex-
clude significant fibrosis with an AUROC of 0.804 [20]. The dy-
namic changes in ELF score are associated with the dynamic 
changes in disease progress during antiviral treatment. It can 
also stratify the HCC risk of CHB patients falling into the grey 
zone of the LSM-HCC score. This value indicates a strong correla-
tion between the score and actual liver health outcomes, sug-
gesting its reliability in a broad, unselected population [21]. In a 
study assessing the ELF score within a general population cohort, 
the AUROCs of ELF predicting liver outcomes at five years was 
0.81 in the general population and not less than 0.85 in those 
with risk factors [22]. A prospective cohort study revealed that 
the risk of liver-related events was 5%, 22% and 53% in subgroups 
of patients with ELF <9.8, 9.8–10.5 and >10.5, respectively. So, 
the ELF score could stratify liver-related events by using the cut- 
off values of 9.8 and 10.5 [13]. Other fibrotic diseases, bones frac-
ture, cancer or inflammation may affect the prediction accuracy 
of the score by influencing PIIINP and TIMP-1.

PRO-C3 and ADAPT score
The N-terminal pro-peptide of type III collagen (PRO-C3) is a 
novel biomarker identified through enzyme-linked immunosor-
bent assay for the N-terminal propeptide of type III collagen. This 
biomarker has shown a notable capability to distinguish mild 
from moderate degrees of fibrosis, with its variation correlating 
closely with the progression of fibrosis. A meta-analysis compris-
ing eight studies offers a comprehensive review of the diagnostic 
accuracy of PRO-C3 in detecting advanced fibrosis. The efficacy 

of PRO-C3 in identifying advanced fibrosis is supported by its spe-
cificity and sensitivity of 73% and 72%, respectively, and a sum-
mary estimate AUROC of 0.79 [23]. Notably, PRO-C3 levels are 
elevated in patients with severe obesity and advanced liver fibro-
sis, indicating a positive association with both insulin resistance 
markers and liver enzymes. Following bariatric surgery, a reduc-
tion in PRO-C3 has been observed, which aligns with the im-
provement in metabolic and liver parameters [24].

Age, presence of diabetes, PRO-C3 and platelet count (ADAPT) 
score, formulated based on PRO-C3 levels, age, platelet counts 
and diabetes, has been developed within a cohort of MASLD 
patients. This score achieved an AUROC of no less than 0.86 in 
detecting advanced fibrosis, showing superior performance com-
pared with established scores such as APRI, FIB-4 and NFS [25]. In 
another study of patients with MASLD, ADAPT achieved AUROC 
of 0.865 for advanced fibrosis, with sensitivity and NPV of 82.2% 
and 96.1%, respectively. ADAPT outperformed PRO-C3 alone, 
APRI, FIB-4, BARD and NFS in detecting advanced fibrosis [26]. 
PRO-C3 and ADAPT effectively ruled out the presence of ad-
vanced fibrosis in patients with MASLD, which reduced the need 
for invasive liver biopsies. Based on these findings, PRO-C3 can 
serve as a routine blood biochemical test for detecting liver fibro-
sis and ADAPT has the potential to enhance the precision of fi-
brosis diagnosis.

MMPs and MP3
Matrix metalloproteinases (MMPs) are the main enzymes impli-
cated in extracellular matrix degradation. MMPs do not only re-
model the extracellular matrix but also regulate immune 
responses. MMPs are associated with many acute and chronic 
liver diseases. In the study cohort consisting of 194 patients with 
CHC who underwent liver biopsy prior to antiviral therapy and 
194 matched healthy individuals, MP3 was developed based on 
MMP-1 and calculated by 0.5903 × log [PIIINP (ng/mL)] − 
0.1749 × log [MMP-1 (ng/mL)]. This score showed an AUROC of 
0.82 for detecting significant fibrosis, achieving a sensitivity of 
60% and a specificity of 92%. By using the cut-off value of 0.50, 
MP3 showed the best predictive value for significant fibrosis with 
a high specificity of 98.9% and PPV of 94.4% in another cohort of 
CHC patients [27]. MP3 can reliably indicate the degree of liver fi-
brosis in patients with CHC. Applying varying cut-off values 
allows the diagnosis of significant fibrosis with a high degree 
of certainty.

Fibrotest
Fibrotest was developed in CHC patients based on α2 macroglob-
ulin (α2MG), GGT, apolipoprotein A1, haptoglobin, total bilirubin, 
age, and gender. The AUROCs were no less than 0.83 for clinically 
significant fibrosis. It obtained a high NPV value of 100% to ex-
clude significant fibrosis and a high PPV value of larger than 90% 
by using the cut-off values of 0.10 and 0.60, respectively [28]. A 
study evaluated the 10-year prognostic value of Fibrotest and 
demonstrated good performance of Fibrotest in predicting 10- 
year liver-related survivals, achieving high AUROCs of 0.941 in 
MASLD patients and 0.875 in CHC patients [29]. Another study 
compared the performance of Fibrotest and other scores includ-
ing Forns index, APRI, and Fibroindex in patients with CHC and 
those with other chronic liver diseases. It showed that the 
Fibrotest had excellent diagnostic accuracy for liver fibrosis, out-
performing other scores and was equally effective in different 
aetiologies [30]. Possible confounding variables include haemoly-
sis, which may affect haptoglobin and bilirubin; biliary pathology 
and Gilbert syndrome, which may affect bilirubin; and alcohol 
consumption, which may affect GGT level.
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Hepascore
Hepascore was created in a cohort of CHC patients and composed 
of bilirubin, GGT, hyaluronic acid, α2MG, age and gender. The 
AUROCs of the score for significant fibrosis, advanced fibrosis, 
and cirrhosis ranged from 0.82 to 0.85, 0.90 to 0.96 and 0.89 to 
0.94, respectively. By applying certain cut-off values, it achieved 
specificity and sensitivity values ranging from 74% to 92% and 
63% to 95% for significant fibrosis and advanced fibrosis, respec-
tively [31]. A study compared the performance of six non- 
invasive scores to detect liver fibrosis in CHC patients and 
Hepascore achieved AUROCs of 0.79 and 0.85 to identify signifi-
cant fibrosis and extensive fibrosis, respectively. By using the 
cut-off value of 0.50, Hepascore showed a high NPV of 89.6% to 
rule out extensive fibrosis. The diagnostic performance of 
Hepascore was similar to other tests [32]. Utilizing Hepascore 
may avoid liver biopsies in cases where cirrhosis is suspected. It 
can also assist in making decisions about screening for varices 
and HCC, and in planning for the appropriate follow-up strategy.

FibroMeters
FibroMeters are groups of biomarkers to assess liver fibrosis, in-
cluding platelet count, prothrombin time, AST, α2MG, hyaluro-
nate, urea and age. Various versions of FibroMeters are being 
used for different chronic liver diseases including viral hepatitis, 
MASLD and ARLD. A systematic review evaluated the perfor-
mance of various versions of FibroMeters in MASLD patients and 
found that combined FibroMeter-VCTE performed the best in 
identifying advanced fibrosis with sensitivity and specificity of 
83.5% and 91.1%, respectively [33]. In a multicentre cohort of 
patients with MASLD, FibroMeter-VCTE achieved an AUROC of 
0.84 to detect advanced fibrosis. It was superior to other fibrosis 
tests including NFS, FIB-4, Fibrotest and Hepascore, and signifi-
cant number of liver biopsies were avoided due to the test [34]. 
FibroMeter showed effectiveness in categorising patients with 
MASLD into different groups by using the cut-off values of 0.499, 
0.754 and 0.969 at baseline, with each group characterised by 
varying prognostic outcomes. The diagnostic accuracy was simi-
lar to LSM [9].

NIS4/NIS2+TM

NIS4®, comprising four MASH-associated biomarkers (miR-34a- 
5p, alpha-2 macroglobulin, YKL-40 and glycated haemoglobin), 
and NIS2þ TM (the optimized version of the blood-based NIS4®) 
were developed along with MASH therapeutic trials. They have 
satisfactory performance in identifying patients with at-risk 
MASH (i.e. F2-3 fibrosis and NAS ≥4) and hence a substantial 
number of unnecessary liver biopsies and screening costs can be 
reduced [35].

Ultrasound elastography
Shear wave-based ultrasound elastography techniques are com-
monly used imaging modalities in assessing liver fibrosis. These 
include VCTE, two-dimensional shear wave elastography (2D- 
SWE) and point-shear wave elastography (p-SWE).

VCTE
Vibration-controlled transient elastography (VCTE) produces low 
frequency (50 Hz) vibrations with shear wave transmission 
through the liver followed by ultrasound wave through a probe 
on the skin overlying the liver to attain LSM, which is calculated 
from the velocity of the shear wave propagating through the liver 
parenchyma. The higher the velocity, the higher LSM reading and 
the stiffer the liver parenchyma is. VCTE, being the most widely 

used ultrasound elastography modality, underwent numerous 
studies in the past decades and was validated, compared with 
liver biopsy as the gold standard, across different liver diseases, 
such as CHB [36–38], CHC [39–41], co-infection with HIV [42], 
MASLD [43], ARLD [44], autoimmune hepatitis (AIH) [45], primary 
biliary cirrhosis (PBC), primary sclerosing cholangitis [46], 
Wilson’s disease and haemochromatosis [47]. VCTE has been 
proven a reproducible tool in diagnosing advanced fibrosis (F3) 
and cirrhosis (F4) with good overall accuracy [48–49]. In a 
meta-analysis including 50 studies on VCTE as liver fibrosis 
assessment, with liver biopsy as a reference and regardless of 
underlying liver diseases, the mean AUROC for the diagnosis of 
significant fibrosis, severe fibrosis, and cirrhosis were 0.84, 0.89 
and 0.94 respectively [48]. As well, VCTE has a high negative 
predictive value (NPV) of above 90%, with LSM <8 kPa generally 
accepted in ruling our advanced fibrosis regardless of underlying 
aetiology [50–51].

Different optimal cut-off values of LSM by VCTE apply to dif-
ferent liver diseases. Taking MASLD, with validation studies fo-
cusing on NAFLD as the old nomenclature, as an example, the 
LSM cut-off range of 8 to 12 kPa has an 84%–100% sensitivity and 
83%–97% specificity for F3–F4 fibrosis [52]. In the validation study 
of VCTE on CHC, a cut-off value of 9.5 kPa had a sensitivity and 
specificity of 73% and 91% respectively for F3 fibrosis, and a cut- 
off value of 12.5 kPa had a sensitivity and specificity of 87% and 
91% respectively for F4 fibrosis [39].

Apart from the use of VCTE in diagnosing or excluding ad-
vanced fibrosis or cirrhosis, LSM was validated in diagnosing 
cACLD which describes the spectrum of advanced fibrosis and 
compensated cirrhosis [53–54], without requiring liver biopsy for 
histological diagnosis of liver cirrhosis. For those with LSM 
<10kPa have cACLD ruled out, whereas those with LSM 10–15 kPa 
has a 74.9% sensitivity in ruling in cACLD and those with LSM 
>15 kPa are highly suggestive of cACLD [54–55]. The Baveno VII 
consensus also endorsed the use of LSM by VCTE, in combination 
with platelet count, in diagnosing clinically significant portal hy-
pertension (CSPH) in patients with virus-related, alcohol-related 
or non-obese (BMI < 30 kg/m2) NASH-related cACLD [54]. For in-
stance, LSM >25 kPa or LSM 20–25 kPa with platelet <150 × 109/L, 
or LSM 15–20 kPa with platelet <110 × 109/L presume CSPH, signi-
fying a higher risk of hepatic decompensation [54, 56]. VCTE, us-
ing a spleen-dedicated module (100 Hz), can obtain the spleen 
stiffness measurement to predict CSPH [57]. In other word, VCTE 
has not only been well validated with its diagnostic performance 
but carries prognostic values.

A new, wireless, palm-sized transient elastography system is 
now available, which enables a more convenient alternative to 
VCTE with comparative performance and a very high correlation 
of LSM results. This wireless tool brings forward a point-of-care 
NIT and facilitates upscaling of screening for liver fibrosis [58]. 
Comparisons between the three types of VCTE, namely 
Fibroscan®, iLivTouch#—Fibrotouch® and Liverscan®, are listed 
in Table 2.

Despite that, VCTE has suboptimal performance in distin-
guishing milder degrees of liver fibrosis, possibly due to variabil-
ity in histological scoring of liver biopsy with milder fibrosis 
leading to an imperfect comparison between the two [59]. 
Nonetheless, VCTE is well proven with its ability to diagnose and 
rule out advanced fibrosis and cirrhosis as well as prognostica-
tion of liver disease, supporting it as a useful tool in assessing 
liver fibrosis. Although cut-off values for different severities of 
liver fibrosis have been established in adult individuals, the dedi-
cated cut-off values in the paediatric population are not as well 
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defined; most studies show that the results in the adult and pae-
diatric groups are comparable [60].

Two-dimensional shear wave elastography
Shear wave elastography utilizes the acoustic radiation force im-
pulse (ARFI) from the ultrasound probe to generate shear wave 
propagation through the liver parenchyma where the propaga-
tion velocity is measured. The velocity, expressed in metres over 
second (m/s), can be converted to kPa by Young's modulus [61]. 
Similarly, the higher the speed, the higher the LSM is. 2D-SWE 
has an advantage by making quantitative images of shear wave 
speed in a large region of interest (ROI) by placing the ARFI focus 
at multiple sequential locations, where they are free of large 
blood vessels or focal lesions which can confound the results, to 
detect the shear wave arrival time at multiple lateral locations, 
measuring the LSM in real-time. Compared with VCTE, it has a 
larger ROI that can be chosen in size and location by the opera-
tor [50].

Despite being a more recent modality of ultrasound elastogra-
phy compared with VCTE, 2D-SWE has been well validated to 
show its comparable diagnostic performance to VCTE across dif-
ferent liver diseases. For instance, an individual patient data- 
based meta-analysis of 1,134 patients with liver biopsy showed 
that the AUROCs of 2D-SWE in patients with CHB, CHC and 
MASLD were 90.6%, 86.3% and 85.5% for diagnosing significant fi-
brosis, respectively, and 95.5%, 92.9% and 91.7% for diagnosing 
cirrhosis, respectively [62]. Similar performance was also shown 
in biopsy-proven autoimmune liver diseases by 2D-SWE [63]. The 
overall accuracy of 2D-SWE is comparable to that of VCTE [64] 
and appears even higher than that of VCTE when assessing the 
early stage of liver fibrosis [65–66]. Furthermore, 2D-SWE also 
carries prognostic value in cirrhosis with studies confirming its 
utilisation and reliability in predicting CSPH and survival in 
patients with cirrhosis [67–69].

Point-shear wave elastography
Similar to 2D-SWE, p-SWE utilizes the ARFI by the ultrasound 
probe in generating shear wave propagation for the calculation of 
the velocity which gives the LSM reading. On the contrary, it does 
not provide an elastographic map. Nonetheless, it has a high ap-
plicability and provides real-time LSM assessment. P-SWE pro-
vides a smaller ROI compared to VCTE with the measurement 
location chosen by the operator [50].

Likewise, p-SWE has been adequately validated with equiva-
lent performance compared with VCTE in terms of diagnosing 
advanced fibrosis and cirrhosis across different liver diseases 
[70–73].

Confounding factors affecting diagnostic performance
Despite the favourable performance of shear wave ultrasound 
elastography in liver fibrosis assessment, multiple factors may 
affect the accuracy of the tests. The factors are largely disease- 
or patient-related.

Hepatic necroinflammation is one of the major disease- 
related factors leading to a falsely high LSM. The risk of falsely di-
agnosing cirrhosis by LSM increases significantly when the serum 
ALT is five times above the ULN [36]. On the other hand, LSM 
drops drastically after the necroinflammation resolves and that 
does not reflect genuine fibrosis regression [74]. Hepatic conges-
tion and extrahepatic cholestasis also confound the assessment, 
causing a falsely high LSM reading. The presence of ascites 
affects the performance of VCTE, causing an invalid or inaccu-
rate LSM. However, this is overcome by using 2D-SWE or p-SWE 
as these modalities appear unaffected by ascites [75].

Conventionally VCTE measures LSM by the M-probe. In situa-
tions where patients are obese, it is difficult for shear waves to 
penetrate through the thick subcutaneous and prehepatic fat, 
causing inaccurate LSM. Studies reported a BMI of 28–30 kg/m2 as 
a factor associated with failed or unreliable LSM [76–77]. To over-
come this, the XL-probe (which stands for Extra Large probe) was 
developed for obese patients, and the same cut-off values for 
LSM can be used when M-probe and XL-probe are used according 
to the appropriate BMI [78]. Besides, LSM is increased with a 
mean change by 1–2 kPa after meals and the value normalised 
within 180 minutes [79]. Thus, the patient should be fasted for 
3–4 hours before receiving shear wave ultrasound elastography. 
Lastly, excessive alcohol intake may implicate LSM accuracy; 
current guidance suggests to repeat LSM by VCTE at least one 
week of alcohol abstinence or reduced drinking in case of ele-
vated LSM and biochemical evidence of hepatic inflamma-
tion [50].

MRE
Magnetic resonance elastography (MRE) is performed on existing 
magnetic resonance imaging (MRI) machines using a phase con-
trast method with the required software to determine the degree 
of liver stiffness by assessing the mechanical wave propagation. 
With this technique, the whole liver is examined. MRE has 
emerged as the most accurate NIT for assessment of liver fibro-
sis, with high accuracy and reproducibility as well as high intra- 
and inter-observer agreement [80]. Its accuracy has been shown 
in various studies, including a prospective study involving 117 
biopsy-proven NAFLD patients that showed a high AUROC of 0.92 
for MRE in discriminating F3–F4 fibrosis from F0–F2 fibrosis and a 
threshold of >3.63 kPa having a sensitivity of 0.86 and specificity 
of 0.91 [81]. By the same token, a recent meta-analysis confirmed 
the findings by showing a high AUROC of 0.91 (sensitivity 78%, 
specificity 89%) for significant fibrosis (F2) and 0.92 (sensitivity 
81%, specificity 90%) for advanced fibrosis (F3–F4) [82]. The excel-
lent diagnostic performance appears consistent across sex, dif-
ferent levels of obesity and aetiologies of chronic liver 
disease [83].

Studies, mostly on MASLD patients, have also compared MRE 
with VCTE and showed its consistent superiority in diagnosing 
and differentiating liver fibrosis [84–85]. To conclude with a sys-
tematic review with individual patient data analysis involving 

Table 2. Similarities and differences of the three different types of vibration-controlled transient elastography (VCTE)

Feature Fibroscan® iLivTouch#—Fibrotouch® Liverscan®

Company Echosens, Frances Wuxi Hisky Medical 
Technologies Co., Ltd. (Hisky 
Med), China

Eieling Technology Limited, 
Hong Kong, China

Machine size Moderate to large Moderate to large Small
Wireless No No Yes
Accuracy Good Good Good
Real-time guidance No Yes No
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230 patients with biopsy-proven MASLD, the AUROCs of MRE and 

VCTE were 0.87 and 0.82, 0.92 and 0.87, 0.93 and 0.84, and 0.94 

and 0.84 in the detection of ≥F1, ≥F2, ≥F3 and ≥F4 fibrosis, re-

spectively [86]. This highlights a better diagnostic accuracy for 

MRE than for VCTE in the detection of each stage of fibrosis. 

Furthermore, MRE has a higher applicability than VCTE with 

>95% technical success rate as it is not affected by ascites and 

obesity [87], and can be performed in patients with altered he-

patic anatomy. However, iron overload in the liver causes loss of 

magnetic resonance signal from the liver parenchyma, resulting 

in poor quality or uninterpretable MRE results [87].
Until recently, a novel method termed macromolecular pro-

ton fraction quantification based on spin-lock (MPF-SL) was de-

veloped to measure the relative macromolecule content in the 

liver, corresponding to liver fibrosis characterised by the deposi-

tion of collagen-rich fibrotic tissues in the extracellular region. 

Such detection of the collagen deposition in the liver has been 

showed by in vivo studies of patients with liver fibrosis [88]. Based 

on a retrospective study of 55 patients (22 with no fibrosis and 33 

with F1–2 fibrosis), MPR-SL showed a positive correlation with 

liver fibrosis (ρ ¼ 0.59) with no significant correlations with liver 

iron concentration (ρ ¼ 0.02) or fat fraction (ρ ¼ 0.05), and the 

AUROC of 0.85 in discrimination between F0 and F1–F2 fibrosis 

[89]. Further studies are required to validate and determine its 

role in liver fibrosis assessment, especially taking into consider-

ation its high cost and limited availability in clinical practice.

Combinations of different modalities
A handful of well-validated scores by combining clinical, labora-

tory and elastography parameters are available to further im-

prove the performance of NITs [90]. Agile 3þ takes into account 

LSM by VCTE, platelet count, ALT, AST, diagnosis of diabetes, age 

and sex, and has high diagnostic performance for F3; meanwhile, 

Agile 4 takes account of LSM, by VCTE, platelet count, ALT, AST, 

sex and presence of type 2 diabetes, and has high diagnostic per-

formance for cirrhosis [90]. A combined score with MRE and FIB-4 

(MEFIB score) provides a very high positive predictive value of 

97.1% in identifying candidates with significant fibrosis [90].

Impact of specific aetiologies of liver disease
Different NITs have been validated in various aetiologies of liver 
disease with VCTE being the most widely validated modality. 
Nonetheless, there are confounding factors affecting the diagnos-
tic performance of VCTE. Likewise, there are also factors affect-
ing the accuracy of blood test-based NITs, not to mention that 
some are shown to have suboptimal performance in assessing 
liver fibrosis in certain kinds of liver diseases, such as an AUROC 
of <0.80 for FIB-4 in predicting histological stage in PBC [91].

To name a few, necroinflammation of hepatocytes takes place 
in active chronic viral hepatitis B or C, as well as MASH and auto-
immune hepatitis, and can be reflected by a raised serum ALT 
and/or AST as surrogates. Serum albumin, as a negative acute- 
phase reactant, may drop during the inflammatory process. NITs 
involving these laboratory parameters, such as AST and ALT in 
FIB-4, and the addition of serum albumin in NFS, are prone to in-
accurate results and hence a suboptimal liver fibrosis assess-
ment. Accuracy of VCTE is not only affected by hepatic 
necroinflammation, but its validity in liver fibrosis reassessment 
after resolution of the hepatic inflammation is also questionable 
as best illustrated in CHC before and after sustained virologic re-
sponse (SVR) that an improvement in LSM does not accurately re-
flect fibrosis regression [92]. MRE, despite proven its superiority, 
has its own weakness as the diagnostic performance is affected 
by iron overload as in cases of haemochromatosis. The similari-
ties and differences in the impact of various liver diseases on di-
agnostic accuracy of NITs are listed in Table 3.

Chronic hepatitis B
Essentially all international management guidelines for CHB un-
derscore the severity of liver fibrosis as one of the key treatment 
indications; antiviral therapy is indicated in the presence of sig-
nificant fibrosis regardless of serum ALT level [1–3]. Yet, as ALT 
is one of the major confounding factors of LSM in CHB, the inter-
pretation of LSM results should always be coupled with the ALT 
levels at the time of VCTE examination. An ALT-based algorithm 
has been developed and higher LSM cut-off values for different 
stages of liver fibrosis should be used in patients with elevated 
ALT levels up to 5 times of the ULN [36]. In more extreme 

Table 3. Similarities and differences in the impact of various liver diseases in diagnostic accuracy of non-invasive tests

Characteristic Chronic  
hepatitis B

Chronic  
hepatitis C

MASLD  
(or MAFLD)

PBC AIH Haemochromatosis

Similarities � Elevated ALT 
and/or AST in 
acute infec-
tion or ac-
tive disease 

� Elevated ALT 
and/or AST in 
most cases of 
active 
chronic 
infection 

� Elevated ALT/ 
AST in NASH 

� ALT/AST level 
can be 
mildly 
elevated 

� Elevated ALT 
and/or AST in 
active/flare 
of disease 

� Elevated ALT 
and/or AST 

Differences � Possibility of 
severe reacti-
vation of dis-
ease leading 
to elevated 
ALT/AST 

� Questionable 
accuracy in fi-
brosis reas-
sessment 
post-SVR 

� High preva-
lence of obe-
sity affecting 
diagnostic 
performance 
of NITs 

� Laboratory- 
based NITs not 
well validated 

� Disease course 
monitoring by 
LSM and ALT/ 
IgG after at 
least six 
months of im-
munosuppres-
sive therapy 

� Iron overloading 
as the patho-
physiology of 
the disease 

Involved/af-
fected NITs

� APRI, FIB-4,  
SWE 

� APRI, FIB-4, 
ELFTM, SWE 

� FIB-4, 
NFS, SWE 

� VCTE � VCTE � MRE 

AIH ¼ autoimmune hepatitis, ALT ¼ alanine transaminase, APRI ¼ aspartate aminotransferase to platelet ratio index, AST ¼ aspartate aminotransferase, ELFTM ¼

Enhanced liver fibrosis test, FIB-4 ¼ fibrosis-4 index, MAFLD ¼metabolic dysfunction-associated fatty liver disease, MASLD ¼metabolic dysfunction-associated 
steatotic liver disease, MRE ¼magnetic resonance elastography, NAFLD ¼ non-alcoholic fatty liver disease, NASH ¼ non-alcoholic steatohepatitis, NFS ¼ NAFLD 
fibrosis score, NITs ¼ non-invasive tests, PBC ¼ primary biliary cholangitis, SVR ¼ sustained virologic response, SWE ¼ shear wave elastography, VCTE ¼ vibration- 
controlled transient elastography.
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scenarios, falsely high LSM results reaching the level of cirrhosis 
or CSPH may occur during severe acute exacerbation of hepatitis 
B virus (HBV) [93]. This is because not only liver fibrosis but also 
other factors contribute to the stiffness of the liver. LSM has been 
consistently found to be falsely elevated in acute hepatitis mani-
fested as ALT flares [94]. In this setting, LSM tends to decrease 
considerably after the resolution of acute hepatitis. Therefore, 
applying VCTE in this setting could be misleading and not recom-
mended until at least three months after normalisation or at 
least stabilisation of ALT levels below five times ULN [36]. The 
impact of ALT flares on NITs based on common clinical and labo-
ratory parameters is less defined. Nonetheless, ALT and/or AST 
are common components in nearly all of these NITs (Table 1); it 
is logical to believe that the results would also be falsely elevated 
when tested in patients with severe acute exacerbation of 
HBV [95].

NIT is also an important part of some HCC risk scores. For ex-
ample, the LSM-HCC score, which is optimised from the CU-HCC 
score with LSM replacing clinical cirrhosis as the key component 
of the risk score, further increases the NPV to nearly 100% for 
HCC prediction in 3 to 5 years in CHB patients [96]. PAGE-B is an-
other widely validated HCC risk score based on common clinical 
and laboratory parameters; the modified version (mPAGE-B) and 
PAGE-B itself are both accurate and highly sensitive to rule out 
CHB patients who are receiving antiviral therapy at risk of 
HCC [97].

Chronic hepatitis C
HCV infection is one of the leading causes of chronic liver disease 
which progresses from chronic inflammation to fibrosis and cir-
rhosis. These conditions can further develop complications such 
as HCC. A study comparing pre- and post-treatment liver biop-
sies in 38 HCV patients with cirrhosis found that 61% of these 
patients exhibited regression of cirrhosis and decreased fibrosis 
[98]. The performance of non-invasive methods to detect fibrosis 
regression after receiving treatment and achieving sustained vi-
rologic response (SVR) was crucial. Significant regression of VCTE 
values, FIB-4 and APRI were observed for CHC patients who re-
ceived direct antiviral agents (DAAs) treatment [99]. However, it 
is unclear whether this regression is attributed to diminished in-
flammation or actual regression of liver fibrosis. One systematic 
review showed that SVR correlated with a significant reduction 
in liver stiffness. This effect was especially pronounced in 
patients who had high levels of inflammation initially or those 
who were treated with DAAs [100].

A meta-analysis involving 24 studies assessed the changes in 
LSM in CHC patients who achieved SVR and those who did not. 
This study revealed a median reduction in LSM of 28.2% among 
CHC patients who achieved SVR, in contrast to no significant 
change in LSM in patients who failed to achieve SVR. Among the 
261 patients who achieved SVR and were initially classified as 
having advanced fibrosis or cirrhosis, 47.1% of them demon-
strated a reduction in LSM to below 9.5 kPa after treatment. The 
short follow-up after SVR and potential confounders such as 
MASLD, diabetes and use of alcohol may influence liver stiffness 
[100]. However, a study involving 37 CHC cirrhotic patients with 
paired liver biopsy and LSM before and after SVR found that the 
AUROC of LSM to diagnose cirrhosis was 0.77 with specificity of 
95% and a suboptimal sensitivity of 61% to rule out cirrhosis [74]. 
APRI and FIB-4 were analysed in another study involving 395 
CHC patients treated with DAAs. Findings revealed a rapid and 
consistent decline in APRI and FIB-4 levels from the second week 
to the 12th week in patients who achieved SVR, which was likely 
attributed more to the decline in liver enzymes than to an actual 

regression of liver fibrosis [101]. These findings raise doubts 
about the reliability of non-invasive tests in detecting fibrosis re-
gression and cACLD in CHC patients who achieved SVR. Cut-off 
values of NITs used before treatment may not be reliable after 
achieving SVR. It is necessary to validate the thresholds in exten-
sive studies with longer follow-ups.

Even though fibrosis regression occurs, it does not eliminate 
the risk of HCC development in the years following treatment. In 
individuals with cACLD who have successfully achieved SVR 
with DAA treatment, the most common liver-related complica-
tion is the occurrence of HCC. In a retrospective single-centre 
study, 4.1% of patients who achieved SVR developed HCC during 
a median follow-up of 26 months. LSM ≥11 kPa was indepen-
dently associated with the risk of HCC development 24 months 
after achieving SVR [102]. A meta-analysis of 29 cohort studies 
demonstrated that FIB-4, APRI and LSM had good performance in 
predicting HCC in CHC patients with SVR. In individuals achiev-
ing SVR post-DAA therapy, the pooled adjusted hazard ratio for 
LSM was 5.55, with a pooled AUROC of 0.84. Furthermore, FIB-4 
and LSM were linked to overall mortality, having pooled adjusted 
hazard ratios of 2.07 and 4.04, respectively [103]. Measuring LSM 
after achieving SVR could aid a better understanding of the ongo-
ing risk hepatic events in patients with CHC who have undergone 
antiviral treatment.

MASLD
MASLD is a prevalent liver disease affecting 32.4% of the global 
population and continues to increase over time [104]. A propor-
tion of patients with MASLD develop advanced liver fibrosis that 
implicates both hepatic and extrahepatic complications and 
mortality [105]. Many NITs have been developed for fibrosis as-
sessment in MASLD, notably fibrosis-4 (FIB-4) score and NFS. The 
low cut-off values of these two scores (1.3 for FIB-4 and −1.455 
for NFS) have a high sensitivity to rule out advanced fibrosis 
whereas the high cut-off values (3.25 for FIB-4 and 0.676 for NFS) 
have a high specificity to rule in advanced fibrosis [50, 106]. 
However, around one-third of patients fall into the grey zone of 
the two tests [107]. As well, obesity implicates the performance 
of both FIB-4 and NFS. In a prospective study with 315 patients 
(71 non-obese and 244 obese, defined by BMI ≥25 kg/m2), the 
AUROCs declined significantly from 0.97 to 0.84 for FIB-4 
(P¼ 0.002) and 0.97 to 0.80 for NFS (P< 0.001) in the presence of 
obesity [108].

There are other NITs developed along with MASH therapeutic 
trials, such as NIS2þTM, NIS4, MACK-3, MEFIB, FAST and MAST 
scores, in identifying patients with at-risk MASH which is defined 
as MASH with F2–F3 fibrosis and NAFLD activity score of ≥4. The 
overall accuracy is 0.72–0.88 and their use is constrained by lim-
ited availability (such as special blood components and MRE) and 
high cost [109].

VCTE is commonly used in patients with MASLD for assessing 
the degree of liver fibrosis and its performance in identifying ad-
vanced fibrosis has been well validated in numerous studies. In 
the meta-analysis involving 20 studies using VCTE, the AUROCs 
were 0.87 with M-probe, 0.86 with XL-probe for advanced fibrosis, 
0.92 for M-probe and 0.94 for XL-probe for cirrhosis [107]. 
Although there are no universally accepted cut-off values for rul-
ing in or out advanced fibrosis in patients with MASLD, LSM 
<8 kPa is most validated to rule out advanced fibrosis with a high 
NPV of >90% [50]. Also, in another study from a decade ago with 
246 patients with NAFLD receiving VCTE using the M-probe and 
liver biopsy, a cut-off of 8.7 kPa had a sensitivity of 84% and spe-
cificity of 83% in diagnosing ≥F3 fibrosis (i.e. advanced fibrosis) 
and a cut-off of 10.3 kPa had sensitivity of 92% and specificity of 
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88% in diagnosing F4 fibrosis (i.e. cirrhosis) [43]. Obesity again 

has implications on the diagnostic performance of VCTE as it 

leads to failed or unreliable LSM. The XL-probe is used for obese 

patients who have longer skin-to-capsule distance and it reduces 

the chance of failed or unreliable LSM. Comparing M-probe with 

XL-probe in a study with patients from Asia and Europe, both 

probes were found to have nearly identical median LSM at each 

fibrosis stage with similar performance irrespective of the BMI, 

and thus same LSM cut-off values could be used for both probes 

[78]. However, high BMI appears to increase LSM [105, 110]. 

Additionally, from an analysis of 968 patients with biopsy-proven 

MASLD, LSM was found to be less accurate in obesity (AUROC 

0.79 vs 0.90, P< 0.001) regardless of the type of VCTE probe used 

[111]. This is of particular importance to note as obesity is preva-

lent in patients with MASLD. MRE, despite being the most accu-

rate NIT in detecting liver fibrosis as of date, is not routinely 

recommended in daily clinical practice given its high cost and 

limited availability.

Other aetiologies
LSM is useful and accurate across different chronic liver diseases 

on top of chronic viral hepatitis and MASLD, including PBC, PSC, 

AIH, Wilson’s disease and haemochromatosis. In general, VCTE 

outperformed other NITs such as APRI, FIB-4, AST/ALT ratio, hy-

aluronic acid and the Mayo risk score for PBC. While VCTE is ap-

plicable to essentially all chronic liver diseases, interpretation 

with caution is warranted in the presence of extrahepatic chole-

stasis, hepatic congestion, hepatic amyloidosis and recent food 

intake as they are well- acknowledged to be associated with a 

falsely high LSM value [95].

In patients with AIH, LSM correlates better with histologic 

grade than stage at the beginning of immunosuppressive ther-

apy; in contrast, the LSM correlates better with histologic stage 

than grade with longer treatment duration (at 6–18 months) [45]. 

LSM cut-off for ARLD is higher than that for chronic viral hepati-

tis owing to the different patterns of fibrosis distribution in ARLD 

[64]. The cut-off values for different stages of liver fibrosis are 

likewise higher in cholestatic liver diseases like PBC and PSC 

than in other liver diseases because cholestasis also contributes 

significantly to liver stiffness [112]. MRI-based techniques have 

decreased reliability in iron overload states (e.g. haemochroma-

tosis) and passive congestion [47].

Conclusions
NITs for liver fibrosis, particularly imaging-based tests like VCTE, 

have been a routine investigation in clinical practice for patients 

with suspected or confirmed liver diseases (Figure 1). In 2024, 

more systemic implementation would be obliged to provide guid-

ance for the management. While the clinical utility is mostly 

similar across various liver diseases, the application and inter-

pretation may be unique in certain clinical contexts of different 

diseases. Serum markers are simple and easily accessible in low- 

resource settings; imaging tests provide better accuracy in stage 

liver fibrosis and predict clinical events and prognosis. More re-

search will define the optimal cut-off values of various NITs to 

include patients in MASLD treatment programmes in the near fu-

ture as the reimbursement criteria of novel MASH therapeutics. 

It is important to delineate the interpretation of changes in the 

results of various NITs in response to treatment.

Figure 1. How to apply the tests in clinical practice. HBV ¼ hepatitis B virus, HCV ¼ hepatitis C virus, APRI ¼ aspartate aminotransferase to platelet 
ratio index, FIB-4 ¼ fibrosis-4, NFS ¼ non-alcoholic fatty liver disease fibrosis score, ELF ¼ enhanced liver fibrosis, ADAPT ¼ Age, presence of diabetes, 
PRO-C3, and platelet count, MMPs ¼matrix metalloproteinases, VCTE ¼ vibration-controlled transient elastography, 2D-SWE ¼ 2D-shear wave 
elastography, MRE ¼magnetic resonance elastography.
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