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Cancer stem cells (CSCs) are responsible for long-term maintenance of tumors and thought to play a role in treatment resistance.
The interaction between stemness and immunogenicity of CSCs in the intrahepatic cholangiocarcinoma (iCCA) is largely
unknown. Here, we used single-cell transcriptomic data to study immunogenicity of malignant cells in human iCCA. Using an
established computerized method CytoTRACE, we found significant heterogeneity in stemness/differentiation states among
malignant cells. We demonstrated that the high stemness malignant cells express much lower levels of major histocompatibility
complex II molecules when compared to low stemness malignant cells, suggesting a role of immune evasion in high stemness
malignant cells. In addition, high stemness malignant iCCA cells exhibited significant expression of certain cytokine members,
including CCL2, CCL20, CXCL1, CXCL2, CXCL6, CXCL8, TNFRSF12A, and IL6ST, indicating communication with
surrounding immune cells. These results indicate that high stemness malignant cells retain their intrinsic immunological
feature that facilitate the escape of immune surveillance.

1. Introduction

Intrahepatic cholangiocarcinoma (iCCA) is a highly lethal
malignancy originating from the intrahepatic bile ducts
proximal to the second-order branch division whose global
incidence has been rising over the past few decades [1]. A
minority of patients with early stage iCCA are eligible for
curative-intent surgical resection, which is the only treat-
ment shown to confer long-term survival. Still, recurrence
rates remain high even in this setting. Most patients are
diagnosed with advanced disease and have limited available
therapeutic options [2]. Several studies have demonstrated
modest but statistically significant survival advantage using

chemotherapy [3, 4] and targeted agents [5, 6]. Although
immune checkpoint inhibitors (ICI) have shown remarkable
success in other cancer types, they have demonstrated mod-
est efficacy in iCCA [7, 8]. Therefore, there remains a critical
unmet need to improve our understanding of pathogenesis
of iCCA to inform basis of therapeutic strategies that could
improve survival for this malignancy.

Cancer stem cells (CSC) are a subpopulation of cells that
exist within the tumors and are responsible for long-term
maintenance of tumors by supplying renewable source of
malignant cells, which is thought to contribute to treatment
resistance [9–11]. It has been historically challenging to
identify CSCs, although they are known to be positive for
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various cell surface markers, such as CD133 and CD24.
CSCs are believed to remain in a quiescent state until stim-
ulated by signals in the tumor microenvironment (TME).
Once activated, CSCs can give rise to new terminally differ-
entiated malignant cells leading to tumor initiation, metasta-
ses, and recurrence [12, 13]. Recent reports have shown a
negative association between cancer stemness and antitu-
moral immunity, suggesting that the presence of CSCs can
lead to an immunosuppressive TME partially through the
interaction with surrounding stromal cells [14, 15]. There
have been several efforts to characterize the immunogenicity
of CSCs, although they were mainly performed using estab-
lished cell lines [16–18]. The loss of certain phenotypic
properties of these cell lines and variability of different anti-
bodies to detect CSCs in the tumors can inaccurately reflect
the real immunogenicity of CSCs in vivo [16, 19, 20]. As the
immunological characterization of CSCs in vivo is largely
unknown, more studies aimed towards direct analysis of
patient data will provide better understanding of underlying
role of stemness in therapy resistance.

Recent single-cell RNA sequencing (scRNA-seq) tech-
nology has enabled the large-scale profiling of transcrip-
tomic states/stochasticity at the single-cell resolution level
and provides insights into transcriptional stochasticity.
CytoTRACE is a newly developed computational algorithm
for predicting the differentiation status of malignant cell
population based on scRNA-seq data [21–23]. Here, we used
publicly available scRNA-seq data to characterize the stem-
ness phenotype and immunogenicity of high stemness in
iCCA.

2. Materials and Methods

2.1. Data Download and Preprocessing of scRNA-seq Data.
Raw scRNA-seq data was downloaded from GSE125449 (9
HCC and 10 iCCA samples) [24] and GSE138709 (5 iCCA
samples) [25] downloaded from Gene Expression Omnibus.
These data were last updated on October 6, 2019, and June 6,
2020, respectively. Downstream analysis using Seurat and
visualization was performed within the NIH Integrated
Analysis Portal (NIDAP) using R programs developed on
the Palantir Foundry platform (Palantir Technologies). Ini-
tial processing of single-cell data used the Seurat workflow
[26]. The cells were preprocessed according to their unique
molecular identifier (UMI) counts, number of expressed
genes, and mitochondrial content; the cells containing fewer
than 2001 UMIs, greater than 6000 expressed genes or fewer
than 501 genes, were excluded from the data, along with the
cells that have above 20% mitochondrial genes. The effects of
UMI counts and mitochondrial content were regressed out,
and the gene expression data was normalized using Seurat
sctransform function [27]. Batch effects among the samples
were accounted for using Harmony [28], and batch cor-
rected gene expression matrix was backcalculated from the
Harmony cell embeddings.

2.2. Identification of Malignant Cells from Normal
Cholangiocytes with CNV. The cells were identified according
to the aggregate expression of marker sets specified in [25].

Background noise was accounted for by subtracting the aver-
age expression of 100 randomly sampled genes from the
aggregate result. To confirm the identities of malignant cells
and cholangiocytes, we calculated the CNV of cells using
infercnv [29]. For this analysis, we designated cells from adja-
cent samples as the reference input to infercnv. The cells with
a mean cutoff value less than 1 were excluded from the analy-
sis. A background noise filter value of 0.2 was applied.

2.3. CytoTRACE Analysis. CytoTRACE was used to estimate
transcriptional diversity of each malignant cells in terms of
differential or stemness status [21]. The cells were given a
CytoTRACE score according to their differentiation poten-
tial, with a higher score indicating higher stemness/less dif-
ferential characteristics. For this study, the cells with
CytoTRACE scores above 0.75 were designated as high
stemness malignant cells, while the cells with scores below
0.25 were designated as low stemness malignant cells.

2.4. Gene Enrichment Analysis. Genes with P value < 0.05
were filtered, and pathway analysis was performed on signif-
icantly upregulated and downregulated genes using the l2p
[30] package with the following databases: KEGG, GO,
Reactome, and Hallmark Genes from the Molecular Signa-
ture Database (MSigDB v6.2) [31].

In addition, gene set enrichment analysis (GSEA) was
performed using fgsea R package [32]. For the gene sets, a
custom curated list of genes associated with stemness [15,
33–37] was added to the Hallmark, CP:Reactome, and
KEGG gene sets. The differential gene expression results
between high stemness malignant cells and low stemness
malignant cells were ranked according to the chi-squared
statistic multiplied by the sign of the log2 fold change and
used as inputs to GSEA. The P values associated with GSEA
were adjusted according to the methods of Benjamini-
Hochberg [38].

2.5. Identification of Immune Signature Genes in CSCs. We
collected 2,341 immunology-related genes from KEGG
terms “immune system” and “immunological diseases” from
the KEGG website (https://www.kegg.jp/kegg/pathway
.html#cellular), including MHC family, cytokine and che-
mokine family, nature killer cell-mediated cytotoxicity
members, and TGFβ and TNFα signaling pathways using
the I2pgetgenes4acc function from the I2p package. The
immune signature of high stemness malignant cells was
compared to that of low stemness malignant cells using the
Kruskal-Wallis analysis of variance. The P values were
adjusted according to the methods of Benjamini-Hochberg.

2.6. Communications of Malignant Cells and T Cells. We
used CellphoneDB [39] to study the ligand-receptor interac-
tions of high stemness/low stemness malignant cells with
CD4/CD8 T cells and high stemness/low stemness malignant
cells with natural killer and myeloid cells. Ligand-receptor
pairs with P value < 0.05 were considered as significant.

2.7. Immunofluorescence. The slides with tumor sections
were fixed using freshly made 4% paraformaldehyde for 20
minutes. The slides were blocked with fetal bovine serum
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for an hour at room temperature before incubating in pri-
mary antibodies for 18 hours. The primary antibodies
include anti-CD133 (1 : 100, Abcam, Waltham, MA), anti-
TACSTD2 (1 : 100, Invitrogen, Waltham, MA), monoclonal
mouse antihuman Epithelial Related Antigen Clone MOC-
31 (1 : 100, Dako), CXCL8 polyclonal antibody (1 : 100, Invi-
trogen, Waltham, MA), CXCL1 polyclonal antibody (1 : 100,
Invitrogen, Waltham, MA), Rabbit (DA1E) mAb IgG XP®
isotype (1 : 100, Cell Signaling Technology, Danvers, MA),
and purified mouse IgGa, kappa isotype control antibody
(1 : 100, Biolegend, San Diego, CA). Secondary antibodies
included goat pAb to RB IgG (1 : 500, Abcam, Waltham,
MA) and goat pAb to Rb IgG (1 : 500, Abcam, Waltham,
MA), and the samples were incubated for an hour in a dark
environment. Diluted Hoechst was added during the last 15
minutes of the incubation. The slides were washed with PBS
and mounted with ProLong™ Gold antifade reagent
(Thermo Fisher, Waltham, MA). Imaging of the slides was
carried out using AxioVision version 4.7.1.

2.8. Quantification and Statistical Analysis. Statistical analy-
sis was performed using the Wilcox.test function in R (ver-
sion 3.6.3) and GraphPad Prism (version 7.04). Wilcoxon’s
rank-sum test, Student’s t-test, and Hotelling’s T-squared
test were used in this study.

3. Results

3.1. Transcriptomic Intratumoral Heterogeneity of Malignant
Cells in iCCA. scRNA-seq data from biopsied iCCA tumor
samples were downloaded and reprocessed using parame-
ters matching the original publication [25]. The regener-
ated t-SNE plot (data not shown) were found to
correspond well to the published data [25]. With the line-
arly uncorrelated principal components (PCs) (k = 10), we
performed t-SNE analysis (data no shown) to visualize
high-dimensional data in a two-dimensional space. These
analyses correlated to the published data [25] and con-
firmed the reproducible visualization of the t-SNE plot.
Malignant cell and cholangiocyte identities were confirmed
using CNV analysis. This exercise led to a total of 11993
malignant cells for further analysis (Figure 1(a), upper panel,
and Supplemental Table 1). CytoTRACE was employed to
investigate the transcriptional heterogeneity and differential
status/stemness level of individual malignant cells retained
in this study. As shown in Figure 1(a) (bottom panel), the
CytoTRACE score was diversely distributed, indicating that
there was heterogeneity among tumor cells in terms of
stemness/differentiation status. To validate the ability of
CytoTRACE to define iCCA malignant cell differentiation
states, we first analyzed differentially expressed genes
(DEGs) between CytoTRACE classified high stemness
malignant cell population (CytoTRACE scores above 0.75)
and low stemness malignant cell population (CytoTRACE
scores below 0.25). We rank-ordered the genes based on
their log2FC values and used this ranked list to run GSEA
on an independent list of genes associated with stemness in
humans (Figure 1(b), upper panel, and supplemental
table 2). We found significant enrichment of previously

reported genes related to stemness (e.g., TACSTD2 [40, 41]
and ROR1 [42], enrichment score 0.41 and Padj = 0:0068)
(Figure 1(b), lower panel). There was a considerable overlap
of expression of TACSTD2 and previously reported CSC
marker CD133 (PROM1) evidenced by immunofluorescence
(supplemental Figure1A), which suggests that CytoTRACE
is a potential platform to defining malignant cell at
separate differentiation states in iCCA. Interestingly, the
expression pattern of majority of reported CSC surface
markers matches the CytoTRACE score distribution pattern,
including ALDH1A1, CD24, EPCAM, POU5F1, SOX2, and
KRT19 (Figures 1(c) and 1(d)). Meanwhile, there is no
single CSC surface marker exclusively expressed in high
stemness malignant cells with high CytoTRACE score,
indicating the plasticity of malignant cells with stemness
feature and the necessity of exploring new markers to
identify true CSCs (Figure 1(c)). In addition, some of the
markers that were used broadly in the previous CSC studies
were not significantly expressed in high stemness malignant
cells, such as CD44, indicating that there is data discrepancy
derived from the in vitro and in vivo experiments.

We further compared the DEGs of high stemness malig-
nant cells to the ones with low stemness. Remarkably, the
results showed transcriptomic differences between high
and low stemness malignant cells (Figures 2(a)–2(d) and
supplemental table 3). Among these upregulated genes in
high stemness malignant cells in comparison to the ones
with low stemness, for example, aldehyde dehydrogenase
family 3A (ALDH3A1) activity has been used as one of
markers of stemness and secreted phosphoprotein 1 (SPP1),
which can bind to CD44 to maintain stemness [43]. Among
those downregulated genes, cytokeratin 6 and 17 (KRT6 and
KRT17) and collagen members (COL4A1 and COL6A2)
are related to terminal differential status of malignant cells.
Gene set variation analysis of DEGs indicated that there
was upregulation of genes associated with of metabolic
pathway and considerable downregulation of immune-
relevant pathway in the higher stemness malignant cells.
These different functional patterns of malignant cells
between high and low stemness likely reflect the essential
activity difference of high stemness cell population versus
differential malignant cells. Taken together, these findings
suggest a correlation of CytoTRACE analysis with stemness
status of malignant cells in iCCA. Thereafter, we use
malignant cells with a high CytoTRACE score as a substitute
of malignant cells with high cancer stemness feature.

We also used the other set of publicly available scRNA-
seq date derived from iCCA to further validate the Cyto-
TRACE for potential usefulness to explore CSC signature
GSE125449 [24] (Supplemental Figure S2 and supplemental
table 4). Although there were some differences between these
two cohorts in terms of expression of reported CSC markers,
expression similar pattern was generally concordant,
confirming that high stemness malignant cells exhibited
significant higher expression level of CSC markers,
including KRT19, EPCAM, CD24, ALDH1A1, and SOX2.

3.2. Immunogenicity of Malignant Cells with High Cancer
Stemness Feature in iCCA. To further evaluate the potential
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Figure 1: Differentiation heterogeneity of malignant cells in iCCA. (a) tSNE plots for malignant cells from 5 tumor samples (upper panel).
CytoTRACE analysis of malignant cells (lower panel). CytoTRACE scores projected with tSNE plots are colored red to indicate high
stemness/low differentiation and blue for low stemness/high differentiation. (b) GSEA enrichment and leading-edge plots. (Top)
Differentially expressed genes found in CytoTRACE classified high stemness malignant cells and low stemness malignant cells. Genes
were ranked by Log2FC. (Bottom) Genes contributing the most to the enrichment score. The top 10 genes that are predicted to be
specifically associated with high stemness malignant cells are indicated on the right box. (c) tSNE plots showing the expression of CSC
marker genes. (d) Violin plots showing the expression of CSC marker genes. ∗ indicates P < 0:05.
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mechanism of immune evasion of high stemness malignant
cells, we further analyzed the expression patterns of
immune-related genes of iCCA malignant cells based on
scRNA-seq data (Figures 3–5, supplemental table 3-4, and
Supplemental Figure S3-S5).

The expression of major histocompatibility complex
(MHC) class I and II molecules and antigen-presenting
machinery (APM) is essential to display antigen peptides
to cytotoxic T cells and trigger a response against non-self-
antigens. As shown in Figures 3(a) and 3(b) and Supplemen-
tal Figure S3-S4, there is considerable expression of β2M,
MHC class I and II, and transporter associated with
antigen processing (TAP) molecules in all malignant cells
from both cohorts. Although there is a discrepancy in
expression of MHC class I between high stemness versus
low stemness malignant cells from these two cohorts, there
is significant lower expression of MHC class II molecules
and TAP1 in high stemness malignant cell population
(Figure 3 and Supplemental Figure S3-S4), which indicates
that the MHC II pathway in iCCA CSCs likely contributes
to immune evasion during tumor initiation and progression.

Other than critical MHC molecules, there is an enriched
list of inflammatory factors which are expressed by malig-
nant cells to conduct important communication messengers

with surrounding stromal cells. In this study, we found that
high stemness malignant cells expressed considerable level of
inflammatory factors (presumably early on) to build up the
niche for further survival from immune surveillance and
eventually tumorigenesis. Furthermore, some inflammatory
factors were expressed at a higher level in the high stemness
malignant cells from both cohorts. These factors included
CCL2 and CCL20 (Figure 4(a) and Supplemental Figure
S5A), CXCL1, CXCL2, CXCL6, and CXCL8 (Figure 4(b)
and Supplemental Figure S5B), and IL6ST and TNFRSF12A
(Figure 5 and Supplemental S5C and S5D). There were over-
laps between the expression of TACSTD2 and CXCL1 and
CXCL8, evidenced by immunofluorescence (Supplemental
Figure S1B-S1C). Meanwhile, some inflammatory factors
were expressed at a significant lower level in the high stem-
ness malignant cells from both of cohorts. These factors
included CCL3, CCL4, CCL5, CCL13, and CCL14
(Figure 4(a) and Supplemental S5A), CXCR3, CXCR4,
CXCR6, and CXCL13 (Figure 4(b) and Supplemental S5B),
and IL2RB, IL16, XCL1, XCL2, TNFRSF4, IFNG, and
CD27 (Figure 5 and Supplemental S5C and S5D). These sug-
gest that certain inflammatory factors expressed in high
stemness malignant cells may contribute to stemness main-
tenance while also facilitating immune evasion.
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Figure 3: Comparison of MHC pathway profile between high stemness and low stemness iCCA cells. (a) Violin plot of MHC I pathway-
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Figure 4: Comparison of C-C and C-X-C cytokine profile between high stemness and low stemness iCCA cells. (a) Violin plot of C-C
chemokines. (b) Violin plot of C-X-C chemokines. ∗ indicates P < 0:05.

9Stem Cells International



1.00

IL26⁎ XCL1⁎ XCL2⁎

IL16⁎ IL21⁎ IL22⁎

IL2RB⁎ IL6ST⁎ IL13⁎

Cytotrace_celltype

High_stem_malign Low_stem_malignHigh_stem_malign Low_stem_malignHigh_stem_malign Low_stem_malign

0.75

0.50

0.25

0.00

Ex
pr

es
sio

n 
(s

ca
le

d)

1.00

0.75

0.50

0.25

0.00

1.00

0.75

0.50

0.25

0.00

(a)

1.00
TNFRSF4⁎ TNFRSF6B⁎ TNFRSF9⁎ TNFRSF12A⁎

FASLG⁎ HGF⁎ IFNG⁎ CD27⁎ VEGFA⁎

High_stem_malign Low_stem_malign High_stem_malign Low_stem_malign Low_stem_malign

Cytotrace_celltype

High_stem_malign High_stem_malign Low_stem_malign High_stem_malign Low_stem_malign

0.75

0.50

0.25

0.00

Ex
pr

es
sio

n 
(s

ca
le

d)

1.00

0.75

0.50

0.25

0.00

IL13TNFRSF14⁎

(b)

Figure 5: Comparison of other inflammatory factor profile between high stemness and low stemness iCCA cells. (a) Violin plot of
interleukin family. (b) Violin plot of TNF family and other inflammatory factors. ∗ indicates P < 0:05:

10 Stem Cells International



Meanwhile, we used the computerized algorithm Cell-
PhoneDB to predict ligand-receptor interaction between
malignant cells and immune cells. We observed that
HLA-C/FAM3C, CEACAM5/CEACAM6, and TNFSF14/
TNFRSF6B were commonly enriched between high stem-
ness malignant cells and all immune cells (Figure 6). Notably,
PDCD1/FAM3C was enriched between high stemness
malignant cells with T cells specifically. These results have
demonstrated the complex nature of high stemness malig-
nant cells, which greatly influence surrounding immune
cell functionalities. Taken together, these interactions sug-
gest that blocking these axes may affect the interaction of
high stemness malignant cells with surrounding immune
cells and could be an effective strategy to overcome thera-
peutic resistance for iCCAs.

4. Discussion

In this study, we used CytoTRACE to stratify malignant cells
to different groups depending on stemness/differentiation
states and further characterized immunogenicity of high
stemness malignant cells. Our results indicate that heterogeni-

city exists within malignant cells with respect to stemness and
their immunity. We found that malignant cells with high stem-
ness express much lower levels of MHC class II and TAP1
molecules and exhibit significant expression of certain inflam-
matory factors with some of them much higher expressed in
comparison to low stemness malignant cells. These results
indicate that high stemness malignant cells retain their intrin-
sic immunological feature that facilitate the escape of
immune surveillance. Our study represents the first report
to demonstrate the immunological characteristics of high
stemness malignant cells in iCCA with scRNA-seq.

It has been challenging to define CSC population
in vivo given no consensus on a specific and universal sig-
nature of CSCs across tumor types, though various cell
surface markers have been employed to better define CSCs
in both cell lines and tumors, including CCA [44]. Here, with
single-cell resolution, we found that different CSC marker-
defined malignant cells have distinct transcriptomic profil-
ing, which likely reflects phenotypic and functionally differ-
ences in plasticity and differentiation [45–47].

The mechanism of CSC immune evasion has been
remaining elusive. Immune recognition of tumor antigens
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by cytotoxic T lymphocytes is mediated through MHC mol-
ecules on the cell surface with the assistance of APM. In this
study, we demonstrated that high stemness malignant cell
population from iCCA tumor samples exhibited significantly
lower levels of MHC molecules compared to low stemness
malignant cells. Our findings are consistent with the previ-
ous reports using in vitro culture from glioma [16], mela-
noma [48], and colon [49] samples, all of which have
documented reduced expression of MHC. Together, these
data support the hypothesis that high stemness malignant
cells reduces host immune recognition and is a strategy used
by malignant cells to escape from immune surveillance.

The immunological profiling studies from established
human CCA cell lines have shown that CCA spheroids, a
method to enrich cells with stemness status in vitro, release
a spectrum of inflammatory molecules that presumably exe-
cute immunomodulatory effects on the TME [20]. Here, we
found that high stemness iCCA cells express proinflamma-
tory factors, including CCL2, CCL20, CXCL1, CXCL2,
CXCL6, and CXCL8, although none of these was exclusively
expressed in all high stemness malignant cells. These results
differ from previously published reports using established
cell lines as opposed to biopsied tumors from patients [20],
which may in part explain the discordance [20]. CXCL1, 2,
6, and 8 belong to ELR (glutamic acid-leucine-arginine)-
positive CXC chemokines, and it is well established that
these family of chemokines are found to promote angiogen-
esis. These findings are consistent with the prior reports that
CSCs may be a crucial source of key angiogenic factors in the
early phase of tumorigenesis [50].

Recently, it was reported that both CXCL1 [51] and
CXCL2 [52] are important for immune evasion through
recruitment of CXCR2-positive myeloid-derived suppressor
cells (MDSC). Since MDSCs can suppress effector T cell acti-
vation, proliferation, trafficking, and viability, inhibit NK
cells, and activate regulatory T cells, these CXC chemokines
can potentially contribute to CSC immune evasion [53].
Intriguingly, our study also showed considerable high
expression levels of HGF and VEGF in some high stemness
malignant cells. HGF could synergistically enhance new
blood vessel generation [54], which likely facilitates survival
of high stemness malignant cells initially, and suggest that
antiangiogenesis in combination with immunotherapy may
overcome immunotherapy resistance in iCCA. Furthermore,
ligand-receptor analysis showed certain stronger interaction
between high stemness malignant cells with immune cells in
comparison to low stemness malignant cells, e.g., PDCD1-
FAM3C pair, where FAM3C is noted to drive breast CSC
formation [55], while PDCD1 expression is the marker of
exhausted T cells and has a core role for tumor evasion from
immune surveillance. The blockage of this interaction will
likely change the communication between high stemness
malignant cells and immune cells though biological function
of this interactions need to be further characterized.

Together, our results support the hypothesis that high
stemness iCCA cells are associated with reduction of
immune recognition and expression of profound inflamma-
tory factors, leading to the generation of an immunosup-
pressive TME in iCCA. Because the data analysed here are

derived from scRNA-seq of patient tumors, additional con-
firmatory studies are warranted. Specifically, in vitro and
in vivo studies are needed to formally dissect molecular
mechanisms underlying interactions of high stemness malig-
nant cells and the individual neighboring immune cell subset
in the TME. Such efforts could lead to the development of
novel therapies to overcome treatment resistance and
improve outcomes for patients with this highly lethal
malignancy.

5. Conclusions

CytoTRACE can be used for stratifying high stemness
malignant cells from scRNA-seq data of iCCA. High stem-
ness iCCA cells express low levels of MHC II and consider-
able cytokines to evade immune surveillance and
concurrently generate immunosuppressive TME.
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