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SUMMARY

HIV-1 clade C envelope immunogens that elicit both neutralizing and non-neutralizing V1V2-

scaffold-specific antibodies (protective correlates from RV144 human trial) are urgently needed 

due to the prevalence of this clade in the most impacted regions worldwide. To achieve this, 

we introduce structure-guided changes followed by consensus-C-sequence-guided optimizations at 

the V2 region to generate UFO-v2-RQH173 trimer. This improves the abundance of well-formed 
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trimers. Following the immunization of rabbits, the wild-type protein fails to elicit any autologous 

neutralizing antibodies, but UFO-v2-RQH173 elicits both autologous neutralizing and broad 

V1V2-scaffold antibodies. The variant with a 173Y modification in the V2 region, most prevalent 

among HIV-1 sequences, shows decreased ability in displaying a native-like V1V2 epitope with 

time in vitro and elicited antibodies with lower neutralizing and higher V1V2-scaffold activities. 

Our results identify a stabilized clade C trimer capable of eliciting improved neutralizing and 

V1V2-scaffold antibodies and reveal the importance of the V2 region in tuning this.

In brief

HIV-1 immunogens that induce both neutralizing and V1V2-scaffold-specific antibody responses 

are needed to effectively protect against HIV infection. Sahoo et al. develop a clade C envelop 

immunogen capable of eliciting both of these responses and demonstrate the importance of the 

envelope V2 region in tuning immune outcome.

Graphical Abstract

INTRODUCTION

The robust induction of HIV-1 envelope (env)-specific broadly neutralizing antibodies 

(bnAbs) by vaccination has been a major challenge. Strategies to stabilize the env protein in 

a closed trimeric conformation, such as SOSIP (Sanders et al., 2013), cleavage-independent 

native flexibly linked (NFL) (Sharma et al., 2015), un-cleaved prefusion optimized (UFO) 
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(He et al., 2018; Kong et al., 2016) trimeric designs, and “germline” bnAb precursor-

targeting trimers (reviewed by McGuire, 2019) have advanced our efforts to successfully 

induce tier2 autologous nAbs (de Taeye et al., 2015; Escolano et al., 2016; Huang et al., 

2020; Klasse et al., 2016; Pauthner et al., 2017; Sanders et al., 2015; Voss et al., 2017). 

However, these Ab responses generally had poor neutralization breadth, primarily directed 

toward epitopes specific to the immunizing env (Arunachalam et al., 2020; Bale et al., 

2018; Dubrovskaya et al., 2017; He et al., 2018; Klasse et al., 2018; Pauthner et al., 

2017; Sanders and Moore, 2017; Sanders et al., 2015; Torrents de la Pena et al., 2017). 

Exceptions include work by Xu et al. (2018) and Dubrovskaya et al. (2019), where broad 

nAbs were generated toward the fusion-peptide and cross-neutralizing responses toward 

CD4bs and gp120-gp41 interfaces, respectively. In addition to the nAbs, non-nAbs have 

been reported to contribute significantly toward protection in the RV144 trial, the only HIV 

vaccine efficacy human trial to date to show modest but significant efficacy (Rerks-Ngarm 

et al., 2009). In this trial, immunoglobulin G (IgG) responses generated toward HIV-1 env 

variable loops 1 and 2 (V1V2) scaffolded on MuLV gp70 protein (V1V2-scaffold), and a 

linear V2 epitope (residues 166–178, referred to as the V2 hotspot or the V2-HS region) 

(Tassaneetrithep et al., 2014) proximal to the α4β7 binding site correlated with decreased 

infection risk (Excler et al., 2014; Haynes et al., 2012; Rolland et al., 2012; Zolla-Pazner 

et al., 2013). Studies conducted in non-human primates (NHPs) have also emphasized the 

importance of V2-directed non-nAbs in delaying simian immunodeficiency virus (SIV) and 

simian-human immunodeficiency viruses (SHIV) acquisition (Barouch et al., 2012; Jones 

et al., 2019; Zolla-Pazner et al., 2014, 2019) and the passive transfer of anti-V2 mAbs 

(830A) in reducing viremia (Hessell et al., 2018). Protective responses associated with 

these non-nAbs are linked to Fc-mediated anti-viral effector functions and their ability to 

occlude interactions between the host integrin α4β7 and HIV-1 env to control and clear the 

virus (Gorny et al., 2012; Perez et al., 2017; Yates et al., 2014). Hence, the ability of an 

env immunogen to generate a broad V1V2 reactive response both in presence and absence 

of a strong cross-neutralizing response is an important parameter in immunogen design 

portfolios.

The design of an immunogen with the potential to elicit both tier2 neutralizing and 

broad V1V2-scaffold-specific binding Abs has not been explored. A closed, stabilized 

trimer designed to generate nAbs is less likely to expose the conformation presented by 

the V1V2 scaffolds, which are more flexible and lack the quaternary contacts, thereby 

making it difficult to design an immunogen with a fine balance in inducing both kinds of 

responses. Although studies have reported the significance of the V2 region in regulating 

the closed-state of the env and its neutralization sensitivity (Cimbro et al., 2014; Guzzo 

et al., 2018), understanding how these changes maintain native apex integrity with time, 

with/without impacting the trimer integrity is unexplored. How such changes affect the 

balance between induction of neutralizing versus a broad V1V2-scaffold-specific response 

is not known. We attempted to address these questions by engineering a stable clade C 

trimeric immunogen. In this context, clade C immunogens are critically needed since a 

large proportion (~48%) of the global HIV-1 burden results from viral infections within this 

clade (Geretti et al., 2009). We focused our efforts on C.1086 env, since its gp120 version 

was used in subtype-C adapted human phase 2b/3 HIV Vaccine Trials network (HVTN)702 
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trial (ClinicalTrials.gov: NCT02968849) (Gray et al., 2021). Although reasons for the trial’s 

failure in preventing HIV-1 infection in participants are currently under investigation, the 

successful design of a stable C.1086 trimer capable of inducing improved neutralizing and 

broad V1V2-scaffold Abs will aid in its use under optimized vaccine regimens in future 

subtype-C-based SHIV challenge studies in NHPs and, if successful, in human clinical trials.

To this end, the wild-type (WT) C.1086 gp140 protein, which does not maintain well-formed 

trimer conformation, failed to induce autologous nAbs (Burton et al., 2019; Kasturi et al., 

2017; Styles et al., 2019). Two studies made efforts to stabilize C.1086 in a well-formed 

trimeric form (Guenaga et al., 2017; He et al., 2018). A study by Guenaga et al. (2017) 

showed that the addition of glycine substitutions in the gp41 region of C.1086 NFL in 

combination with multiple trimer-derived changes improved the generation of well-ordered 

trimers. However, immunization studies with such stabilized trimers, specifically evaluating 

the generation of both neutralizing and broad V1V2-scaffold-specific Abs, have yet to be 

reported. Here, we adopted consensus clade C V2 hotspot (V2-HS, residues [res.] 166–173 

in this study) sequence-guided mutational screening to design a C.1086 UFO-v2-RQH173 

variant, which was capable of inducing improved autologous neutralizing and broader 

V1V2-scaffold-specific responses in rabbits. Further, the study results also highlighted the 

contribution of residues in the V2-HS region in altering the ability of the trimer to display a 

native-like V1V2 epitope with time without affecting trimer integrity in vitro, and influence 

the generation of neutralizing and V1V2-scaffold-specific responses in rabbits.

RESULTS

Screening of C.1086 base variants to select UFO form as the parent construct for 
stabilization strategies

As initial steps to generate a stable C.1086 trimeric protein, we generated the SOSIP, 

NFL (+I559P), and UFO (without disulfide linkage SOS between A501 and T605) variants 

(schematic shown in Figure 1A) and compared their ability to form trimers using size-

exclusion chromatography (SEC). The proteins were expressed in 293F cells and purified 

by Galanthus nivalis lectin (GNL)-mediated affinity purification, followed by isolation of 

trimers by SEC. The majority of the SOSIP variants resulted in aggregates (only 23% 

trimer proportion) similar to the WT protein and were not characterized further (Figure 

1B). Both NFL and UFO variants formed higher proportion of trimers (means of 61% and 

50%, respectively; Figures 1B and 1C) relative to the SOSIP and WT proteins with net 

protein yields of 1.8 and 5.5 mg/L, respectively. In addition to a higher protein yield, the 

UFO form showed ~60-fold improved association kinetics against V1V2-apex-specific bnAb 

PG16 (Pejchal et al., 2010), resulting in a 44-fold improved binding (KD UFO, 252 nM, 

NFL, 11μM; Figures 1D, 1G, and S1A; Table S1) against PG16 and comparable binding to 

other bnAbs (±3-fold) relative to NFL. This prompted us to select UFO as the parent design 

to further improve the trimer.
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Structure-guided mutations in UFO backbone (UFO-v2) decrease exposure of non-
neutralizing epitopes and binding to CD4

Although the UFO form improved binding to PG16, it did not reduce binding to non-

neutralizing Abs relative to the NFL form (Figure 1D; Table S1). To minimize the exposure 

of non-neutralizing epitopes, we introduced three structure-guided mutations, T316W, E64K 

(de Taeye et al., 2015), and A433P (Kwon et al., 2015), that have been reported in the 

context of a BG505 SOSIP.664 trimer to improve hydrophobic interactions at the apex, 

restrict CD4-induced conformational changes, and reduce the exposure of the off-target 

V3 region. We named this variant UFO-v2 (Figure 1A). In previous studies, the WT and 

NFL-TD (i.e., NFL + “trimer-derived” TD stabilizing substitutions only) forms of the 

protein were reported to be insufficient in forming any well-formed trimers by negative-stain 

electron microscopy (EM) (Bontempo et al., 2020; Guenaga et al., 2017), while NFL-TD 

with additional stabilizing glycine substitutions in the HR1 region efficiently formed well-

formed trimers (63% and 62% by EM, respectively) (Guenaga et al., 2017). Here, variants 

with and without stabilizing changes, i.e., UFO and UFO-v2 constructs, yielded >70% well-

formed trimers by EM analyses (79% and 73%, respectively; Figures 1B and S2) and similar 

proportions of trimer fraction (50% for both variants; Figures 1B and 1C) based on their 

SEC profiles. However, UFO-v2 displayed markedly reduced binding to V2i 697-30D non-

nAbs (70-fold) and other non-nAbs (447-52D, 39F, and CH58; 6-, 14-, and 5-fold decrease 

in KD, respectively) along with no apparent binding to CD4i 17b and 48d non-nAbs relative 

to UFO, supporting the reduced exposure of non-neutralizing epitopes (Figures 1E and 

1F). The absolute affinity of UFO-v2 measured against non-nAbs is still high, and other 

stabilization strategies are required to further reduce this. UFO-v2 also displayed reduced 

binding to CD4-IgG2, which, however, did not affect recognition by CD4-binding site bnAb 

NIH-45-46G54W (Figures 1E, 1F, and S1A; Table S1), likely due to E64K substitution, 

which has been reported previously to reduce binding to CD4 (Liu et al., 2017). Both 

UFO and UFO-v2 exhibited similar binding (±3-fold change in affinity) to neutralizing Abs 

(Figures 1E and 1G; Table S1). Thus, structure-guided mutations introduced in the backbone 

of a C.1086 UFO (i.e., UFO-v2) trimer decreased the exposure of non-neutralizing epitopes.

Sequence-guided mutations at V2-HS region improve antigenicity of the V2 apex on C.1086 
trimers

Despite the minimized exposure of non-neutralizing epitopes, the UFO-v2 protein exhibited 

moderate affinity toward V1V2-apex-specific bnAbs (KD > 100 nM; Figures 1G and S1A; 

Table S1). In order to improve binding to this class of bnAbs and thereby stabilize the 

protein into a closed well-formed trimer, we optimized the V2-HS region (res 166–173 in 

the present study) on env carrying the signature binding residues to V1V2-apex-specific 

bnAbs (Bricault et al., 2019). To do this, we identified four positions, 166, 170, 172, and 

173, in C.1086 (UFO-v2) that differed from the clade C consensus V2-HS region (n = 

22,415 sequences; Figure 2A) and substituted them with either dominant or sub-dominant 

amino acids present in the consensus sequence as single, double, triple, or quadruple 

mutants (listed in Figure 2B, left). These mutants (referred to as UFO-v2 V2-HS mutants) 

were screened initially by ELISA to identify variants that enhanced binding to PGT145 

and other V1V2-targeting bnAbs. We observed that all designs bearing K166R significantly 

improved binding to PGT145 with minimal effects on binding to other env-specific Abs 
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(Figures 2B and S3A). The result was justified, as the previously solved structure of BG505 

SOSIP.664-PGT145 (PDB: 5V8L [Lee et al., 2017]) showed direct interaction between 

arginine at the 166 position and PGT145 HCDR3 loop and its preference for recognition by 

V1V2-apex-directed bnAbs (Bricault et al., 2019). V2-HS mutants K166R/H170Q/H173 

(UFO-v2-RQH173) and K166R/H170Q/H173Y (UFO-v2-RQY173) showed the strongest 

binding to PGT145 (Figures 2B and S3A) and, hence, were studied further. The K166R 

and H170Q V2-HS changes enhanced the proportion of C.1086 trimers (Figures 2C, left, 

and S3B). Similarly, a more distant clade A BG505 SOSIP.664 protein that has 166R and 

170Q residues in the WT sequence, displayed a reduction in the trimeric proportion when 

these residues were changed to those present in the WT C.1086 sequence (Figures 2C, right, 

and S3B). This suggested a plausible role of 166R and 170Q in improving the folding of 

the env protein and, thereby, forming higher proportion of trimers. The C.1086 UFO-v2 V2-

HS-purified proteins majorly folded into trimers, which was evident by blue native PAGE 

(BN-PAGE; Figure 2D) and EM (Figure S2). We anticipate that additional purification steps 

involving anion-exchange, hydrophobic interaction chromatography (Verkerke et al., 2016), 

and bnAb- and non-nAb-based positive and negative selections (Guenaga et al., 2015) would 

likely further improve the purity of the trimers. The purified trimers displayed 5- to 6-fold 

improved binding to PGT145 (average KD: 34 nM; Figures 2E, 2F, and S1A; Table S1) 

compared with the parent UFO-v2 that had no significant changes in affinity (±3-fold) 

toward other env-specific mAbs (Figure 2F; Table S1) by bio-layer interferometry (BLI). 

Binding affinities measured against V1V2 bnAbs PGT145 and PGDM1400 (Sok et al., 

2014) (Table S2) were similar to those reported previously for the stabilized C.1086 NFL-

TD variant (KD: 41 nM for PGT145 and 40 nM for PGDM1400 [Guenaga et al., 2017]), 

suggesting UFO-v2 V2-HS as an alternative strategy for stabilizing the C.1086 trimer. 

Previous studies have highlighted the enhanced sulfation of Tyr at 173 position to increase 

recognition by trimer-specific bnAbs (Cimbro et al., 2014). Here, we did not observe the 

sulfation of 173Y in C.1086 UFO-v2-RQY173 when analyzed by tandem mass spectrometry 

(MS/MS) electron-transfer/higher-energy collision dissociation (EThcD) experiments (Yu 

et al., 2017). Both 173 variants UFO-v2-RQ(H and Y)173 displayed similar Ab binding 

profiles (Table S1; Figure 2D). In summary, consensus C V2-HS sequence-guided changes, 

specifically K166R introduced to generate UFO-v2-RQ(H/Y)173 trimers, enhanced binding 

to V2-specific PGT145 bnAbs.

C.1086 UFO-v2-RQ(H/Y)173 trimers bear a highly dynamic V1V2 loop and show differences 
in their resilience to display V1V2 bnAb-reactive epitopes with time

To identify any potential structural differences between C.1086 UFO-v2-RQ(H/Y)173 trimer 

variants, we measured their backbone dynamics with hydrogen-deuterium exchange MS 

(HDX-MS) experiments. To eliminate spurious signals in the HDX-MS experiment, we 

repurified the proteins with hydrophobic interaction chromatography (HIC) to obtain highly 

monodisperse trimers. Both C.1086 UFO-v2-RQ(H/Y)173 trimers displayed similar HDX 

profiles for the peptides we could monitor, including res. 176–179 (proximal to 173 

position) in the V2 region, indicating no differences in the global and local structural 

organizations of the UFO-v2-RQ(H/Y)173 trimers, which was indeed consistent with their 

similar antigenic profiles (Figure S4; Table S1).
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A BG505 SOSIP.664 trimer was used as a reference for HDX-MS experiments due to its 

extensive structural characterization in previous studies (de Taeye et al., 2015; Guttman et 

al., 2014). The homologous peptic peptides between C.1086 and BG505 envs present at the 

gp120-gp41 interface; res. 35–52 and 484–501 were observed to be protected (Figures S4, 

3A, and S5A), which indicated that the trimers were well-folded (Verkerke et al., 2016). The 

C.1086 UFO-v2-RQ(H/Y)173 trimers showed overall high local structural dynamics at the 

apex and in portions of gp41 (Figures S5B, and 3A) and also relative to BG505 SOSIP.664 

trimer (Figures 3A, S5A, and S4). Notably, the base of V1 112WDESLKPCVKLTPL126 

and the peptide segment 176FYKL179 present in the V2 loop of env was found to be 

more dynamic in C.1086 UFO-v2-RQ(H/Y)173 than in the BG505 SOSIP.664 trimer, which 

is known to have a well-ordered V1V2 apex (Figures 3A, S5A, and S4). The C.1086 
176FYKL179 was the most dynamic (Figures 3A and S4). The increased flexibility of 

the V2 loop in the C.1086 UFO trimer compared with the BG505 SOSIP.664 trimer 

was further suggested by the enhanced binding of mAb CD58 (Liao et al., 2013) to the 

former compared with latter (Bontempo et al., 2020), which recognizes a linear V2 epitope 

generally displayed on a more flexible V2 antigen such as the gp70-V1V2 scaffold that 

lacks the native display of variable loops (Figure S1B). As expected, CH58 bound to the 

gp70-C.1086 V1V2 scaffold with a higher affinity than C.1086 UFO-v2 V2-HS trimers 

(Figures S1B and S1C).

Additionally, we were interested in probing whether residue alterations in the V1V2 region, 

here, 173H and 173Y changes, could influence the native integrity of the V1V2 apex of a 

trimer with time. To address this, we incubated UFO-v2-RQ(H/Y)173 immunogens at 25°C 

for 0 to 15 h and measured any change in binding kinetics against different mAbs scanning 

various epitopes on the trimer (Figure S5D), relative to time 0 (baseline). We noticed the 

largest reduction in binding affinity of the trimers to the V1V2 apex targeted bnAbs after 12 

h relative to other immunodominant epitopes targeting mAbs (bnAbs PGT151, NIH45-46, 

and PGT121; non-nAbs F105, 447-52D, 39F, and 697-30D), which, in contrast, were 

marginally affected (<3-fold reduction; Table S2; Figure 3B). Specifically, UFO-v2-RQY173 

showed a dramatic reduction in binding affinity toward V1V2-specific PG16 (mean of 

52-fold), PG9 (mean of 19-fold), and CAP256-VRC26.08 (mean of 5-fold) bnAbs as early 

as within 4 h of incubation, in contrast to no significant (<2-fold) reduction observed for 

UFO-v2-RQH173 (Figure 3B; Table S2). Similar observation was noted for UFO-v2-RQY173 

relative to UFO-v2-RQH173 against other V1V2 bnAbs, PGT145, PGDM1400, and V2p 

CH58 after 12 and 4 h of incubation, respectively. This time-dependent significant reduction 

in affinity of UFO-v2-RQY173 versus UFO-v2-RQH173 was observed to be driven by 

significantly reduced association rates, without much change in the dissociation rate (Figure 

S5C; Table S2). Epitopes on the trimer showing reduced accessibility to Abs after prolonged 

incubation included V2 B-C β-strands carrying the binding footprint of the V1V2-apex-

specific bnAbs (Bricault et al., 2019) and a V2 C β-strand on the trimer harboring the linear 

V2 epitope recognized by CH58 V2p non-nAbs but in a helix/coil conformation (Liao et al., 

2013) (Figures S5D–S5F). The V2 C β-strand harbors the 173 position (Figure S5E). Here, 

the 173Y trimer variant demonstrated reduced durability in displaying the epitope reactive to 

V1V2 bNAbs with time compared with UFO-v2-RQH173 in vitro, although the two C.1086 
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UFO-v2-RQ(H/Y)173 variants displayed similar Ab binding profiles for V1V2-apex-specific 

bnAbs (Table S1) at baseline time 0.

In summary, the C.1086 trimers (UFO-v2-RQ(H/Y)173) exhibited higher V2 loop dynamics 

and accessibility relative to the well-characterized BG505 SOSIP.664 trimer. His and 

Tyr V1V2 point variants at the 173 position of C.1086 trimers displayed overall similar 

structural dynamics but exhibited differences in their resilience to display the V1V2 epitope 

accessible to native apex-targeting bnAbs overtime (in vitro) without any effect on the trimer 

integrity.

C.1086 UFO-v2 variants induce higher trimer-specific responses in rabbits

We next investigated if the modifications introduced in C.1086 UFO designs could improve 

immune responses induced by vaccination relative to the WT protein and also influence the 

quality of responses (will be discussed in subsequent sections), given the observations that 

the C.1086 trimer carried a highly dynamic V1V2 loop and UFO-v2-RQ(H/Y)173 variants 

exhibited differences in time-dependent V1V2 epitope stability. To this end, we vaccinated 

female New Zealand rabbits (10–12 weeks old, n = 4 per group) subcutaneously with 

either (1) WT, (2) UFO, (3) UFO-v2, (4) UFO-v2-RQH173, or (5) UFO-v2-RQY173 proteins 

(30 μg each immunization, 375 U immune-stimulating complex [ISCOM] as adjuvant) at 

weeks 0, 8, 24, and 40 and bled them 2 weeks after each immunization to characterize 

their serum responses (Figure 4A). All rabbits, regardless of immunization group, elicited 

similar binding Ab responses against WT C.1086 gp140, which was monitored 2 weeks after 

the final boost (Figure 4B, left). All groups manifested moderate (ranging 104–106 ELISA 

endpoint titers without outliers) trimer-specific Ab responses after the first immunization, 

followed by a maximum of a 237-fold average boost in responses after the second protein, 

and a 14- and 27-fold average boost after the third and fourth proteins, respectively 

(Figure S6A). All UFO-v2 variants induced higher trimer-specific binding Abs than did 

WT; specifically, UFO-v2-RQH173 and UFO-v2-RQY173 groups displayed 39-fold higher 

responses (p = 0.03 with respect to WT in each case; Figures 4B, right, and S6B). Although 

all groups, including WT, induced comparable responses against the unwanted V3 peptide 

(Figure 4C, left), we observed significantly lower V3 responses normalized to the total 

trimer-specific responses in all UFO backbone-bearing groups relative to WT (Figure 4C, 

right). Similar levels of V3-specific Abs were observed in UFO-v2-RQH173 and UFO-v2-

RQY173 groups, which was supported by similar V3 backbone dynamics (318YATGDIIG324 

region) of the proteins monitored by HDX experiments (Figure S4). In summary, higher 

proportions of trimer-specific binding Abs were induced by all C.1086 UFO-v2 variants in 

rabbits.

UFO-v2-RQH173 induces highest anti-viral Ab responses and binding Abs to membrane-
anchored tier2 envs

We investigated if the changes introduced in the designs influenced (1) the generation of 

neutralizing Abs and (2) the recognition of membrane-anchored diverse tier1 and tier2 

full-length envs. In addition, we were interested in understanding if differences at the 

173 position, i.e., H or Y (as in UFO-v2-RQH173 and UFO-v2-RQY173) would influence 

the nature of immune responses generated (this will be discussed below for clarity). We 
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assayed nAb responses against homologous and heterologous tier2 pseudotyped envs and 

their binding to membrane-anchored gp160s constituting the tier1 and tier2 global panels. 

We used purified IgG to eliminate sporadic low-level background and to be sure that the 

activity was mediated by IgG. IgG from all animals showed strong nAb titers against 

tier1 env MW965.26 (Figures 4D, 4E, right, and S6C; Table S3). C.1086 WT has been 

previously found to be inefficient in eliciting homologous neutralization titers (Kasturi et 

al., 2017; Styles et al., 2019). IgG from WT and UFO-immunized animals induced only 

sporadic clade C tier2 responses and increased only marginally in UFO-v2-immunized 

animals. However, UFO-v2 V2-HS changes in UFO-v2-RQH173 resulted in the induction 

of overall better neutralization titers against homologous (C.1086 K160N RQH173 and 

C.1086 K160N RQY173) and heterologous (25710) pseudotyped viruses than WT and UFO 

did in a combined analysis (p = 0.003 and 0.0006, respectively) (Figures 4D and 4E, 

left). Additionally, groups immunized with UFO variants showed sporadic induction of 

moderately better neutralizing responses against the tier2 X1632 (clade G) pseudovirus than 

the WT (Table S3). Weak/negligible responses was measured for all groups against other 

tier2 pseudoviruses tested (Table S3).

In an attempt to evaluate the ability of the serum to recognize diverse full-length envs, 

we monitored the binding of purified serum IgGs to 293T cells expressing membrane-

anchored gp160, including the tier1 and tier2 global panels (deCamp et al., 2014) of envs 

(representative plots in Figure S6D). Reactivity to the env panel was poor in WT and 

UFO groups and increased significantly in UFO-v2 and UFO-v2-RQH173 groups, with 

UFO-v2-RQH173 showing the highest responses (Figure 4F). As anticipated, the serum Ab 

binding responses to membrane-anchored envs correlated positively with the neutralization 

responses measured against corresponding pseudotyped envs (Figure 4G). Also, C.1086 

trimer-reactive serum Abs correlated positively with binding responses measured against 

their full-length gp160 forms (p = 0.002; Figure S6E), suggesting immunization with 

optimized C.1086 trimers to help in the generation of Abs recognizing full-length envs. 

In total, these results demonstrated the UFO-v2 changes introduced to stabilize the trimer 

resulted in induction of better autologous neutralizing and cell-surface env-binding Ab 

responses relative to WT protein, and the V2-HS changes K166R and H170Q in UFO-v2 

(i.e., UFO-v2-RQH173) further enhanced these responses.

173Y modification in UFO-v2-RQH173 marginally reduces induction of functional Ab 
responses

To understand the contribution of 173Y in the induction of functional Ab responses, we 

compared neutralizing, Ab-dependent cell-mediated virus inhibition (ADCVI) and the cell-

surface env-binding activity of IgGs purified from the UFO-v2-RQY173 group. In all cases, 

we observed a modest decrease in responses in the UFO-v2-RQY173 group compared 

with in the UFO-v2-RQH173 group (Figures 4D, 4E, left, 4F, and 4H), indicating that 

173Y modification can negatively influence the induction of functional Ab responses in the 

context of UFO-v2-RQH173. This observation prompted us to investigate if 173Y would be 

selected over 173H in natural HIV-1 isolates, as it elicited weaker anti-viral responses. To 

address this, we analyzed the V2-HS region (res 166–173) of clade C consensus sequences 

from tier1, tier2, and tier3 isolates categorized by Rademeyer et al. (2016). We observed 
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increased occupancy of highly conserved Tyr and reduced occupancy of the sub-dominant 

His residue at 173 position as the tier level (or the difficulty level to neutralize the virus) 

increased from tier1 to tier3 (Figure 4I; tier1: Y 60% and H 15%, tier2: Y 67% and H 

9%, tier3: Y 77% and H 7%). These data corroborated with the possible selection of Tyr at 

the 173 position in the viral envs to increase its chances to escape the immune system by 

decreasing its tendency to elicit anti-viral responsive Abs, relative to 173H. The presence 

of Tyr or His at the 173 position in the backbone of the C.1086 env did not influence its 

infectivity, in the absence of any immune pressure (Figure S6F). It will be important to 

monitor infectivity of the variants in other cell types. It should be noted that the sequence 

analysis was limited by the number of tier-categorized clade C sequences available, and 

173 was not the only position being influenced by the tier level. In summary, the choice of 

residue (here, H/Y) at the 173 position in C.1086 UFO-v2-RQ(H/Y)173 trimers was capable 

of tuning the generation of Abs with anti-viral functions, which is an important implication 

for vaccine design.

173Y modification in UFO-v2-RQH173 enhances the breadth of V1V2-scaffold-specific 
responses

To evaluate the ability of the C.1086 variants to induce broad V1V2 scaffold responses, 

we assayed the binding of the serum to gp70-V1V2 scaffold proteins from 16 HIV-1 

strains spanning diverse clades by binding antibody multiplex assay (BAMA) (Zolla-Pazner 

et al., 2014) in addition to monitoring this against the homologous strain by ELISA. 

Rabbits immunized with the UFO variants induced higher homologous V1V2-scaffold-

specific responses than the WT protein; the highest titers (measured by ELISA) were 

seen in the UFO-v2 V2-HS groups (Figure 5A). All immunogens generated cross-reactive 

V1V2-scaffold-specific Abs (Figures 5B and S6G), which were overall significantly higher 

and broader in all UFO-v2 variants than in the WT (Figure 5C). Interestingly, UFO-v2-

RQY173 elicited markedly higher V1V2-scaffold-specific responses (Figure 5B), with higher 

recognition breadths (p < 0.001; Figure 5C) than UFO-v2-RQH173. The results indicated 

favorable contributions of UFO-v2 in enhancing the cross-reactive V1V2-scaffold breadth, 

which was further enhanced by 173Y in combination with the V2-HS changes (K166R/

H170Q). The high V2 loop dynamics and accessibility of this region on C.1086 trimers, as 

measured by HDX-MS, may potentially explain the ability of C.1086 UFO-v2 well-formed 

trimers to elicit Abs that show a broad range of V1V2-scaffold binding. Additionally, lesser 

time-dependent V1V2 epitope stability of UFO-v2-RQY173 relative to UFO-v2-RQH173 

may potentially explain the higher scaffold V1V2 recognition breadth of UFO-v2-RQY173 

immunized serum relative to its counterpart. Serum Ab responses measured specific to gp70 

V1V2-scaffold envs correlated positively with binding responses specific to corresponding 

membrane-anchored envs (Figure S6I). It should be noted that the overall frequency of 

env+ cells showing binding to serum IgG was low compared with the frequency of env+ 

cells showing binding to PGT121, PGT145, and PG16 bnAbs (Figure S6H). The lower 

frequencies of env+ cells are expected with polyclonal sera compared with high-affinity 

monoclonal Abs.

Principal-component analysis (PCA) of the immunogenicity data segregated UFO-v2-

RQH173 and UFO-v2-RQY173 into two separate clusters, implying true differences in 
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immune responses elicited due to changes at the 173 position (Figure 5D). V2-HS changes 

and optimizations in the presence of 173Y (UFO-v2-RQY173) did not seem to additionally 

influence immunogenicity and thereby clustered (rabbit #537 being the outlier) with the 

ancestor UFO group, unlike UFO-v2-RQH173, which clustered separately from both UFO 

and UFO-v2 groups. The most notable variables significantly (p < 0.05) contributing toward 

these differences in PCA responses were the binding to V1V2 scaffolds of tier2 homologous 

and heterologous envs, membrane-anchored tier2 25710 env and neutralization against 

25710 pseudotyped virus (Figure S6J). Overall, these data suggested an important role of 

V2-HS residues, particularly the 173 position in modulating the immune responses, with the 

nature of the residue as the governing player.

Trimer stabilizing modifications induce Abs that compete with CD4bs-specific bnAbs

To gain insights into the epitope specificity of the Ab responses induced by the immunogen/

trimer modifications, we performed competition binding experiments between rabbit serum 

and a panel of well-characterized bnAbs by BLI (representative responses shown in Figure 

6A). We observed the generation of CD4bs-specific Abs in all UFO-v2 backbone-bearing 

groups competing with NIH45-46G54W and modestly competing with HJ16 in rabbits with 

a half maximal inhibitory concentration (IC50) <400 μg/mL (Figure 6B). The percentage of 

competition with NIH45-46 correlated positively with the homologous C.1086 neutralization 

IC50, the concentration of IgG required for 50% neutralization of the pseudovirus (p = 0.002, 

r = −0.6; Figure 6C). These results demonstrated early signs of the plausible presence 

of CD4bs neutralizing Abs in the serum. To probe residue-wise binding/neutralization 

specificity of the Abs, we created a series of CD4bs mutants in C.1086 K160N RQH173 

background: N279Q, N280D, S365K, I371A, G458Y, G459(E/P); only N279Q and N280D 

yielded infectious units. We observed reduced neutralization of N279Q (in a few) and 

N280D knockout (KO) mutant viruses (5-fold median reduction in IC50 relative to parent 

C.1086 K160N RQH173 in all purified IgGs tested, regardless of the immunization group; 

Table S3). This suggested the presence of CD4bs Abs in the serum that were different 

from the VRC01 class of bnAbs (VRC01-class CD4bs bnAb activity is dependent on N280 

[Lynch et al., 2015]); further analyses are needed to identify the fine specificity of the 

neutralizing activity in these sera. Interestingly, rabbit #537 (IC50 against C.1086 RQH173 

= 173 μg/mL) immunized with UFO-v2-RQY173 seemed to have elicited V1V2-specific 

Abs competing against prototype PG16 (99%), PG9 (86%), VRC26.09 (64%), PGDM1400 

(54%), and PGT145 (48%) bnAbs besides eliciting CD4bs-specific Abs in the serum 

(Figures 6B and 6C). None of the rabbits elicited V3-glycan-specific (PGT121-like) Abs. 

Most rabbits bearing CD4bs bnAb epitope specificity also exhibited non-neutralizing V3- 

(39F-like), V2p- (CH58-like) and V2i- (697-30D) targeting Abs. The CAP228-16H V2p 

Ab recognizes both 173H- and 173Y-bearing V2 peptides, unlike CH58, and exhibit potent 

antibody-dependent cell-mediated cytotoxicity (ADCC) activities (van Eeden et al., 2018). 

Encouragingly, our data suggested the presence of CAP228-16H-like Abs in all rabbits 

vaccinated with UFO-v2-RQH173, in contrast to only one out of four rabbits (rabbit #537) 

in the UFO-v2-RQY173 group. Overall, the stabilized UFO variants were able to induce 

CD4bs-directed, and one instance of V1V2-binding Abs which competed for binding with 

bnAbs specific for those epitopes.
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DISCUSSION

Here, using structure- and sequence-guided strategies, we engineered the C.1086 env protein 

to form well-folded, stable gp140 trimers that elicit Abs in rabbits with improved functional 

tier2 anti-viral activities and broad V1V2-scaffold-specific binding responses compared with 

WT proteins, where past attempts using WT variants were reported to be inefficient in 

eliciting any homologous nAb responses (Burton et al., 2019; Kasturi et al., 2017; Styles 

et al., 2019). The SOSIP variant of C.1086 mostly yielded aggregates, as observed earlier 

for other env sequences (Guenaga et al., 2015), while the NFL and UFO forms generated 

higher fractions of trimers with better binding to some of the bnAbs. In addition, the UFO 

form showed better binding to PG16, and the introduction of the structure-guided mutation 

A433P in combination with E64K/T316W (UFO-v2 variants) significantly reduced binding 

to non-nAbs while preserving strong binding to nAbs and trimer integrity. Furthermore, 

our results showed that the V2-HS stabilization changes of Arg at position 166 markedly 

enhanced binding to PGT145 and, together with Glu at position 170, improved the fraction 

of C.1086 trimers. As these V2-HS changes were derived from a consensus C sequence, 

they are likely to translate to other envs. This was evident by their effect on improving 

the proportion of trimers in case of a more distant and well-characterized clade A BG505 

SOSIP trimer. Together, our results identified critical residues that regulate the formation of 

stabilized trimers of a clade C protein and highlighted the contribution of amino acids in the 

V2-HS for improving trimer formation and antigenicity for V2-directed bnAbs.

Our results showed that the stabilization of C.1086 env trimers resulted in the induction of 

Ab responses in rabbits that bind better to trimeric proteins and recognize multiple tier2 envs 

expressed on the cell surface. The UFO-v2 variant with His at position 173 in the V2-HS 

region induced the highest nAb response. The stabilization also markedly improved the 

induction of Ab responses with broad reactivity against diverse V1V2-scaffold proteins. The 

stronger induction of nAb responses with greater stabilization of the protein was expected; 

however, a stronger induction of V1V2-scaffold binding Ab responses was unexpected, since 

the V1V2 scaffolds do not present the V1V2 loops in native conformation. Mechanistically, 

our results showed that the V1V2 loops in C.1086 UFO-v2 trimers were more dynamic 

relative to the BG505 SOSIP trimer, which is known to have a well-structured V1V2 apex 

and, hence, may be a potential factor responsible for the induction of broad V1V2-scaffold 

binding Abs by stabilized C.1086 UFO-v2 variants.

Previous studies have shown that substituting Tyr at the 173 position of the HIV env to either 

Ala or Phe altered neutralization sensitivity specific to an “open” conformation (Cimbro 

et al., 2014; Guzzo et al., 2018), suggesting the important role of the 173 position in 

regulating native env conformation. Located in the V2 C β-strand, residue 173 is adjacent 

to N156 and its associated glycan, which is spatially proximal to glycan at N160. N156 

has been shown to be involved in recognition by V2-apex-targeting bnAbs, including PG16 

and PGT145 (Lee et al., 2017; Pancera et al., 2013). Loss of N156 GlcNAc on the env 

has been reported to alter the inter-V2 strand interaction and form aberrant trimers (Lee 

et al., 2017) and non-infectious pseudovirus particles (data not shown). Here, though the 

amino acid type at the 173 position of C.1086 UFO-v2-RQ(H/Y)173 trimers did not alter 

the local structural order of proximal peptides (“FYKL” res. 176–179) monitored by HDX-
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MS, it is conceivable that the side-chain choice at the 173 position might influence the 

disposition of the glycan chain at N156 and its associated interactions with the V1V2 trimer-

specific bnAbs. Based on time-dependent BLI data, where UFO-v2-RQH173 displayed 

higher durability in maintaining the V1V2-apex-specific antigenicity for an extended time 

period in vitro relative to UFO-v2-RQY173, 173H is likely to favor this interaction over 

173Y in the context of C.1086 UFO-v2-RQ(H/Y)173 trimers. Additionally, it is possible that 

the amino acid type at this position may influence the ability of well-formed trimers to form 

higher order oligomers, such as larger assemblies of trimers, when the proteins are incubated 

at 25°C for an extended time period and occlude/alter accessibility of the V1V2 epitope for 

recognition by V1V2 trimer-specific bnAbs. Such an interaction would be consistent with 

the formation of larger and more heterogeneous species over time by UFO-v2-RQY173, as 

monitored by dynamic light scattering (DLS) at 25°C at a relatively higher frequency than 

UFO-v2-RQH173 (data not shown) and agree with the time-dependent V1V2 trimer-specific 

affinity differences, particularly against PGT145 measured for the proteins. These structural 

differences, as one of the potential factors, may help explain some of differences in immune 

responses observed for the 173 position variants in vivo in this study. Accessibility of the 

V1V2 quaternary epitope present at the apex of the trimer could influence the induction of 

Abs with anti-viral functional activities (e.g., neutralization, ADCVI, and ADCC responses), 

V1V2-scaffold-specific binding responses, and the protective efficacy of the immunogen 

in an animal challenge study. Increased V1V2-scaffold Abs have been correlated with a 

reduced risk of viral acquisition and anti-viral activities, e.g., ADCC. However, the UFO-

v2-RQY173-immunized group, exhibiting the highest V1V2-scaffold binding Abs, showed 

minimal anti-viral ADCVI activity. This could be due to (1) differences in the assays or (2) 

the nature of the V1V2-scaffold Abs induced by 173Y and other studies, including those 

generated by the 173H variant which needs in-depth study.

The RV144 vaccine regimen included priming with a canarypox vector, the ALVAC-HIV-

expressing subtype AE env, and boosting with bivalent subtype B/E gp120s. To measure 

the immune responses elicited by the RV144 trial regimen in South Africa, HVTN097 

(Gray et al., 2019) and HVTN100 (Bekker et al., 2018) clinical trials were conducted. 

The HVTN097 study used the same clade AE and B/E env immunogens that were used 

in the RV144 vaccine regimen, and the protein was adjuvanted with Alum. The HVTN100 

study also used the RV144 regimen but with subtype-C-based immunogens (C.1086 and 

TV1), and the protein was adjuvanted with MF59. Recent evaluations (Shen et al., 2020) 

of the responses elicited by both studies showed that the HVTN100 trial elicited a higher 

binding Ab response to homologous V1V2 scaffolds than the HVTN097 trial. Despite this, 

the V1V2-scaffold binding to heterologous clade C envs in the HVTN100 was significantly 

lower than that induced by the HVTN097 sera. These results indicated that the clade 

C gp120s used in the HVTN100 trial possibly lacked the ability to induce broad V1V2 

reactive responses, which were important immune correlates of protection in the RV144 

trial. In this context, our results showed that the C.1086 trimer, whose V2-HS region was 

modified based on the consensus C sequence, displayed improved induction of Abs reactive 

to V1V2 scaffolds both in terms of magnitude and breadth. This emphasizes the importance 

of optimizing the V2-HS region of immunogens in future clinical trials to induce broad 

V1V2-specific Abs.
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To evaluate the efficacy of the HVTN100 vaccine regimen, the HVTN702 phase IIb/III trial 

(Gray et al., 2021) was conducted. Unfortunately, the HVTN702 trial failed to show any 

vaccine efficacy, and multiple factors could have contributed to the failure. One possible 

reason could be due to the lack of generation of strong and broad V1V2-scaffold-reactive 

Ab responses by the C.1086 gp120 immunogen. Another important difference between the 

RV144 and HVTN702 trials was the adjuvant used with protein immunizations: alum was 

used in the former, and MF59 in the latter. Coincidentally, an NHP study that evaluated 

the RV144 regimen with alum and MF59 as adjuvants using SIV immunogens and SIV 

challenge showed protection with alum but not MF59 (Vaccari et al., 2016). However, more 

work and analyses will be required to understand the mechanisms that contributed to the 

failure of HVTN702.

The next steps for the clinical translation of the results from rabbits to humans will be to test 

if these optimized clade C env immunogens elicit strong and broad nAb and V1V2-scaffold 

responses in NHPs, and if they enhance protection against heterologous clade C SHIV 

challenge. If successful, the immunogens can be advanced for human testing. In this regard, 

our data also showed the contribution of the optimized V2-HS changes in enhancing the 

expression levels of the trimer and in improving the neutralization potency of the immune 

responses elicited, which are added advantages to the immunogen. The optimized trimer was 

stable at 25°C for at least 24 h. In total, the C.1086 trimer developed in this study displayed 

multiple benefits to serve as guide for the design of immunogens in clinical translational 

studies.

In summary, we generated a clade C C.1086 trimer capable of simultaneously inducing 

functional autologous tier2 virus-reactive Abs as well as broad V1V2-scaffold-specific 

responses in rabbits. In addition, our results highlighted the influence of V2 residues 

His or Tyr at the 173 position in altering the durability in displaying V1V2 epitopes 

reactive to V1V2 bNAbs with time in vitro, and in combination with the highly dynamic 

V1V2 region of C.1086 trimers modulated the induction of V1V2-scaffold and functional 

Ab responses. Identification of 173(H/Y)-like residues by high-throughput screening and 

sequence analyses across various regions of the env surface may improve our fundamental 

understanding of linking the relationship between fine-tuned antigen design and immune 

outcome.

Limitations of the study

The findings of the study are limited to immunogens designed using only the C.1086 

env and hence require an extension to multiple clade C and cross-clade envs to score 

generalizability of the findings. Additionally, conducting the study with a higher number 

of animals will strengthen the study findings. Vaccine-specific Abs generated in different 

model organisms differ from each other (Escolano et al., 2021). Thus, as discussed above, 

it will be important to measure the immune responses elicited by the V2-HS variants of the 

optimized C.1086 env in NHPs and compare the results with those obtained in the present 

study.
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STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the lead contact, Prof Rama Rao Amara 

(ramara@emory.edu).

Materials availability—All unique mutant plasmids generated in this study may be 

requested from the authors with a completed Materials Transfer Agreement.

Data and code availability

• Native gel image reported in the manuscript has been deposited at Mendeley, 

https://doi.org/10.17632/9zp2hh598z.1. 2D class average image of purified 

C.1086 gp140 variants by negative-stain electron microscopy has been included 

in the manuscript supplementary data. The raw data will be shared by the lead 

contact upon request.

• The study did not generate/analyze any dataset/code and does not report any 

original code.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animal subjects—Female New-Zealand white rabbits (10–12 weeks old, n=4 per 

immunization group) were used in the study. The rabbits were housed and immunized at 

Covance Laboratories, Inc., Denver, PA, USA in compliance with IUCUC protocol 0065–18.

Microbial, viral strains and primary cell culture—NEB® 5-alpha E. coli (NEB), 

NEB® Stable Competent E. coli (NEB) cells were used for transformation and plasmid 

preparations as indicated in the Methods. The cells were grown at 37°C and 30°C 

respectively. Tier2 Clade C SHIV 1157ipD3N4 was generously provided by Dr. Ruth 

Ruprecht and the HIV reagent resource. The virus stock was stored in liquid N2, and thawed 

on ice for use as required. HEK 293T (American Type Culture Collection, ATCC) and TZM-

bl cells (NIH AIDS Reagent Program) were grown in DMEM medium supplemented with 

fetal bovine serum (10%), penicillin (100U/ml), streptomycin (100μg/ml), and L-glutamine 

(2mM), incubated at 37°C, 5% CO2. CEM-NKr CCR5+ (NIH AIDS Reagent Program) 

cells were grown in RPMI medium supplemented with fetal bovine serum (10%), HEPES 

(25mM), primocin (100μg/ml), and L-glutamine (2mM), incubated at 37°C, 5% CO2.293F 

cells were grown in Expi293™ Expression Medium, incubated at 37°C, 8% CO2, 130 rpm.

METHOD DETAILS

Immunizations in rabbits—Five C.1086 immunogens viz. WT, UFO, UFO-v2, UFO-

v2-RQH173, UFO-v2-RQY173 were tested for their immunogenicity responses in female 

New-Zealand white rabbits (n=4 per group). Each rabbit was immunized subcutaneously 

with group specific protein (30μg/dose) on the neck (dorsal area), formulated with 375U of 
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ISCOM as adjuvant (from Darrel J. Irvine, Howard Hughes Medical Institute) on weeks 0, 8, 

24 and 40. Serum was collected before (pre-bleed) and two weeks after each immunization 

to monitor the antibody responses.

Design of C.1086 constructs and mutagenesis—All C.1086 proteins generated 

in the study correspond to 31–664 residues (HxB2 numbering) of C.1086 sequence 

(Genebank id FJ444392.1) and contain K160N (improve binding to PG9 bnAb), V295N 

(2G12 binding) and N334S (improve binding to PGT121 and 10–1074) mutations. 

C.1086 WT (508RRRRRR511 or 508R6511 to increase furin cleavage efficiency), SOSIP 

(A501C/T605C, 508RRRRRR511) (Sanders et al., 2013), NFL (Native Flexibly Linked, 

I559P, 508(GGGGS)2
511) (Sharma et al., 2015), UFO (Uncleaved preFusion Optimized, 

508(GGGGS)2
511, 547NPDWLPDM569, no disulphide linkage A501C-T605C) (Kong et al., 

2016), UFO-v2 (508(GGGGS)2
511, 547NPDWLPDM569, E64K/T316W/A433P) env inserts 

with GMCSF leader sequence (MWLQGLLLL GTVACSIS) were synthesized by GenScript 

and subcloned between ClaI and NheI sites of pGA1 vector (KanR). For generating 

V2 hotspot (HS) mutants, residues 166–173 in V2 hotspot region of C.1086 differing 

from the Clade C Consensus sequence i.e. positions 166,170,172 and 173 were mutated 

to either dominant and/or sub-dominant amino acids present in the consensus sequence. 

Mutagenesis was done by inverse PCR using non-overlapping forward and reverse primers. 

The mutant codon was present at the 5’ end of the forward primer(Jain and Varadarajan, 

2014). pGA1 vector (KanR) expressing C.1086 UFO-v2 was used as the parent/template 

for V2-HS PCR reactions. NEB® 5-alpha E. coli cells (NEB, catalog no C2987H) 

and Sanger sequencing were used to transform, screen and confirm the positive clones 

respectively. Mutant pCDNA3.1 full length C.1086 K160N env bearing plasmids (used in 

neutralization mapping assays) were generated by introducing mutant codons as described 

above using pCDNA3.1 C.1086 K160N vector (AmpR) as template for PCR reactions 

and transformation of the blunt ligated mixture in NEB® Stable Competent E. coli cells 

(NEB, catalog no C3040H, 30°C). To generate gp70 C.1086 V1V2 RQ(H/Y)173 constructs, 

gp70 (design of gp70 V1V2 has been described previously (Zolla-Pazner et al., 2014)) 

was synthesized by Genescript in frame with C.1086 V1V2 (res. 120–204; K166R/H170Q 

for C.1086 V1V2 RQH173 and K166R/H170Q/H173Y for C.1086 V1V2 RQY173) at its C 

terminus, and GMCSF leader sequence followed by 6xHis tag in-frame at its N terminus, 

and sub-cloned between ClaI and NheI sites in pGA1 vector. The BG505 SOSIP env insert 

(Genebank id ANG65466.1, res. 31–664, A501C/T605C/T332N, 508RRRRRR511, (Sanders 

et al., 2013)) was synthesized by Genescript with GMCSF leader sequence at its N terminus 

and sub-cloned between ClaI and NheI sites of pGA1 vector. To generate V2-HS mutants of 

BG505 SOSIP, we used inverse PCR using non-overlapping forward and reverse primers as 

described above for generating C.1086 V2-HS mutants.

Gp70_sequence:
N_terminusVYNITWEVTNGDRETVWAISGNHPLWTWWPVLTPDLCMLALSGPPHWGL

EYQAPYSSPPGPPCCSGSSGSSAGCSRDCDEPLTSLTPRCNTAWNRLKLDQVTHKSSE

GFYVCPGSHRPREAKSCGGPDSFYCASWGCETTGRVYWKPSSSWDYITVDNNLTTS

QAVQVCKDNKWCNPLAIQFTNAGKQVTSWTTGHYWGLRLYVSGRDPGLTFGIRLR

YQNLGPRVPIGPNPVLADQLSLPRPNPLPKPAKSPPC_terminus.
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Purification of protein—The env gp140 glycoproteins cloned in KanR pGA1 plasmid 

were transiently expressed from Expi293F cells using the ExpifectamineTM 293 

transfection kit (ThermoScientific) per manufacture’s protocol and grown at 37°C, 8% CO2 

at 130rpm. The supernatant was harvested 72hrs after transfection in presence of EDTA 

free protease inhibitor (Millipore Sigma, catalog no 11836170001) and affinity purified by 

Galanthus nivalis lectin agarose (Vector Labs, catalog no AL-1243-5, pre-equilibrated with 

PBS). Bound protein was eluted in presence of 1M methyl α-D-mannopyranoside (Sigma). 

The protein was dialyzed against PBS and subjected to size-exclusion chromatography 

using a Superdex 200 Increase 10/300 GL (Sigma, GE Healthcare product) column on an 

AktaTM Pure (GE) system. The trimeric peak was collected, concentrated using Amicon 

Ultra-4, MWCO 100kDa, and quantified by BCA assay (Pierce™, ThermoScientific). To 

obtain highly monodisperse trimeric population for HDX-MS and DLS experiments, an 

additional hydrophobic Interaction chromatography (HIC) based purification (described by 

Verkerke, et al., 2016 was done on SEC purified protein samples prior to experiments. 

The proteins purified from SEC were dialyzed against a high salt buffer A (2M NH4SO4, 

100mM NaH2PO4, 0.02% sodium azide; pH 7.4), bound to a pre-equilibrated (high-salt 

buffer A) Hitrap Phenyl HP column (Cytiva, catalog no 17519501), and eluted using 

a linear gradient (0–100%) of low salt buffer B (0.1M NaH2P04, sodium azide 0.02%, 

pH 7.4) using an Akta™ Pure system (GE). The eluates containing trimeric peak of 

interest were pooled, dialyzed against PBS, concentrated and quantified. In all cases, the 

trimeric status and purity of the proteins were confirmed by BN-PAGE (NuPAGE™, 4–

12% Bis-Tris Protein Gels, ThermoScientific). The gp70 V1V2 proteins were purified by 

His based affinity purification, using HisPur™ Ni-NTA resin (ThermoFisher, catalog no 

88221), as described in the manufacturer’s protocol. Briefly, the supernatant was diluted 

(1:1) in equilibration buffer (20mM sodium phosphate, 300mM sodium chloride, 10mM 

imidazole in PBS, pH 7.4) and bound to HisPur™ Ni-NTA column (pre-equilibrated with 

equilibration buffer). The column was washed with wash buffer (25mM imidazole in PBS; 

pH 7.4) to remove non-specific loosely bound proteins, followed by elution of the protein 

in presence of 250mM imidazole in PBS, pH 7.4. The eluted protein was dialyzed against 

PBS, concentrated using Amicon Ultra-4, MWCO 10kDa, and quantified by BCA assay. 

The purity of the protein was monitored by SDS-PAGE, and western blot. BG505 SOSIP 

T332N protein used as reference in mass spectrometry-based experiments was expressed 

from pPPI4 vector (kindly provided by Dr. John P. Moore, Cornell University, NY, USA) in 

293F cells and purified as described above for C.1086 env gp140 constructs. For all assays 

using rabbit purified IgGs, IgG was purified from immunized rabbit serum using Pierce™ 

Protein A IgG Purification Kit (ThermoFisher, cat. No. 44667) and dialyzed against PBS, 

as per manufacturer’s instructions. The protein was concentrated using Amicon Ultra-4, 

MWCO 30kDa, and quantified by BCA assay.

Negative stain electron microscopy (NS-EM)—Protein samples were diluted to 0.02 

mg/ml, applied to a carbon coated Cu400 grid, and stained with 2% (w/v) uranyl formate for 

30–60 s. Data were collected on an FEI Tecnai Spirit T12 transmission electron microscope 

operating at 120 keV and equipped with a Tietz TVIPS CMOS camera. A magnification 

of 52,000x was used, resulting in a physical pixel size at the specimen plane of 2.05 

Å. Data was collected using the Leginon software package (Suloway et al., 2005), and 
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processing (particle picking and stack creation) was performed in Appion (Lander et al., 

2009). Two-dimensional classifications were performed using MSA/MRA method described 

by (Ogura et al., 2003). Class averages were inspected manually and compared to previously 

published 2D class averages of HIV-1 Env SOSIP trimers (for example see (de Taeye et al., 

2015)).

Enzyme-linked immunosorbent assay (ELISA) to screen V2 hotspot (HS) 
mutants for enhanced binding to V1V2 specific bnAbs—C.1086 V2 hotspot env 

mutant supernatants collected 48hrs after transient transfection of 293T cells were screened 

for increase in binding to PGT145 than the parent C.1086 UFO-v2. Env supernatants were 

immobilized onto ConA (Sigma, catalog no C2272, 25μg/ml in HEPES buffer i.e.,10mM 

HEPES, 151mM NaCl, 4.7mM KCl, 2mM CaCl2, 1.2mM MgCl2, 7.8mM Glucose, pH 

8.5) coated ELISA maxisorp microtiter plates (ThermoFisher, catalog no 439454) at RT for 

2hrs. The plates were blocked with 5% BSA + 4% Whey in PBS, RT, 1hr. Serially diluted 

env specific mAbs PGT145, PG9, PGT121, 3BNC117, 39F, CH58, CH59 Abs were added 

to the plates at RT, 1hr, after which plates were incubated with mouse anti-human biotin 

(BD Biosciences, catalog no 555785, 1:5000 dilution in 4% Whey buffer) and streptavidin 

horseradish peroxidase (Vector Labs, catalog no SA5004, 1:1000 dilution) as secondary 

and tertiary Abs respectively for 1hr at each step, RT. The plates were washed with PBS 

containing 0.05%Tween-20 (6 times) after each incubation step. The plates were developed 

with 3,3’,5,5’- tetramethylbenzidine chromogenic substrate solution (KPL TMB Peroxidase 

substrate, SeraCare) in dark. The reactions were quenched with phosphoric acid. Equal 

concentrations of the env proteins (in supernatants) were added to the ELISA plates. The 

concentration was estimated by densitometric analyses of the env specific bands monitored 

by western blot of SDS-PAGE (+DTT) gel. ID6 (NIH AIDS reagents program, 0.5μg/ml), 

goat anti-mouse-HRP (SouthernBiotech, catalog no 1030–05, 1:40,000 dilution in 4% Whey 

buffer) were used as primary and secondary Abs for western blot. A450nm recorded from 

the developed ELISA plates were analyzed to measure binding area under the curve (AUC) 

against each mAb tested.

ELISA to estimate C.1086 specific responses in immunized serum—To monitor 

trimer specific responses, ELISA microtiter plates were coated with trimeric C.1086 UFO-

v2-RQH173 protein at 2μg/ml (in PBS), overnight at 4°C. The plates were blocked with 

5% BSA + 4% Whey in PBS, RT, 1hr. The plates were incubated with serially diluted 

serum at RT, 2hrs, followed by incubation with goat anti-rabbit HRP (SouthernBiotech, 

catalog no 4010–05, dilution 1:4000), RT, 1hr. The plates were washed with PBS containing 

0.05%Tween-20 (6 times) after each incubation step and developed as described above. To 

monitor C.1086 V3 responses, ELISA plates coated overnight with V3 peptide (res. 297–

330, 1μg/ml in PBS) were used. gp70 V1V2 specific responses were monitored by using 

plates coated with 2μg/ml His-tag purified gp70 C.1086 V1V2 RQH (K166R/H170Q/H173) 

and RQY (K166R/H170Q/H173Y) (Zolla-Pazner et al., 2014) proteins. A450nm recorded 

from the developed ELISA plates were analyzed to measure end-point titre associated with 

the serum responses.
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Binding antibody multiplex assay (BAMA)—Binding antibody multiplex assay 

(BAMA) of the serum was performed as described previously (Tomaras et al., 2008; 

Zolla-Pazner et al., 2014). Briefly, serially diluted rabbit serum (5-fold dilution starting 

with 1:80) were tested for binding to color-coded beads by Bio-plex (Biorad). The 

beads were coated with avi tagged C.1086 WT, UFO-v2-RQH173, UFO-v2-RQY173 

gp140 and gp70 scaffolded proteins with V1V2 grafted from B.CaseA, 7060101641, 

CM244.ec1, TV1.21, 001428.2.42, CAP210.2.00.E8, C2101.c01, BJOX002000.03.2, 

BF1266_431a, 96ZM651.02, RHPA4259.7, Ce1086_B2, 62357.14, 700010058, 191084_B7, 

and TT31P.2F10.2792 HIV-1 strains. Biotinylated anti-rabbit IgG was used as secondary 

antibody followed by streptavidin conjugated fluorophore to monitor mean fluorescence 

intensity (MFI) signal at the dilutions tested. This was subsequently used to calculate 

binding area under curve (AUC) for analyses. Instances satisfying the following criteria were 

considered positive, i.e. (a)MFI at 1:80 dilution >100, (b) MFI at 1:80 > antigen specific 

cut-off (95th percentile of all pre-bleed for the study for each antigen), and (c) MFI > 

3-fold that of the matched baseline or pre-bleed samples, both before and after blank bead 

subtraction.

Binding of purified serum IgGs to cell surface bound gp160 envs—293T 

cells were transfected with full-length env expressing plasmid using lipofectamine2000 

(ThermoFisher, catalog no 11668027) as per the manufacturer’s protocol. The cells were 

harvested 36 hours after transfection and incubated with 1μg/ml of purified rabbit IgG (week 

42 i.e. two weeks after the final protein boost) for 45minutes, RT in presence of live/dead 

fixable stain (ThermoFisher, catalog no L34975). Env specific mAbs PGT145 (1μg/ml), 

PGT121 (0.5μg/ml), PG16 (1μg/ml) were used instead of rabbit IgG as controls to monitor 

expression of env on the cell surface. Goat anti-rabbit IgG PE (SouthernBiotech, cat. no. 

4030–09, 1:1000 dilution) was used as secondary antibody, 30minutes, RT for monitoring 

binding to immunized rabbit IgG. To monitor binding to mAbs, mouse anti-human biotin 

(BD Biosciences, catalog no 555785, 1:5000 dilution) was used as secondary antibody 

followed by streptavidin conjugated PE (BD Biosciences, cat. no. 554061, 1:5000 dilution), 

30min at RT each step. The cells were washed twice at 1500rpm, 5minutes, RT with 

BD FACS buffer after each incubation step. The samples were fixed in presence of 1% 

paraformaldehyde (in PBS) and acquired on LSRII flow cytometer. FlowJo v10.8.0 was 

used to analyse the data. pSV-A-MLV-env (NIH AIDS Reagent program) was used as 

negative control. Binding of purified rabbit IgG to this was used as reference to gate 

binding of corresponding rabbit IgG to live env positive cells. All env plasmids tested in the 

study constituting the global panel of HIV-1 envs were obtained from NIH AIDS Reagent 

program. Normalized frequency of env positive cells or normalized binding signal of serum 

(specific to rabbit R) to surface expressed full-length env x is plotted in heatmap shown in 

Figure 4F and is defined as NR,x = (Frequency of env+ cells binding to serum, FR,x – Mean 

of the frequencies of env+ cells binding to serum for all rabbits sampled, μx) divided by 

(standard deviation of the frequencies of env+ cells binding to serum for all rabbits sampled, 

σx).

Bio-layer interferometry (BLI)—The assay was done in 384 well format on Octet 

Red384 platform, Pall ForteBio. Env specific mAbs (NIH-AIDS Reagent program) were 
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immobilized onto anti-human Fc coated biosensors at 5μg/ml. The purified protein was 

used as analyte (1000nM-12.5nM). Env-Antibody association (kon) was monitored for 300s, 

followed by dissociation (koff) for 600s. 10X Kinetics Buffer, Pall ForteBio was used as 

buffer for all steps in the assay. All steps were performed with agitation at 1000rpm. KD 

(dissociation constant = koff/kon) was estimated by globally fitting the reference (buffer 

only) subtracted sensograms to a 1:1 binding model using ForteBio Octet Data Analysis v9 

software. For time dependent affinity estimates, purified trimeric proteins C.1086 UFO-v2-

RQH173, UFO-v2-RQY173 were serially diluted (800–12.5 nM) in 10X Kinetics Buffer, Pall 

ForteBio and incubated at room temperature (25°C) for 0, 4, 5, 8, 10, 12hrs, prior to affinity 

measurements by BLI. Residues targeted by various Env specific antibodies were mapped 

onto unliganded structure of BG505 SOSIP.DS trimer (pdb id 4ZMJ (Kwon et al., 2015)) 

using UCSF Chimera v1.14 (Pettersen et al., 2004).

For competition assays to monitor epitope specificity of the serum by BLI, IgG was purified 

from immunized rabbit serum. IgGs from pre-bleed and two weeks after the final protein 

boost were purified. To identify the epitope on C.1086 env protein targeted by rabbit purified 

IgG, we monitored competition between rabbit IgG and env specific mAb to bind the 

epitope in question; e.g. competition between purified rabbit IgG and HJ16to bind CD4 

binding site on the protein. Anti-human Fc biosensor was immobilized with 5μg/ml of env 

specific mAb. Purified C.1086 UFO-v2-RQH173 (800nM) was pre-incubated with 6.4μM 

of purified rabbit IgG in 10X Kinetics Buffer, Pall ForteBio at 4°C, 1hr. This was used 

as analyte to monitor association with the immobilized biosensor for 300s and dissociation 

for 600s. (A) Protein only was used to estimate the maximum binding signal with desired 

mAb. (B) Protein + pre-bleed IgG served as negative control, while (C) signal from buffer + 

immunized purified IgG was used to monitor background or non-specific signal. (D) signal 

from protein + immunized purified rabbit IgG. % competition was calculated as 100*(D-

C)/Mean(A, (B-C)). No non-specific interaction was observed between mAb immobilized 

biosensor and purified IgG alone. Area under the curve of the BLI sensogram (t=0 to 

600s) was used as “signal” for analyses. Negative traces were inverted to calculate AUC. 

Competition >40% was considered positive based on examination of signals observed in 

(B), (D) and (C). Cases where AUCSignal B > 1.5×AUCControl signal C were considered for 

analyses. All steps were performed with agitation at 1000rpm.

Neutralization assay—Neutralizing antibody activity in serum and purified IgG samples 

was measured in 96-well culture plates by using Tat-regulated luciferase (Luc) reporter 

gene expression to quantify reductions in virus infection in TZM-bl cells. TZM-bl cells 

were obtained from the NIH AIDS Research and Reference Reagent Program (catalog no 

8129). Assays were performed with HIV-1 Env pseudotyped viruses produced in 293T cells 

essentially as previously described (Montefiori, 2009). Serum samples were heat-inactivated 

at 56°C for 45 minutes prior to assaying; purified IgG were not heat-inactivated prior 

to assaying. Samples were diluted over a range of 1:20 to 1:43,740 in cell culture 

medium and pre-incubated with virus (~150,000 relative light unit equivalents) for 1 hr 

at 37°C before addition of cells. Following a 48hr incubation, cells were lysed and Luc 

activity determined using a microtiter plate luminometer and BriteLite Plus Reagent (Perkin 

Elmer). Neutralization titers were the sample dilution at which relative luminescence units 
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(RLU) were reduced by 50% compared to RLU in virus control wells after subtraction of 

background RLU in cell control wells.

Antibody dependent cell mediated virus inhibition (ADCVI)—ADCVI assay was 

performed as previously described with some modifications (Kannanganat et al., 2016). 

Briefly, on day 1, CEM-NKr cells were spinoculated at 1500×g for 3 hrs with tier2 Clade 

C SHIV1157ipd3N4 virus at 31 TCID50/mL. On day 2 of the assay, cryopreserved human 

donor PBMCs were thawed, washed, and counted. Cells were added to a V-bottom plate 

(Corning incorporated, Corning, NY) at a concentration of 1×105 cells/well and allowed 

to rest overnight. On day 3, purified rabbit IgG (250μg/ml) was incubated for 2 hrs with 

1×104 infected CEM-NKr cells that had been washed 3 times to remove unbound virus. 

After 2 hrs of incubation, purified rabbit IgG and infected CEM-NKr cells were added to 

PBMCs. PGT121 (catalog no. ARP-12343; NIH AIDS Reagent Program) and EM4C04 

(anti-influenza HA antibody) served as positive and negative controls respectively. Five days 

post incubation, cells were washed 2 times and fresh media was added to all wells. On day 7 

post incubation, plates were spun at 1500 rpm for 5 mins and the supernatant was harvested 

and frozen until p27 Gap ELISAs could be performed.

SIV Gag p27 ELISA—High binding ELISA plates (Thermo Scientific, catalog no 

44-2404-21) were coated at 0.5μg/mL with goat anti-mouse IgG2b (Southern Biotech, 

catalog no 1090–05) overnight at 4°C. Next day, plates were washed 6x with PBST (PBS 

+ 0.05%Tween-20) and blocked with 1% BSA in PBST for 30 minutes at RT. Anti-p27 

2F12 (NIH AIDS Reagent Program) antibody at 0.5 μg/mL was added to ELISA plates 

and incubated for 1 hr at 37°C. Plates were again washed 6x with PBST. Supernatant 

from ADCVI assays which were placed in the 4°C the night before, were treated with 

TritonX (Sigma) to a make a 0.5% Triton X solution to inactivate virus particles and 

release Gag. Gag supernatant was diluted 3-fold and added to ELISA plates and allowed 

to incubate for 1½ hr at 37°C. Plates were washed and biotinylated anti-SIV IgG diluted 

1:1000 and added to each well. Plates were again incubated for 1 hr at 37°C. After 6x wash, 

neutralite-avidin peroxidase (N-HRP) (Southern Biotech) was diluted 1:4000 and added to 

each plate for 30 minutes at RT in the dark. After incubation, bound IgG was detected 

using tetramethylbenzidine substrate (KPL, Gaithersburg, MD). The reaction was stopped by 

adding 100 μl 2N H2SO4. The readings were recorded at 450nm.

Hydrogen/deuterium exchange mass spectrometry—5 μgs (52 pmol) per timepoint 

of each protein (1086.C UFO-v2-RQH173 and UFO-v2-RQY173 and BG505.664) were 

incubated in deuterated buffer (20mM PBS, 85% D2O, pH 7.5) for 3s, 1min, 30min, and 

20hrs at room temperature. The reaction was stopped via diluting 1:1 in ice-cold quench 

buffer (200 mM tris(2-chlorethyl) phosphate (TCEP), 8 M urea, 0.2% formic acid) to a 

final pH of 2.5 and flash frozen in liquid nitrogen followed by storage in −80°C prior to 

analysis. Online pepsin digestion was performed and analyzed by LC-MS-IMS utilizing a 

Waters Synapt G2-Si Q-TOF mass spectrometer as described by (Verkerke et al., 2016) 

utilizing a 15 minute gradient. Pepsin digest eluates from un-deuterated sample LC-MS runs 

were collected, dried by speed vac, incubated in deuteration buffer for 1 hour at 85°C, and 

quenched as described above to prepare fully deuterated controls. Pepsin digest eluates from 
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undeuterated sample LC-MS runs were also collected, dried by speed vac, resuspended in 

mobile buffer for peptide identification using nano LC-MS on an Orbitrap Fusion mass 

spectrometer. A 2 cm trapping column and a 35 cm analytical column were freshly prepared 

in fused silica (100 μm ID) with 5 μM ReproSil-Pur C18 AQ beads (Dr. Maisch). 8 μL 

sample was injected and run using a 60-minute linear gradient from 2% to 30% acetonitrile 

in 0.1% FA, followed by 10 minutes of 80% acetonitrile. An EThcD method was optimized 

as follows: ion source 2.1 kV for positive mode; ion transfer tube temperature 350 °C; 

resolution: MS1 = 120000, MS2 = 30000; AGC target: MS1 = 2e5, MS2 = 1e5; and 

injection time: MS1 = 50 ms, MS2 = 60 ms. Orbitrap Fusion data was processed using 

Byonic (Version 3.8, Protein Metrics Inc.) to obtain a peptide reference list and identify 

peptic glycopeptides and glycosylation sites. Deuterium uptake analysis was performed with 

HD-Examiner (Sierra Analytics) followed by HX-Express v2 (Guttman et al., 2014; Weis et 

al., 2006). The percent exchange was normalized to the fully deuterated samples. Internal 

exchange standards (Pro-Pro-Pro-Ile [PPPI] and Pro-Pro-Pro-Phe [PPPF]) were included in 

each reaction to control for variations in ambient temperature during the labeling reactions.

Dynamic light scattering (DLS)—Dynamic light scattering (DLS) measurements were 

performed on a Dynapro Nanostar (Wyatt Technologies). Trimer samples were diluted to 

1 mg/ml in PBS and centrifuged at 15,000×g for 20 min prior to loading of 10μl into a 

low-volume quartz cuvette. The mean estimated hydrodynamic radius, and polydispersity 

were generated from 30 acquisitions of 5 s at 20°C. For time dependent DLS experiments, 

the samples were diluted to 1 mg/mL in PBS and allowed to sit at room temperature (23°C) 

for 4 hours prior to centrifugation and measurement by DLS.

QUANTIFICATION AND STATISTICAL ANALYSES

All statistical analyses were performed using GraphPad Prism v8 software. All of the 

statistical details of experiments can be found in the figure legends of each figure, 

including the statistical tests used, value of n where n represents number of rabbits used 

for study (n=4 per immunization group), number of independent experiments carried out to 

represent the data, dispersion and precision measures (mean, median, SD). Data represent 

mean or mean ± SD as indicated in the figure legends. In some cases, data has been 

represented as box and whisker plots, where box extends from 25th to 75th percentile, 

median indicated by line, minimum and maximum values indicated by whiskers. intervals). 

Statistical significance between groups was performed by Mann-Whitney’s U test and two-

tailed Student’s t test (small sample size, comparing time dependent mAb specific binding 

affinity parameters between C.1086 UFO-v2-RQ(H/Y)173 proteins). Two-Way ANNOVA 

test (Tukey’s correction) for multiple comparisons. *p < 0.05, **p< 0.01, ***p<0.001, 

****p<0.0001. p-values color coded by immunization group correspond to comparison with 

WT.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• The UFO design of C.1086 clade C envelope yields higher trimeric fraction

• Sequence-guided mutations at V2 hotspot region improve antigenicity of the 

V2 apex

• Optimized envelope trimers induce autologous neutralizing antibodies

• 173Y modification enhances breadth of V1V2-scaffold-specific antibodies
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Figure 1. Biophysical characterization of C.1086 base constructs
(A) Schematic representation of different C.1086 base constructs tested in the study.

(B) SEC profiles of 293F-expressed, GNL affinity-purified C.1086 base constructs. Trimeric 

peak (black arrow) elution volume and proportion (percentage, area under the curve [AUC]). 

Agg, aggregate/oligomeric peak. 2D class averages of the UFO and UFO-v2 trimers 

monitored by negative-stain electron microscopy shown at the bottom right of corresponding 

traces with total particles imaged (%native-like and %non-native like malformed trimers).

(C) Trimeric proportion of C.1086 variants (mean [value indicated on top of bar] ± SD [error 

bars]) of at least three independent transfection/purifications estimated from SEC profiles. 

Student’s t test (two-tailed) for statistical comparisons, *p < 0.05, **p < 0.01, ***p < 0.001, 

****p < 0.000.

(D) Comparison of binding affinities of UFO and NFL trimers for various env-specific 

mAbs. For instances where the KD could not be calculated due to no observable dissociation 

in the experimental setting, Kon was used for comparison. A fold change in affinity within 

3-fold range is shaded gray and not considered a significant change.

(E) Similar plot as described in (C) but comparing UFO-v2 versus UFO.
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(F) Bio-layer interferometry (BLI) responses of 200 nM C.1086 UFO, UFO-v2 designs to 

CD4i non-nAbs, and CD4-IgG2.

(G) KD (nM) of C.1086 variants against various bnAbs. Mean (at least two independent 

experiments) ± SD.

(D–G) All binding affinities estimated by BLI. All C.1086 constructs carried K160N/

V295N/N334S changes.
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Figure 2. Sequence-guided mutations at the V2 hotspot region improve properties of well-formed 
trimmers
(A) V2 hotspot (V2-HS) region (res. 166–173) of clade C consensus sequence (n = 22,415) 

with corresponding C.1086 region mentioned below. C.1086 residues differing from the 

consensus sequence are in red.

(B) Influence of indicated V2-HS modifications in C.1086 UFO-v2 protein on binding to 

various mAbs, monitored by ELISA. The data are the average of more than two independent 

experiments.

(C) Trimeric proportion of C.1086 UFO-v2 (left) and BG505 SOSIP.664 V2-HS (right) 

variants; mean (value indicated) ± SD (error bars) estimated from SEC profiles of at least 

two independent purifications. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001 

(Student’s t test, two-tailed), (left) p value indicated on top of bar denotes comparison with 

UFO-v2, which has 166K,170H,173H.

(D) Blue native PAGE (BN-PAGE) of purified C.1086 proteins with molecular weight 

standard.

(E) BLI responses of different C.1086-purified designs (400 nM each) against V1/V2 trimer 

apex-specific PGT145 bnAbs.

(F) Comparison between binding affinities of optimized UFO-v2 V2-HS mutants relative 

to UFO-v2 against various env-specific mAbs. *KonUFO-v2/Kon UFO-v2 V2-HS for 

PGT121, as KD could not be calculated due to no observable dissociation. A fold change in 

affinity within 3-fold range is shaded gray and not considered a significant change.
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Figure 3. Structural properties of C.1086 UFO-v2-RQ(H/Y)173 trimers measured by HDX-MS 
and time-dependent BLI experiments
(A) Top: butterfly plots of BG505 SOSIP.664 and C.1086 UFO-v2-RQH173 proteins 

showing the percentage of exchange or the deuterium uptake for homologous peptide 

segments (indicated from N to C terminus) of the trimers detected in the experiment at 

each time point. Bottom: differences in percentage of exchange or deuterium uptake of 

homologous peptide segments of C.1086 UFO-v2-RQH173 relative to the BG505 SOSIP.664 

trimer.

(B) Time-dependent fold reduction in binding affinity (KD t hr/KD 0 h) of C.1086 UFO-v2-

RQH173 and UFO-v2-RQY173 immunogens against various env-specific mAbs measured by 

BLI at 25°C. In case of PGT121, fold reduction in association rate (Kon 0 h/Kon t hr) was 

plotted, as KD could not be calculated due to no observable dissociation. Bars show mean, 
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error bars SD of at least three independent experiments. Student’s t test (two-tailed) for 

statistical comparisons, *p < 0.05, **p < 0.01, ***p<0.001,****p<0.0001.
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Figure 4. 166R and 170Q modifications in V2-HS of UFO-v2 (UFO-v2-RQH173) enhance 
induction of moderate anti-viral antibody responses and binding to membrane-anchored tier2 
envs
(A–C) Schematic overview of the immunogenicity regimen tested in rabbits (n = 4 per 

immunization group). Serum binding antibody responses against (B) C.1086 WT and 

trimeric UFO-v2-RQH173 proteins measured by binding antibody-mediated multiplex assay 

(BAMA; indicated by area under the curve [AUC]) and ELISA, respectively and (C) the V3 

peptide (left) and normalized to total trimer-specific responses (right).

(D and E) Neutralizing antibody titer against tier1 and tier2 HIV-1 envs. See Table S3 

for responses against other tier2 envs, which were mostly negligible. The concentration of 

purified IgG required to achieve 50% neutralization (IC50 μg/mL) is shown.

In (E) IC50 >1,480 assigned 1,500 for ease of visualization in the graph.

(F) Binding of purified IgG (1 μg/mL) from immunized rabbits to broad multi-clade 

HIV-1 full-length envs expressed on transiently transfected 293T cells. See Figure S6D 

for representative flow plot and gating of env+ live cells. Normalized frequency of env+ live 

cells is plotted (see STAR Methods). Combined plot and env+ frequencies measured against 

each env in the panel for each rabbit.
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(G) Spearman’s correlation between binding responses to membrane-anchored envs (C.1086 

and 25710), and concentration of IgG required for 50% neutralization of the corresponding 

env-specific pseudovirus.

(H) Percentage of reduction in replication of clade C tier2 SHIV1157ipd3N4 virus in human 

peripheral blood mononuclear cells (PBMCs) by purified IgGs (250 μg/mL) from various 

immunized groups (percentage of ADCVI activity). Each data point represents the averaged 

data for a rabbit IgG from three independent experiments, each done in duplicate.

(B–H) All analyses correspond to serum collected 2 weeks post final protein boost. Refer to 

(A) for color coding of the immunization groups.

(I) V2-HS region of various tier-categorized consensus clade C sequences (Rademeyer et al., 

2016).

(B, E, F, and H) Box and whisker plots where box extends from 25th to 75th percentile, 

median indicated by line, and minimum and maximum values indicated by whiskers. 

Statistical comparisons between groups by Mann-Whitney test (*p < 0.05, **p < 0.01, ***p 

< 0.001, ****p < 0.0001, p values color coded by group correspond to comparison with 

WT). All values plotted are the average of at least two independent experiments.
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Figure 5. 173Y modification in UFO-v2-RQH173 enhances the breadth of V1V2-scaffold-specific 
responses
(A) Serum binding antibody responses of the immunized groups against gp70 C.1086 RQ(H/

Y)173 V1V2 proteins. Plotted values are the average of two independent experiments.

(B) BAMA analyses (binding the AUC) of serially diluted immunized serum to V1V2 

scaffolds from 16 cross-clade HIV-1 isolates (see Figure S6G). The combined plot uses the 

AUC values obtained against the panel for each rabbit.

(C) V1V2 breadth magnitude curves of all immunized rabbits (dotted line) with mean 

response of a group (bold line). Refer to (A) for color coding of the immunization groups. 

Unpaired two-tailed Kolmogorov-Smirnov test was used to see statistical difference between 

UFO-v2-RQH173 and UFO-v2-RQY173 groups.

(D) Principal component analyses (PCAs; using R) of serum characterization data obtained 

for all immunized rabbits. All analyses correspond to serum collected 2 weeks post final 

protein boost. Mann-Whitney test for statistical comparisons between groups was used. 

*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. p values color coded by group 

correspond to a comparison with the WT group, and in (B), those colored green correspond 

to a comparison with the UFO group.

(A and B) Box and whisker plots where box extends from 25th to 75th percentile, median 

indicated by line, and minimum and maximum values indicated by whiskers.
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Figure 6. Mapping binding specificity of Abs elicited in rabbits immunized with C.1086 variants
(A) Representative BLI traces of competition binding experiment for purified IgG (rabbit 

#537) against env-specific mAbs.

(B) Heatmap showing percentage of competition of rabbit-purified IgGs with env-specific 

mAbs to bind to C.1086 UFO-v2-RQH173 trimers and gp70 C.1086 V1V2 in the case of 

697-30D V2i mAbs.

(A and B) Purified IgGs from 2 weeks after final protein boost used for analyses. Values 

<40%, false positive. Not determined (ND) due to <1.5-fold difference in signals between 

background (buffer + purified IgG) and positive (buffer + trimer) control binding signals for 

the mAbs. C.1086 K160N RQH173 neutralization IC50 values (concentration of IgG required 

for 50% neutralization of the virus) of rabbit-purified IgG (filled squares color coded based 

on IC50 values; see Figure 4D) are mentioned above the rabbit codes. Data are representative 

of at least three independent experiments.

(C) Spearman’s correlation (two-tailed) between C.1086 K160N RQH173 neutralization IC50 

and competition (%) with NIH45-46 (estimated in B). Shaded orange area represents 95% 

confidence band. IC50 >1,480 assigned 1,500 for ease of visualization in the graph (shaded 

gray area).
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

PGT145 NIH AIDS Reagent Program Cat# ARP-12703; RRID: 
AB_2491054

PGT151 Laboratory of Dr. Genevieve Giny Fouda, 
Duke University (Falkowska et al., 2014)

N/A

PG9 NIH AIDS Reagent Program Cat# ARP-12149; RRID: 
AB_2491030

PG16 NIH AIDS Reagent Program Cat# ARP-12150; RRID: 
AB_2491031

PGT121 NIH AIDS Reagent Program Cat# ARP-12343; RRID: 
AB_2491041

447-52D NIH AIDS Reagent Program Cat# ARP-4030; RRID: AB_2491016

48d NIH AIDS Reagent Program Cat# ARP-1756; RRID: AB_2905601

39f NIH AIDS Reagent Program Cat# ARP-11437; RRID: 
AB_2905602

17b NIH AIDS Reagent Program Cat# ARP-4091; RRID: AB_2905603

CAP256-VRC26.08 Laboratory of Dr. Genevieve Giny Fouda, 
Duke University (Doria-Rose et al., 2014)

N/A

NIH45-46G54W NIH AIDS Reagent Program Cat# ARP-12174; RRID: 
AB_2491035

3BNC117 Cat# ARP-12474; RRID: 
AB_2491033

CD4-IgG2 NIH AIDS Reagent Program Cat# 11780; RRID: AB_2905604

PGDM1400 Laboratory of Dr. Genevieve Giny Fouda, 
Duke University (Sok et al., 2014)

N/A

CAP228-16H Laboratory of Dr. Lynn Morris, Wits 
University (van Eeden et al., 2018)

N/A

697-30D NIH AIDS Reagent Program Cat# ARP-7371; RRID: AB_2905605

ID6 NIH AIDS Reagent Program Cat# ARP-2343; RRID: AB_2905606

Mouse Anti-human biotin BD Biosciences Cat# 555785; RRID: AB_396120

Goat anti-mouse-HRP Southern Biotech Cat#1030-05; RRID: AB_2619742

Goat anti-rabbit HRP Southern Biotech Cat# 4010-05; RRID: AB_2632593

Streptavidin HRP Vector Labs Cat#SA5004; RRID: AB_2336509

Goat anti-rabbit IgG PE Southern Biotech Cat#4030-09; RRID: AB_2795937

Anti-p27 2F12 NIH AIDS Reagent Program Cat# ARP-1610; RRID: AB_2905607

Goat anti-mouse IgG2b Southern Biotech Cat# 1090-05; RRID: AB_2794521

Biotinylated Anti-SIV IgG Laboratory of Dr Pam Kozlowski, LSUHSC 
School of Medicine (Jensen et al., 2016)

N/A

EM4C04 Anti-Influenza Ab Laboratory of Dr. Jens Wrammert, Emory 
University (O’Donnell et al., 2012)

N/A

Bacterial and viral strains

Bacteria: NEB® 5-alpha Competent E. coli (High 
Efficiency)

NEB Cat# C2987H

Bacteria: NEB® Stable Competent E. coli cells NEB Cat# C3040H

Cell Rep. Author manuscript; available in PMC 2022 April 05.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Sahoo et al. Page 40

REAGENT or RESOURCE SOURCE IDENTIFIER

Tier2 Clade C SHIV1157ipd3N4 virus Laboratory of Dr. Ruth Ruprecht and the 
HIV reagent resource

Cat# ARP-11689

Biological Samples

Serum samples from Rabbits This Manuscript N/A

Human PBMCs This Manuscript N/A

Chemicals, peptides, and recombinant proteins

C.1086 NFL (with I559P) Guenaga et al., 2017 N/A

C.1086 SOSIP This Manuscript N/A

C.1086 UFO (no disulphide linkage between A501 
and T605)

He et al., 2018 N/A

C.1086 UFO-v2 This Manuscript N/A

C.1086 UFO-v2-RHH173 This Manuscript N/A

C.1086 UFO-v2-RQH173 This Manuscript N/A

C.1086 UFO-v2-RQY173 This Manuscript N/A

C.1086 UFO-v2-V2-HS mutants This Manuscript N/A

C.1086 UFO-v2-RQH173 Avi This Manuscript N/A

C.1086 UFO-v2-RQY173 Avi This Manuscript N/A

BG505 SOSIP.664 WT Sanders et al., 2013 N/A

BG505 SOSIP.664 KQY This Manuscript N/A

BG505 SOSIP.664 RHY This Manuscript N/A

BG505 SOSIP.664 KHY This Manuscript N/A

gp70 C.1086 RQH173 V1V2 This Manuscript N/A

gp70 C.1086 RQY173 V1V2 This Manuscript N/A

gp70 V1V2 global panel Zolla-Pazner et al., 2014 N/A

C.1086 V3 peptide NTRPNNNT RKSIRIGPGQTFYA 
TGDIIGNIRQAHC

This Manuscript N/A

Phusion High-Fidelity PCR Master Mix with HF 
Buffer

ThermoScientific Cat# F531S

T4 DNA Ligase NEB Cat# M0202S

T4 Polynucleotide Kinase NEB Cat# M0201S

DpnI NEB Cat# R0176S

NheI-HF NEB Cat# R3131S

ClaI NEB Cat# R0197S

Galanthus nivalis lectin-agarose Vector Laboratories Cat# AL-1243-5

Expifectamine™ 293 transfection kit ThermoScientific Cat# A14524

Expi293™ Expression Medium ThermoScientific Cat# A1435101

cOmplete™, Mini Protease Inhibitor Cocktail Millipore Sigma Cat# 11836153001

Methyl α-D-mannopyranoside Millipore Sigma Cat# M6882-25G

Superdex 200 Increase 10/300 GL Cytiva (GE Healthcare LifeSciences) Cat# GE28-9909-44

Amicon Ultra-4, MWCO 100kDa Millipore Sigma Cat# UFC910024

Pierce™ Protein A IgG Purification Kit, 1 mL ThermoScientific Cat# 44667
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REAGENT or RESOURCE SOURCE IDENTIFIER

NuPAGE™, 4-12% Bis-Tris Protein Gels ThermoScientific Cat# NP0321BOX

NativeMark™ Unstained Protein Standard ThermoScientific Cat# LC0725

DMEM (Dulbecco’s Modified Eagle’s Medium) Corning Cat# 10-013-CV

HyClone™ Fetal Bovine Serum (FBS) Cytiva (GE Healthcare LifeSciences) Cat# SH30910.03

10X Kinetics Buffer Pall ForteBio Cat# 18-5032

Slide-A-Lyzer™ Dialysis Cassettes, 20K MWCO, 30 
mL

ThermoScientific Cat# 66030

Lipofectamine™ 2000 Transfection Reagent Thermo Scientific Cat# 11668019

Amicon® Ultra-15 Centrifugal Filter Unit, 30KDa, 24 Millipore Cat# UFC903024

Precision Plus Protein™ Kaleidoscope™ Prestained 
Protein Standards

BioRad Cat# 1610375

Microplate, 384 well, PP, Black, F-Bottom Greiner Cat# 781209

ELISA maxisorp microtiter plates ThermoFisher Cat# 439454

Concanavalin A (ConA) Millipore Sigma Cat# C2272

Blotting-grade Blocker (contains BSA) Biorad Cat# 1706404

Whey from bovine milk, spray dried Millipore Sigma Cat# W1500-2.5KG

Opti-MEM™ Reduced Serum medium ThermoScientific Cat# 31985070

Streptavidin horseradish peroxidase Vector Laboratories Cat# SA5004; RRID: AB_2336509

NativePAGE™ 20X Running Buffer ThermoScientific Cat# BN2001

Imidazole Millipore Sigma Cat# I5513-25G

Tween-20 Millipore Sigma Cat# P7949

EconoPac disposable chromatography columns Biorad Cat# 7321010

PP Microplate 384 well, F-Shape, Black 
128/85/15mm

Greiner Cat# 781209

PBS (1X) Corning Cat# 21040-CV

HEPES Millipore Sigma Cat# H4034

Ampicillin sodium salt Millipore Sigma Cat# A9518

Kanamycn sulphate Millipore Sigma Cat# 60615

96-well Clear V-Bottom TC-treated Microplate Corning Cat# 3894

LIVE/DEAD™ Fixable Far Red Dead Cell Stain Kit, 
for 633 or 635 nm excitation

ThermoScientific Cat# L34973

D2O Millipore Sigma Cat# 151882

Formic Acid Millipore Sigma Cat# 27001

TritonX-100 Millipore Sigma Cat# T9284

Uranyl formate Electron Microscopy Sciences Cat# 22451

neutralite-avidin peroxidase (N-HRP) Southern Biotech Cat# 7200-05

Critical commercial assays

Pierce™ BCA Protein Assay Kit ThermoScientific Cat# 23227

KPL TMB Microwell Peroxidase Substrate System SeraCare Cat# 5120-0047

HIV-1 p24 ELISA Kit Abcam Cat# ab218268

britelite plus Reporter Gene Assay System PerkinElmer Cat# 6066761

Deposited data
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REAGENT or RESOURCE SOURCE IDENTIFIER

Native gel image of C.1086 variants This Manuscript https://doi.org/
10.17632/9zp2hh598z.1

Experimental models: Cell lines

FreeStyle 293F Invitrogen Cat# R79007; RRID: CVCL_D603

TZM-bl NIH AIDS Reagent Program Cat# 8129; RRID: CVCL_B478

HEK 293T ATCC Cat# CRL-3216; RRID: CVCL_0063

CEM-NKr CCR5+ NIH AIDS Reagent Program Cat# 4376; RRID: CVCL_X622

Experimental models: Organisms/strains

Rabbit: New Zealand White female Covance N/A

Oligonucleotides

N279Q_For 5′-
CAAAATGCCAAAACAATAATAGTACAC-3′

This Manuscript N/A

N279Q_Rev 5′-
TGTCAGATTTTCAGATCTAATTATTATCTCTTC-3
′

This Manuscript N/A

N280D_For 5′-
GATGCCAAAACAATAATAGTACACC-3′

This Manuscript N/A

N280D_Rev 5′-
GTTTGTCAGATTTTCAGATCTAATTATTATCTC-3
′

This Manuscript N/A

G459E_For 5′-
GAGCAATCAAATGAAACAAATGACAC-3′

This Manuscript N/A

G459_rev 5′-TCCATCACGTAGCAATAGTAGTC-3′ This Manuscript N/A

G458Y_For 5′-
TATGGTCAATCAAATGAAACAAATGAC-3′

This Manuscript N/A

G458Y_Rev 5′-
ATCACGTAGCAATAGTAGTCCTG-3′

This Manuscript N/A

S365K_For 5′-
AAAGGAGGGGATCTAGAAATTAC-3′

This Manuscript N/A

S365K_Rev 5′-
GGATGGTTCAAACTTTATTGTTTTACTAG-3′

This Manuscript N/A

T162A_For 5′-
GCGACGGAACTAAGAGATAAAAAAC-3′

This Manuscript N/A

T162A_Rev 5′-
TGCATTGAAAGAGCAATTTTTCATTACTTC-3′

This Manuscript N/A

D167A_For 5′-
GCGAAAAAACAAAAGGTGCAT-3′

This Manuscript N/A

D167A_Rev 5′-TCTTAGTTCCGTGGTTGC-3′ This Manuscript N/A

For_N156A 5′-GCATGCTCTTTCAATGCAACC-3′ This Manuscript

Rev_156 5′-
TTTCATTACTTCACTGGTGTCACTC-3′

This Manuscript N/A

For_173A 5′-
GCAGCGCTTTTTTATAAACTTGATGTAG-3′

This Manuscript N/A

Rev_173 5′-CAATGCAACCACGGAACTAAG-3′ This Manuscript N/A

For_181A 5′-
GCAGTACCACTTAATGGAAACAG-3′

This Manuscript N/A
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REAGENT or RESOURCE SOURCE IDENTIFIER

Rev_181A 5′-
ATCAAGTTTATAAAAAAGCGCATGCAC-3′

This Manuscript N/A

Recombinant DNA

pSV-A-MLV-env NIH AIDS Reagent program Cat# ARP-1065

pCDNA3.1_C.1086 K160N RQH S365K This Manuscript N/A

pCDNA3.1_C.1086 K160N RQH D167A This Manuscript N/A

pCDNA3.1_C.1086 K160N RQH G458Y This Manuscript N/A

pCDNA3.1_C.1086 K160N RQH N279Q This Manuscript N/A

pCDNA3.1_C.1086 K160N RQH T162A This Manuscript N/A

pCDNA3.1_C.1086 K160N RQH N280D This Manuscript N/A

pCDNA3.1_C.1086 K160N RQH G459E This Manuscript N/A

pCDNA3.1_C.1086 K160N RQH G459P This Manuscript N/A

pCDNA3.1_C.1086 K160N RQH This Manuscript N/A

pCDNA3.1_C.1086 K160N RQY This Manuscript N/A

pCDNA3.1_C.1086 K160N RQH I371A This Manuscript N/A

pCDNA3.1_C.1086 K160N RQH R166A This Manuscript N/A

pCDNA3.1_C.1086 K160N RQH N156A This Manuscript N/A

pCDNA3.1_C.1086 K160N RQH 611A This Manuscript N/A

pCDNA3.1_C.1086 K160N RQH 160A This Manuscript N/A

pCDNA3.1_C.1086 K160N RQH 160K This Manuscript N/A

pCDNA3.1_C.1086 K160N RQH 332A This Manuscript N/A

pCDNA3.1_C.1086 K160N RQH 181A This Manuscript N/A

pCDNA3.1_C.1086 K160N RQH 166K This Manuscript N/A

pCDNA3.1_C.1086 K160N RQH 173A This Manuscript N/A

pGA1_C.1086_WT_gp140 This Manuscript N/A

pGA1_C.1086_NFL_gp140 This Manuscript N/A

pGA1_C.1086_UFO_gp140 This Manuscript N/A

pGA1_C.1086_UFO_v2_RHH_gp140 This Manuscript N/A

pGA1_C.1086_UFO_v2_RHH_gp140 This Manuscript N/A

pGA1_C.1086_UFO_v2-RQY_gp140 This Manuscript N/A

pGA1_BG505_SOSIP_V2-HS mutants This Manuscript N/A

pGA1_C.1086_UFO_v2_V2-HS mutants This Manuscript N/A

pGA1_BG505_SOSIP_gp140 This Manuscript N/A

pCDNA3.1_C.1086 K160N Laboratory of Dr. Cynthia Derdeyn, Emory 
University (Burton et al., 2019)

N/A

Software and algorithms

ForteBio Octet Data Analysis v9 software ForteBio N/A

ForteBio Data Acquisition v9 ForteBio N/A

Prism v8 GraphPad RRID:SCR_002798

FlowJo v10.8.0 FlowJo RRID:SCR_008520

UCSF Chimera v1.14 Pettersen et al., 2004 RRID:SCR_004097
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REAGENT or RESOURCE SOURCE IDENTIFIER

HIV Databases (Los Alamos) http://www.hiv.lanl.gov/content/index RRID:SCR_000614

CATNAP https://www.hiv.lanl.gov/catnap RRID:SCR_016170

Leginon software package Suloway et al., 2005 RRID:SCR_016731

Appion package Lander et al., 2009 RRID:SCR_016734

R Package https://www.r-project.org/ RRID: SCR_001905

HD-Examiner Sierra Analytics N/A

HX-Express v2 Guttman et al., 2014, Weis et al., 2006 N/A

Other

Anti-human Fc capture (AHC) Biosensors ForteBio Cat# 18-5060

FEI Tecnai Spirit T12 transmission electron 
microscope

Tecnai N/A

Synapt G2-Si Q-TOF mass spectrometer Waters N/A

Octet RED384 System ForteBio, Sartorius N/A

Carbon coated Cu400 grid for NS-EM Electron Microscopy Sciences Cat# EMS400-CU
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