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Abstract

Given the ever-increasing amount of high-dimensional and complex omics data becoming

available, it is increasingly important to discover simple but effective methods of analysis.

Divergence analysis transforms each entry of a high-dimensional omics profile into a digi-

tized (binary or ternary) code based on the deviation of the entry from a given baseline popu-

lation. This is a novel framework that is significantly different from existing omics data

analysis methods: it allows digitization of continuous omics data at the univariate or multivar-

iate level, facilitates sample level analysis, and is applicable on many different omics plat-

forms. The divergence package, available on the R platform through the Bioconductor

repository collection, provides easy-to-use functions for carrying out this transformation.

Here we demonstrate how to use the package with data from the Cancer Genome Atlas.

Introduction

The technologies that provide us with high-dimensional omics data continue to advance at a

rapid rate. Particularly in the last decade, the available modalities of omics data have consider-

ably expanded and now include, among others, coding and noncoding RNA expression, micro

RNA expression, protein expression, epigenetic profiling related to histones and CpG methyla-

tion, copy-number and mutation profiling. As a result, the analysis of multi-modal omics data

has become indispensable in many domains of biological and medical research.

Whereas the quantity and quality of available data has appreciably increased, the results of

research based on such data are often not reliable, robust and replicable. A key challenge has

been to quantify the level of variability and diversity in omics profiles in a given population,

and to separate normal and technical variability from abnormal variability indicative of a bio-

logical property such as disease.

Recently we have introduced divergence analysis as a method for simplifying high-dimen-

sional omics data for bioinformatic analyses [1]. This method conceptually parallels the wide-

spread use of deviation from normality as a disease marker in clinical testing, such as a blood

based prostate specific antigen (PSA) test [2, 3]. Given a high-dimensional omics data profile,

it can be converted to a binary or ternary string of the same length, where each value now indi-

cates how the original value diverges from a baseline or reference population. The features of

interest may be univariate such as a gene, a CpG site, or a protein, in which case the original
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profile is converted to one of three labels 0, -1 and 1 indicating whether the level of a feature is,

respectively, within the reference range for that feature, or below or above that range. Or, the

features of interest may be multivariate, such as sets of genes representing pathways of interest.

In this case, divergence coding is binary, where a 0 or 1 for a multivariate feature indicates,

respectively, that the set of feature is inside or outside the support of the multivariate, baseline

distribution.

We have prepared the ‘divergence’ R package [4] offered through the bioconductor package

repository [5] (https://www.bioconductor.org/packages/release/bioc/html/divergence.html)

which provides functionality for divergence based computations.

Divergence coding can be used for a wide variety of types of data analysis: class comparison

and prediction, feature selection, regression, combination of omics modalities, and many oth-

ers. Here we present how to use this package and showcase the many different ways in which

the divergence coding can be manipulated to perform interesting analyses. In the following we

use breast normal and tumor samples from the TCGA project [6] for which RNA-seq expres-

sion profiles as well as methylation profiles are provided. First we use some basic examples to

illustrate the workflow, followed by more complex types of data analyses that combine multiple

omics modalities, and demonstrate how to use divergence in both the univariate and multivar-

iate settings. A subset of this data is available with the R package.

Methods

We may summarize the divergence method as follows. Before computing the baseline range

(univariate) or support (multivariate) and the resulting divergence coding, a rank-transforma-

tion is applied to all data. Consider an omics sample represented by a vector X = (Xj), j = 1..m,

m being the dimensionality of the omics profiles. The following transformation is applied

which converts the data to a normalized rank, with the minimum being zero.

QjðXÞ ¼
ji 2 1::m : 0 < Xi � Xjj

ji 2 1::m : 0 < Xij

Then Qj(X) 2 [0, 1]. The zero minimum is particularly useful in preserving the zero valued

mass usually observed in many omics data modalities, such as RNA-Seq.

Now consider a multivariate feature indexed by S—i.e. a subset of the given m features (the

univariate scenario is a special case when |S| = 1). We will denote the corresponding subset of a

given omics profile X following the quantile transformation as Q(X)S. Suppose we have n such

profiles that constitute the baseline group. We estimate the baseline support as follows: given a

parameter γ 2 [0, 1], we compute l which is the floor of nγ. Then from each baseline sample k, if

rk is the distance from Q(X)S to it’s lth nearest neighbor in the multivariate feature space. If we

denote the sphere around Q(X)S of radius rk as US
k then the support of the baseline is the union

of the regions covered by these spheres around each baseline sample, which we denote as Û S:

Û S ¼
[n

k¼1

US
k

Following the baseline estimation in this manner, for any given omics profile X, the diver-

gence coding Z(X)S can be computed as:

ZðXÞS ¼

(
1 if QðXÞS =2 Û S

0 otherwise
ð1Þ
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For the univariate scenario, the support is the union of a series of intervals. However, we

apply a further simplification by replacing these with a single interval spanning the lowest end

to the highest end of these intervals. Accordingly the divergence coding becomes ternary:

Z(X)j 2 {−1, 0, 1} with −1 indicating a value below the baseline interval for feature j, 1 indicat-

ing a value above the baseline interval, and 0 indicating no divergence.

In practice we use two more parameters, α and β. The β parameter is used for allowing a

certain number of outliers to be exempted from the baseline. Given the radii of the spheres r1..

rn, let �r be the (1 − β)th percentile of these values. Then we select only the spheres with rk � �r
to compose the baseline. Once the baseline is computed, we can compute the divergence cod-

ing for the baseline samples; then α is the average proportion of divergent features (multivari-

ate or univariate) among the baseline cohort. As discussed in the following section, we specify

α and β and then select the γ value that fits these specified parameters. However the functional-

ity for estimating a baseline for a specified γ parameter is available in the package as well.

For a more detailed description of the method, see [1].

Results

Univariate workflow

To carry out an analysis based on divergence, the first step is to determine the case and control

samples. The control cohort here will be used for computing the baseline interval for each

feature, and we will refer to it as the baseline cohort or baseline group. Once the baseline is

computed, the divergence values for the case cohort will be computed with reference to the

baseline.

What data should be used as the baseline cohort depends on the problem at hand and needs

careful investigation based on the biological or clinical questions of interest that are being

investigated. In many scenarios of disease based data, and in particular cancer, normal samples

would be a good choice. The more normal samples available, the more robust the baseline will

be.

All samples, both in the case cohort and the baseline cohort should have the same features

—for example genes or microarray probes, and be from the same platform (e.g. RNASeq or a

specific microarray platform). Ideally the baseline cohort should be from the same experiment

to avoid study-specific batch effects as much as possible. In general we suggest at least 20 sam-

ples be available to compute the baseline.

The divergence algorithm applies a scaled rank transformation to all samples before the

digitization of the data. The package provides functionality for the user to compute this rank

transformation manually, or it can be set to compute internally when the divergence computa-

tion is requested by the user. No other normalization procedures are applied, and the user may

apply any normalization procedures beforehand as necessary.

There are three parameters involved in the divergence computation: α, β and γ. All parame-

ters are in the (0, 1) range. The β parameter adjusts the support to account for a certain per-

centage of outliers included in the baseline data, and the γ parameter provides a way to widen

or tighten the support around each baseline sample. The closer γ is to 1, the further the support

around each normal sample will extend. For a given support, the α value is simply the average

number of divergent features per sample for the baseline cohort.

In usage, we usually provide the α and β values and a range of possible γ values and let the

package find the most appropriate γ value out of these for the given α and β values. By default,

the package uses α = 0.01, β = 0.95, and γ 2 {0.01, 0.02, . . ., 0.09, 0.1, 0.2, . . ., 0.9} as a list of

candidate γ values. Thus if you use these default values, the package will consider 95% of the

baseline cohort to be included in the support and find the smallest possible γ value from the
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given list that will provide the average number of divergent features per sample in the baseline

cohort to be 1% or less. For more details, see [1].

We use RNA-Seq data spanning 20530 genes from the TCGA Breast Cancer dataset [6, 7]

for the following analysis. This data consists of 1097 tumor samples and 114 normal samples,

the latter which we will use as our baseline cohort.

Using the default parameters available, we compute the digitized ternary divergence format

for the tumor samples with respect to the normal baseline of 114 samples. The algorithm

selects a γ value of 0.3, which yields an α value of 0.007 which is below the α threshold of 1%

which was specified as the default.

The tumor data contains 601 ER+ and 179 ER- samples. We can see whether the number of

divergent genes per sample are similar between the two ER groups or not (Fig 1).

As another example of using the size of the divergent feature set as an indicator of the diver-

gence of the sample, we can compare it against clinically obtained covariates such as the per-

centage of normal and tumor cells found in the sample. We see that these percentages track

with sample level divergence (Fig 2).

Table 1 shows the correlations obtained with the percentages of normal, tumor, and stro-

mal cells provided from pathologist observations in the TCGA data. A similar comparison

can be made with the cell type enrichment scores provided by xCell, a method which pro-

vides a score for gene expression samples suggesting the level of enrichment in the sample

for different cell types [8]. As see in Table 1, the number of divergent genes in breast tumor

Fig 1. Number of divergent features as a measure of sample divergence. The size of the divergent set in each sample—i.e. the set of features that are

divergent in a given sample—can be uses as a measurement of the divergence of a sample. This allows the comparison of sample level divergences

between sample groups. When digitized with respect to a normal breast basenline, the boxplots compare the number of divergent features per sample

between ER+ and ER- breast tumors. Given the higher risk associated with ER- breast tumors, we expect to observe higher divergence from normality

compared to ER+. The same trend is observed if the consideration is limited to the number of upper or lower divergent features only.

https://doi.org/10.1371/journal.pone.0249002.g001
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samples show high correlation with the enrichment scores provided for many cell types.

These results indicate that some of the divergence observed is reflective of the cell type het-

erogeneity in the specimen.

To perform a differential expression analysis at the feature level for digitized divergence

data, the package provides a χ2 test functionality, which we can use to perform a χ2 test for

each gene between ER+ and ER- samples. Even simpler, we can merely compute the divergent

probability of each gene over the ER+ and ER- samples respectively. Note that the divergent

probability of a feature over a group of samples is simply the number of samples for which the

feature is non-zero in the divergence space divided by the number of samples.

Fig 3 shows the divergent probability of each gene for ER+ and ER- samples. The samples

in blue are genes that are significant under a Bonferroni-adjusted P� 0.05 threshold from the

χ2 test. The ESR1 gene, which can be considered a marker for ER status, is highly significant

and is colored in red. Table 2 shows the top ten genes by rank of χ2 test p-value.

We can observe how these genes track with the ER level by comparing the expression level

to that of ESR1 expression, both in the regular expression value space and in the divergence

space. Figs 4 and 5 show the values of ESR1 expression among ER+ and ER- breast tumor sam-

ples against two of the genes highly differentially expressed between the two sample groups,

ACADSB and PSAT1, in the regular expression space (log2 transcripts per million) and in the

divergence space.

Multivariate workflow

In the multivariate scenario, the features of interest are composite—that is, they are sets of uni-

variate features, for example a gene set indicating a disease specific signature or a pathway.

The workflow is similar to that of the univariate case, with the exception that the divergence

Fig 2. Comparing sample divergence with clinical covariates. Sample divergence of breast tumor samples (as measured by the size of the divergent set

in each sample), with respect to a normal breast baseline, shows negative correlation (spearman correlation = -0.266) with the normal cell percentage

estimate of the sample, and positive correlation (spearman correlation = 0.167) with the tumor cell percentage estimate of the sample, illustrating that

sample divergence is indicative of the sample level deviation from normality.

https://doi.org/10.1371/journal.pone.0249002.g002
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coding will be either 0 or 1—that is, it indicates whether the feature is divergent or not,

whereas for the univariate case it provided a direction of divergence as well.

With the same breast gene expression data from TCGA which we have used so far, in the

following we examine the divergence coding obtained for the KEGG pathways from MSIGDB

gene set collection [9]. Computing the divergence coding is similar to the univariate case,

except that the multivariate features need to be specified. As with the univariate case, the refer-

ence sample data and the samples for which the divergence coding need to be computed are

provided in matrix form, along with a range of γ values to choose from, a β value, and the

required α threshold. The multivariate features are provided as a list, where each element of

the list is a vector of univariate features which are available in the data matrices provided. In

the example we present, the same TCGA sourced RNA-Seq expression data used previously

are used. The KEGG pathway list has 186 gene sets, where each set ranges from 10 to 389 gene

symbols. These gene symbols are available in the RNA-Seq expression data and will be used to

estimate the baseline support from the matched normal samples and the placement of the

tumor samples either within or outside the support in the high dimensional space representing

each KEGG gene set. The output will be a matrix comprising of the binary divergence coding

for each KEGG pathway and each tumor sample.

Given that the divergence coding is a highly simplified representation, we can simply

observe it in terms of either the features or the samples and observe the proportion of values in

Table 1. Correlation between cell type signatures and divergence score. The divergence score (number of divergent

genes in a sample) for breast tumor samples based on gene expression is correlated with the scores from the xCell tool

reflecting enrichment in the sample for different cell types. The 20 cell types with the largest spearman correlations are

shown. Also shown are correlations between the divergence score with the normal, tumor, and stromal cell percentages

provided in the TCGA clinical covariate data.

cell type correlation

Type 1 helper (Th1) cells 0.779

Megakaryocyte-erythroid progenitor (MEP) 0.636

Plasma cells 0.594

Type 2 T helper (Th2) cells 0.457

Natural killer T cells (NKT) 0.440

Osteoblast 0.417

pro B-cells 0.352

Common lymphoid progenitor (CLP) 0.342

Hematopoietic stem cells (HSC) -0.636

Mesangial cells -0.589

Chondrocytes -0.552

Endothelial cells -0.528

Adipocytes -0.505

Hepatocytes -0.501

Megakaryocytes -0.493

Fibroblasts -0.474

Lymphatic endothelial cells -0.472

Conventional dendritic cells (cDC) -0.430

Mast cells -0.410

CD4+ naive T-cells -0.354

normal cell % -0.266

tumor cell % 0.167

stromal cell % -0.170

https://doi.org/10.1371/journal.pone.0249002.t001
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each divergence state. Fig 6 shows the sample proportions for some of the KEGG pathways,

and similarly at the sample level in Fig 7.

As before, we can apply a χ2 test to each pathway between the ER+ and ER- sample groups

to identify which pathways are highly differentially divergent between the two groups (Fig 8).

The pathways that meet a P� 0.05 cutoff after Bonferroni adjustment for multiple testing are

shown in blue.

Fig 3. Differentially divergent features between two phenotypes. The probability of divergence for each feature is plotted for two sub-groups of breast

tumors, ER+ and ER-. Genes far from the diagonal are likely to have highly different divergence patterns between the two groups (e.g. ESR1).

Alternatively, a χ2 test can be performed for each feature between the two groups, and points in blue indicate genes that are χ2 test p-value significiant at

a bonferroni adjusted P� 0.05 threshold.

https://doi.org/10.1371/journal.pone.0249002.g003
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Further examples

In this section we provide a series of different example analyses that use RNA-Seq gene expres-

sion, microarray gene expression, and methylation 450k data with both univariate and multi-

variate modes of divergence.

Discrimination between Luminal sub types with KEGG pathways. In this example, we

demonstrate using multivariate divergence coding to train a classifier that provides a mecha-

nistically useful interpretation, and examine its robustness across other datasets. Continuing

the example provided in the previous section, we use the multivariate divergence coding

obtained for the breast cancer tumor samples with respect to a normal breast baseline, with

KEGG pathway gene sets as our multivariate feature sets of interest.

Table 2. 10 Most differentially divergent genes between ER+ and ER- breast tumor samples.

gene divergent probability ER+ divergent probability zER- Chi-squared test statistic p-value

ESR1 0.0166 0.6983 443.0622 P <<10̂ (-6)

TBC1D9 0.0266 0.6257 356.4973 P <<10̂ (-6)

ACADSB 0.0765 0.7542 351.6167 P <<10̂ (-6)

SCUBE2 0.0699 0.7318 346.3227 P <<10̂ (-6)

RABEP1 0.0433 0.648 334.7269 P <<10̂ (-6)

PSAT1 0.0616 0.6034 314.8622 P <<10̂ (-6)

CXorf61 0.0216 0.5196 286.9675 P <<10̂ (-6)

EN1 0.0233 0.5196 291.2844 P <<10̂ (-6)

A2ML1 0.0649 0.6313 278.4052 P <<10̂ (-6)

SKP1 0.0516 0.5754 279.7753 P <<10̂ (-6)

https://doi.org/10.1371/journal.pone.0249002.t002

Fig 4. Comparing two genes in expression space and divergence space. Comparison of ACADSB and ESR1 gene expression for ER+ and ER- breast

tumor samples in regular expression space (log2 TPM) and the digitized divergence space. ESR1 is an indicator of ER status and ACADSB shows to be

highly differentiated between the two groups as well.

https://doi.org/10.1371/journal.pone.0249002.g004
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Fig 9 shows principal component analysis (PCA) applied to the KEGG pathway divergence

coding. We simply take the binary matrix of breast tumor samples with the divergence coding

for each KEGG pathway and apply PCA analysis as we would with any other data matrix.

The figure indicates that projection onto one of the leading principal components of the

divergence data showed a significant ability to differentiate the Luminal A subset of tumor

samples from the other PAM50 sub types showed. Based on this observation, we may train a

classifier using the binary divergence coding for classifying between Luminal A and Luminal B

sub types. Here we opt for decision trees and random forests as our classifiers of interest, given

that with binary divergence data, these classifiers can provide more intuitive understanding of

Fig 5. Comparing two genes in expression space and divergence space. Comparison of PSAT1 and ESR1 gene expression for ER+ and ER- breast

tumor samples in regular expression space (log2 TPM) and the digitized divergence space.

https://doi.org/10.1371/journal.pone.0249002.g005

Fig 6. Visualizing multivariate divergence by feature. Given that multivariate divergence results in a binary digitization, for each feature we can

observe how many samples are in a given state. Multivariate features (which are sets of genes, in this case) NOTCH signaling pathway and GNRH

signaling pathway, for example, are much more likely to be divergent compared to the other features shown.

https://doi.org/10.1371/journal.pone.0249002.g006
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the biological underpinning behind the separation of the two groups, especially decision trees.

Each branch of a decision tree is a binary decision of whether a certain KEGG pathway is dis-

playing aberrant activity or not as indicated by divergence.

Candidate features for the classifiers were selected as the top 20 pathways resulting from χ2-

tests between the two groups in the TCGA data (231 Luminal A samples and 127 Luminal B

samples). The resulting decision tree provides a training accuracy of 0.85, while a random for-

est classifier provides 0.94. This decision tree is shown in Fig 10.

Next, we obtained independent microarray data for breast cancer from the GPL96 platform

from publicly available studies (GEO accession numbers GSE2034, GSE12093, GSE17705,

GSE25055, GSE25065) [10–13]. Due to lack of availability of normal samples from these stud-

ies, we used the ‘normal-like’ sub type as a baseline for obtaining KEGG pathway divergence

coding for the Luminal samples. To ensure that the resulting data has a similar level of diver-

gence to that from TCGA, we took the samples that would not be used for testing (i.e. omitting

the Luminal samples), and computed divergence coding for the KEGG pathways for a range of

γ values. From the resulting divergence codings, we selected the γ parameter that provided the

highest correlation in divergence probabilities for the KEGG pathways to that from TCGA

data, and used this setting to compute divergence codings for the Luminal A and B samples

that would be used for testing (127 Luminal A samples, 66 Luminal B samples). Validating the

above classifiers on these microarray samples provided accuracies of 0.64 and 0.71 from the

decision tree and the random forest respectively (see Table 3).

We believe with larger datasets and more complex training and tuning procedures, more

robust classifiers that work well in cross-study cases may be developed. Our aim here is to

demonstrate a fairly simple example of deriving a classifier from divergence that provides

some understanding of the possible biological mechanisms underpinning the classifier, while

also providing some degree of portability to a different dataset for validation.

Gene set enrichment. Traditional types of analysis can also be performed with divergence

coding if so desired. Gene set enrichment analysis (GSEA), which is the standard approach to

examining whether a given ranking of genes in enriched in a collection of gene sets, is one

such method we showcase here. For this example, we use the univariate gene expression diver-

gence coding computed for breast tumor samples, along with the chemical and genetic pertur-

bations collection of gene sets from the MSigDB project [9].

Fig 7. Visualizing multivariate divergence by sample. For a given set of multivariate features, we can see how likely they are to be divergent in a given

sample. Here five selected breast tumor samples are ordered by how many gene sets in the KEGG gene set collection are divergent in each sample, with

respect to a normal breast baseline.

https://doi.org/10.1371/journal.pone.0249002.g007
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As a simple example, we use the ER+ and ER- sets of samples used previously. A notewor-

thy point here is than unlike a traditional setting where differential expression analysis per-

formed on a binary phenotype comparison is used for obtaining the gene rankings, with

divergence any set of features can be ranked over a single set of samples without the need for a

binary comparison. Thus, we compute the divergence probabilities for genes for ER+ and ER-

samples respectively, each set of samples providing us a ranking of genes. These rankings are

then used to perform two sets of GSEA analyses, and the comparison of the results can be used

Fig 8. Differentially divergent gene sets between phenotypes. Similar to the univariate scenario, we can compare the divergence probability of

multivariate features between groups of samples. The divergent probabilites among the ER+ and ER- breast tumor samples are shown here for KEGG

gene sets, which the points in blue indicating meeting a bonferroni adjusted P� 0.05 threshold from a χ2 test.

https://doi.org/10.1371/journal.pone.0249002.g008
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to identify gene sets that are enriched with different directionalities in the two groups (see Fig

11). While in these results we compare the two ER groups, any ER group, or any other set of

samples—may be analyzed with GSEA using divergence without the need for a binary pheno-

type comparison.

Divergent CPG clusters. Here we use methylation data from the TCGA breast cancer

cohort with divergence. The data we use are the methylation beta values in the [0, 1] range

indicating the proportion of methylation observed at a given CpG. As before, we use the meth-

ylation data for the TCGA normal samples as a baseline to compute divergence for the tumor

samples. The mode of divergence used here is univariate divergence—i.e. we obtain a diver-

gence coding for each sample at each CpG.

We can now use this data to look for differentially methylated regions. By arranging the

CpG positions along the genome by chromosome and location, we may cluster the CpGs into

Fig 9. Principal component analysis of multivariate divergence. Digitized data can be analyzed with regular statistical tools such a

principal component analysis (PCA). Here the first two PCs are shown for multivariate divergence values of the KEGG geneset

collection for breast tumor samples with respect to a normal baseline.

https://doi.org/10.1371/journal.pone.0249002.g009
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regions of interest. Here we cluster CpGs in each chromosome into clusters such that that all

adjacent CpGs in a cluster are no more than 300 bp apart. Then we simply compute the aver-

age sum of divergence observed over the tumor samples in each cluster. Suppose we have k
clusters; given i = 1..n samples, for cluster rk this is

pk ¼
P

j2rk

Pn
i¼1

zi;j
njrkj

with zi,j being the binary divergence coding for CpG j in the cluster and sample i.
Further, we can assign a p-value to each region by computing a null distribution for the

clusters through permutation of the CpG labels. The following CpG clusters appear to be the

most highly divergent in breast tumor samples (Table 4).

We can compare these results to those obtained via bumphunter [14], a popular package

used for finding differentially methylated regions. Fig 12 shows the cluster divergence sums

(prior to normalization by cluster size) obtained for the top 10,000 clusters against the areas

computed from bumphunter with the methylation data. Bumphunter searches for ‘differen-

tially methylated regions’, or DMRs, which are regions within the specified clusters where all

adjacent CpGs are differentially methylated between normal and tumor. For each cluster we

Fig 10. Decision tree for classification between Luminal A and Luminal B sub types. Using the divergence coding obtained for KEGG pathways, this

decision tree was trained to separate Luminal A and Luminal B sub types. Each branch is a binary variable indicating whether a KEGG pathway is

aberrant or not as indicated by multivariate divergence.

https://doi.org/10.1371/journal.pone.0249002.g010

Table 3. Classification results for Luminal A vs B with KEGG pathways. Classification results obtained for Luminal A and B samples from microarray data with the

KEGG pathway based classifiers trained on TCGA data.

classifier data accuracy sensitivity specificity balanced accuracy

decision tree train 0.85 0.79 0.89 0.84

test 0.64 0.46 0.74 0.60

random forest train 0.94 0.94 0.94 0.94

test 0.71 0.56 0.79 0.68

https://doi.org/10.1371/journal.pone.0249002.t003
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take the DMRs found by bumphunter for that cluster and take the area (which indicates the

degree of differential methylation as measured by a regression coefficient in the bumphunter

model, summarized for the region) for the most significant DMR therein for comparison with

our divergence based approach. The results show a strong agreement for the clusters with high

amounts of divergence.

Fig 11. Comparison of GSEA results for ER+ and ER- samples with MSigDB chemical and genetic perturbation gene sets. The plot shows the

enrichment scores obtained for the chemical and genetic perturbation gene sets by running gene set enrichment for ER+ and ER- groups separately

with divergence coding. Gene sets of significant enrichment by FDR are colored, and those with opposing directions of enrichment in the two groups

are labeled.

https://doi.org/10.1371/journal.pone.0249002.g011
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Significant gene-CpG associations. Having computed univariate divergence for two

omics modalities—both methylation and gene expression—in this example we combine the

two to discover what CpG—gene pairings show significant simultaneous divergence from

both modalities. We are provided a table of CpGs mapped to nearby genes such that each CpG

is mapped to a gene (with a single gene being mapped to one or more CpGs). We can compute

the proportion of samples for which a given CpG—gene pair are both divergent.

Table 4. Highly divergent CpG clusters. The 10 CpG clusters with highest amount of divergence in the cluster.

chromosome start end cpgs genes

chr20 57425978 57427975 59 GNAS-AS1,GNAS

chr6 33286243 33289721 55 ZBTB22,DAXX,TAPBP

chr7 94285269 94287244 62 SGCE,PEG10

chr13 78491981 78494464 48 RNF219-AS1,EDNRB

chr7 130129945 130132455 48 MEST,MESTIT1,MIR335

chr6 33130695 33134327 44 COL11A2

chr7 27183132 27184823 44 HOXA-AS3,HOXA5

chr4 154710223 154712582 36 SFRP2

chr11 14993377 14995756 39 CALCA

chr1 92949336 92950838 31 GFI1

https://doi.org/10.1371/journal.pone.0249002.t004

Fig 12. Comparison of cluster results from divergence against bumphunter for top CpG clusters. The y-axis shows

the sum of divergent CpG instances in the cluster (standardized by the sample size). The x-axis show the area statistic

obtained from bumphunter for the differentially methylated region mapped to that cluster, showing concordance

between the two methods (correlation r = 0.75).

https://doi.org/10.1371/journal.pone.0249002.g012
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For a given sample i (i = 1..n), suppose zmi;k is the (binary) divergence value for CpG k and zei;j
is the (binary) divergence value for gene j. Then the proportion of samples for which there is

aberrant activity simultaneously in both modalities is an indication of the expression and the

methylation between gene j and CpG k being related and co-aberrant. For gene j and CpG k,

this is simply

pj;k ¼
Pn

i¼1
zmi;kz

e
i;j

n

By considering the ternary form of divergence (i.e. −1/0/1), in addition to this proportion

we can also compute the ‘concordant’ and ‘discordant’ proportions—i.e. the proportions of

samples for which the sign of divergence are also in agreement. Thus samples for which both

the gene and CpG are divergent with a + 1, or both with a −1—would be considered concor-

dant, while other samples would be considered discordant.

Table 5 shows the 15 gene—CpG mappings with the largest measurements of co-divergence

proportions. Further, we compared the values of pj,k with the correlation for the gene—CpG

pair between the gene expression and methylation values. Fig 13 shows the results for the

10,000 gene—CpG pairs with the largest pj,k values, indicating pairs with extremely positive

or negative correlations are more likely to indicate high divergence. Some of these pairs are

labeled with the associated gene. Fig 14 shows these pairs with the distance between the CpG

and the associated gene as provided by the annotation, showing the CpGs mapped to a posi-

tion near the gene are more likely to indicate co-aberrant activity as expected.

Survival analysis with combined divergence. In this example, we compute and use co-

divergence in the gene expression and methylation modalities in a different way. Using the

gene—CpG annotation pairing previously mentioned, we use multivariate divergence to com-

pute divergence for methylation data at the gene level. That is, sets of CpGs that are mapped to

a single gene are treated as multivariate features of interest; multivariate divergence is com-

puted for them using a normal methylation baseline. For genes mapped to a single CpG,

binarized univariate divergence is computed. This provides us with a gene level divergence

Table 5. Gene—CpG pairs showing high degree of simultaneous divergence. 15 Gene—CpG pairs with high proportions of samples being co-divergent are shown, with

the chromosome and CpG locations. The concordant and discordant sample proportions (i.e. samples for which divergence in gene expression and methylation are either

in the same direction or opposite directions) are also shown. Many of the high ranking pairs have discordant divergences.

cpg gene proportion concordant proportion discordant proportion chromosome cpg location

cg00185066 SPRY2 0.835 0.003 0.833 chr13 80910762

cg22369786 SPRY2 0.754 0.011 0.742 chr13 80911625

cg08648138 TGFBR3 0.741 0.006 0.734 chr1 92247731

cg07581623 DPYSL2 0.738 0.000 0.738 chr8 26498829

cg17080882 TGFBR3 0.738 0.003 0.736 chr1 92191624

cg18081258 NDRG2 0.731 0.001 0.729 chr14 21494160

cg04477962 METTL7A 0.728 0.003 0.725 chr12 51317374

cg05386769 TNS1 0.724 0.000 0.724 chr2 218681557

cg13470462 BOC 0.722 0.003 0.719 chr3 112965786

cg14577406 NFIB 0.710 0.015 0.695 chr9 14317153

cg09284275 MYH11 0.693 0.005 0.688 chr16 15923486

cg20902783 NDRG2 0.688 0.003 0.686 chr14 21494070

cg15227610 CRYAB 0.688 0.003 0.686 chr11 111782015

cg00172849 COL11A1 0.686 0.681 0.005 chr1 103574531

cg13474848 NFIB 0.686 0.004 0.682 chr9 14350790

https://doi.org/10.1371/journal.pone.0249002.t005
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computed from the methylation data, which we can now combine with the gene level diver-

gence computed previously with the gene expression data.

The two divergence codings for the same genes and samples—one from the methylation

data and one from the gene expression data—can now be ‘added’. The binary values are com-

bined to indicate co-divergence in both modalities. Thus for a given sample and gene, a 1 indi-

cates the sample being divergent by gene expression level at that gene, and also being divergent

Fig 13. Comparison of gene—CpG pair co-divergence with expression-methylation correlations. The x-axis shows

the correlation between the gene expression values and the methylations values for all samples, while the y-axis shows

the proportion of samples for which both the gene and CpG are simultaneously divergent, with some of the high

ranking pairs labeled by the participating gene.

https://doi.org/10.1371/journal.pone.0249002.g013

Fig 14. Comparison of gene—CpG pairs with gene annotation distance. The y-axis shows the proportion of co-

divergence, while the x-axis indicates the distance from the CpG to the mapped gene. CpGs mapped closely to genes

show high proportions of samples simultaneously divergent.

https://doi.org/10.1371/journal.pone.0249002.g014
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in the CpG methylation space annotated to that gene (0 indicating no divergence in one or

both modalities).

The co-divergence probabilities from this resulting data, for any gene considered, is an indi-

cator of how likely the gene is demonstrating aberrant activity in both the transcriptome and

the methylome simultaneously. The gene divergence probabilities resulting from this data are

similar to the gene—CpG pair proportions computed in the previous example.

We now turn to look at relapse free survival (RFS) with this co-divergence data. We select

tumor samples that are in stages I or II. This provides 23 samples with recorded relapses, and

260 censored samples. The selection criteria here is reflective of patients for whom existing

genomic diagnostic tests such as MammaPrint [15, 16] are offered for risk evaluation.

To examine genes of interest with respect to relapse, we first select samples that have a cen-

soring time of greater than 3 years among those with no relapse observed. Genes that have a

divergence probability�0.3 in at least one group (i.e. between the relapsed or censored) are

selected, followed by χ2-tests performed to select differentially divergent genes between the

two groups. We select the resulting top 20 genes to fit to a cox proportional hazards survival

model.

Genes are iteratively added to the model fit, keeping only genes that provide a significant

coefficient estimate at a P� 0.05 threshold. Table 6 shows the resulting estimates (log-rank

test P< 10−5). Apolipoprotein D (APOD) is primarily down-divergent in the gene expression

data, and low expression of it has been noted to be associated with poor prognosis in breast

cancer [17, 18]. Regulator of G protein signaling 6 (RGS6), which is down-divergent in most

tumor samples, has been observed to be a suppressor of breast cancer [19]. BEX1 has been

linked to ER+ breast cancer (a greater proportion of ER+ samples are divergent compared to

ER- samples), as well as acute myeloid leukemia (AML), chronic myeloid leukemia (CML),

and squamous cell cancer [20–22]. The human protein atlas data suggests PROZ as a prognos-

tic marker in liver cancer, with higher protein expression observed in a subset of breast cancer

samples [23, 24]. This suggests further examination of these genes both in the gene expression

and methylation spheres for their contribution to increased risk in stage breast cancer.

Conclusion

In the above results we have showcased a variety of analyses that can be performed with diver-

gence at the univariate and multivariate level. While we have used RNA-seq, microarray and

methylation 450k data here, the software is applicable to many other modalities of high dimen-

sional omics data, some of which we have showed in [1]. While our previous publication was

aimed at explaining the divergence framework from a statistical perspective, here we aim to

explain how to use the package and conduct different types of analyses from divergence data

with simple, practical examples.

Once the data has been processed as necessary and the baseline cohort identified, the R

package can be used to compute the divergence coding quite easily. A full outline of the

Table 6. Cox proportional hazards model estimations with relapse free survival data. Genes were iteratively selected to add to a cox proportional hazards model with

the combined gene expression and methylation divergence codings to obtain the above coefficients.

gene coef hazard ratio se(coef) z p-value

APOD 1.611 5.008 0.5 3.22 0.001284

RGS6 1.037 2.82 0.478 2.17 0.030033

PROZ 0.972 2.642 0.453 2.146 0.031849

BEX1 0.875 2.4 0.44 1.987 0.046873

https://doi.org/10.1371/journal.pone.0249002.t006
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functions that can be used and the workflows possible are provided in the package vignette [4].

Here we have presented some of the many different ways that the digitized divergence coding

can be visualized and analyzed by the user.

All the analyses conducted in this mansucript are available as R code through the publicly

available github repository https://github.com/wikum/divergenceApplications. (The diver-

gence package is available through https://www.bioconductor.org/packages/release/bioc/html/

divergence.html). The code provides an option for downloading the relevant TCGA data

through the TCGAbiolinks package [25].

Divergence provides high utility with respect to omics data analysis. We note that it is a

novel framework without any comparable prior methods: the ability to binarize omics data,

applicability across many different platforms, enabling sample level scoring and analysis, and

being applicable in both univariate and multivariate modes are highly desirable features that

are not usually found together in other methods for omics data analysis. Given this fact, we

believe that the divergence package will be highly useful to the computational biology research

community in their pursuits.
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