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We study the effects of elastic anisotropy on Landau–
de Gennes critical points, for nematic liquid crystals,
on a square domain. The elastic anisotropy is
captured by a parameter, L2, and the critical points
are described by 3 d.f. We analytically construct a
symmetric critical point for all admissible values of L2,
which is necessarily globally stable for small domains,
i.e. when the square edge length, λ, is small enough.
We perform asymptotic analyses and numerical
studies to discover at least five classes of these
symmetric critical points—the WORS, Ring±, Constant
and pWORS solutions, of which the WORS, Ring+

and Constant solutions can be stable. Furthermore,
we demonstrate that the novel Constant solution is
energetically preferable for large λ and large L2,
and prove associated stability results that corroborate
the stabilizing effects of L2 for reduced Landau–de
Gennes critical points. We complement our analysis
with numerically computed bifurcation diagrams for
different values of L2, which illustrate the interplay of
elastic anisotropy and geometry for nematic solution
landscapes, at low temperatures.

1. Introduction
Nematic liquid crystals (NLCs) are quintessential
examples of partially ordered materials that combine
fluidity with the directionality of solids [1]. The nematic
molecules are typically asymmetric in shape, e.g. rod-
or disc-shaped, and these molecules tend to align along
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certain locally preferred averaged directions, referred to as nematic directors in the literature.
Consequently, NLCs have a long-range orientational order and direction-dependent physical,
optical and rheological properties. It is precisely this anisotropy that makes them the working
material of choice for a range of electro-optic devices such as the multi-billion dollar liquid crystal
display industry [2,3].

There has been substantial recent interest in multistable NLC systems, i.e. NLCs, confined
to two-dimensional (2D) or three-dimensional (3D) geometries that can support multiple stable
states without any external electric fields [4–10]. Multistable NLC systems offer new prospects for
device technologies, materials technologies, self-assembly processes and hydrodynamics. This
paper is motivated by a bistable system reported in [11]. Here, the authors experimentally and
numerically study NLCs inside periodic arrays of 3D wells, with a square cross-section, such that
the well height is typically much smaller than the square cross-sectional length. Furthermore,
the authors speculate that the structural characteristics are translationally invariant along the
well-height, effectively reducing this to a 2D problem. Hence, the authors restrict attention to
the bottom square cross-section with square edge length denoted by λ, which is typically on the
micron scale. The choice of boundary conditions is crucial and in [11], the authors impose tangent
boundary conditions (TBCs) on the well surfaces, i.e. the nematic directors, in the plane of the
well surfaces, are constrained to be in the plane of the surfaces. However, this necessarily means
that the nematic director is tangent to the square edges, creating defects at the vertices, where
the director is not defined. The authors observe two classes of stable NLC states: the diagonal D
states, for which the nematic director aligns along one of the square diagonals and; the rotated R
states, for which the director rotates by π radians between a pair of opposite square edges.

In [6,12], the authors model this square system within the celebrated continuum Landau–de
Gennes (LdG) theory for NLCs. The LdG theory describes the nematic state by a macroscopic
order parameter—the Q-tensor-order parameter [1]. From an experimental perspective, the Q-
tensor is measured in terms of NLC responses to external electric or magnetic fields, which are
necessarily anisotropic in nature. Mathematically, the Q-tensor-order parameter is a symmetric,
traceless, 3 × 3 matrix with 5 d.f. For a square domain with TBCs on the square edges, it suffices
to work in a reduced LdG framework where the Q-tensor only has three degrees of freedom, q1,
q2, q3. The degree of nematic order in the plane is captured by q1 and q2, whereas q3 measures the
out-of-plane order, such that positive (negative) q3 implies that the nematic director lies out of the
plane (in the plane) of the square, respectively. The TBCs naturally constrain q3 to be negative on
the square edges, but q3 could be positive in the interior.

The LdG theory is a variational theory, i.e. experimentally observable states can be modelled
by local or global minimizers of an appropriately defined LdG free energy. In the simplest setting,
the LdG energy has two contributions—a bulk energy and an elastic energy that penalizes spatial
inhomogeneities. In these papers, the authors work with low temperatures that favour an ordered
nematic state. The elastic energy is typically a quadratic and convex function of ∇Q and, in [6,12],
the authors work with an isotropic elastic energy—the Dirichlet elastic energy. In a reduced LdG
setting, the authors recover the stable D and R states for large λ and, in [12], they discover a novel
stable Well Order Reconstruction Solution (WORS) for small λ. The WORS is special because it
exhibits a pair of mutually orthogonal defect lines, with no planar nematic order along the defect
lines as will be described in §3. In [13], the authors generalize this work to arbitrary 2D regular
polygons and, in [8], the authors study 3D wells, with an emphasis on novel mixed solutions
which interpolate between two distinct D solutions.

In this paper, we study the same problem of NLCs on a square domain with TBCs, with an
anisotropic elastic energy as opposed to the isotropic energy studied in [6,12]. Notably, we take
the elastic energy density to be w(∇Q) = |∇Q|2 + L2(divQ)2, where L2 > −1 is the anisotropy
parameter. Physically speaking, positive L2 implies that splay and bend deformations of the
nematic director are energetically expensive compared to out-of-plane twist deformations, i.e. we
expect the physically observable states to have positive q3 in the square interior, as L2 increases.
Therefore, there are competing effects of the TBCs on the square edges, which prefer in-plane
director orientation, and the preferred out-of-plane director orientation in the square interior, for
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larger values of L2. We construct a symmetric critical point of the LdG energy, for any L2 > −1.
This symmetric critical point is globally stable for λ small enough. The WORS is a special case
of this symmetric critical point with q2 ≡ 0 on the square domain, for L2 = 0. For L2 �= 0, the
WORS does not survive with the perfect cross symmetry along the square diagonals. We perform
an asymptotic analysis for small λ and small L2, about the WORS. The anisotropy has a first-
order effect on q3, i.e. q3 is perturbed linearly by L2, and q3 increases at the square centre for
positive L2, relative to its value for L2 = 0, corroborating the trend of increasing q3 with increasing
L2. The globally stable symmetric critical point for small λ and small L2 �= 0, labelled as the
Ring+ solution, effectively smoothens out the WORS and exhibits a stable central +1-degree
point defect. We perform formal calculations to show that as L2 → ∞, energy minimizers (and
consequently the symmetric critical point described above for small λ) approach the Constant
state with (q1, q2, q3) = (0, 0, s+/3), away from the square edges and exhibits four boundary layers
near the edges. Thus, there are three different classes of the symmetric critical point discussed
above: the WORS, which only exists for L2 = 0; the Ring+ solution, which only can be stable for
moderate values of λ and non-zero L2 and; the Constant solution, which exists for L2 large enough
and is always stable according to our heuristics and numerical calculations. Additionally, we also
find two unstable classes of this symmetric critical point, both of which exist for moderate values
of λ and L2. These are the Ring− solution which exhibits a central −1-degree point defect, and the
novel pWORS which exhibits an oscillating sequence of nematic point defects along the square
diagonals. We provide asymptotic approximations for the novel pWORS solution branch.

While most of our work is restricted to the small λ-limit, we also touch on energy minimizers
in the λ → ∞ limit. The competitors in the large λ-limit are the familiar D and R states, and the
Constant solution. Using Gamma-convergence arguments, we show that the Constant solution has
lower energy than the D and R states, for large enough L2. We complement our analysis with
numerical computations of bifurcation diagrams for five different values of L2. To summarize,
our notable findings on the response of the NLC solution landscape for this model problem, to
the elastic anisotropy parameter, L2, are (i) novel stable states (Ring+ and Constant) for small λ, and
(ii) enhanced multistability in the large λ-limit due to the competing Constant and Ring+ states,
for large L2. As L2 increases, we expect that there are further, not necessarily energy-minimizing,
LdG critical points with positive q3, or out-of-plane nematic directors in the square interior.
Furthermore, L2 has a stabilizing effect with respect to certain classes of planar perturbations
and out-of-plane perturbations, and so we expect enhanced multistability as L2 increases, for all
values of λ.

A lot of open questions remain with regards to the interplay between L2, λ and temperature on
NLC solution landscapes, but our work is an informative forward step in this direction. Our paper
is organized as follows. We provide all the mathematical preliminaries in §2. We construct the
symmetric critical points described above in §3. In §4, we perform separate asymptotic studies in
the small λ and small L2 limit; large L2 limit; large λ-limit. In §5, we present bifurcation diagrams
for five different values of L2, accompanied by some rigorous stability results. We conclude with
some perspectives in §6.

2. Preliminaries
In this section, we review the LdG theory of NLCs. Within this framework, the nematic state is
described by a macroscopic LdG order parameter—the Q-tensor-order parameter. The Q-tensor
is a symmetric, traceless, 3 × 3 matrix, which is a macroscopic measure of the nematic anisotropy.
The eigenvectors of Q represent the preferred material directions, the corresponding eigenvalues
measure the degree of order about these directions. The nematic director is often identified with
the eigenvector that has the largest positive eigenvalue. The Q-tensor is said to be: (i) isotropic
if Q = 0; (ii) uniaxial if Q has a pair of degenerate non-zero eigenvalues; and (iii) biaxial if Q
has three distinct eigenvalues. A uniaxial Q-tensor can be written as Qu = s(n ⊗ n − I/3), where
I is the 3 × 3 identity matrix, n ∈ S2 is the distinguished eigenvector with the non-degenerate
eigenvalue, and s ∈ R is a scalar order parameter. The LdG theory is a variational theory with
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an associated free energy, and the basic modelling hypothesis is that the physically observable
configurations correspond to global or local energy minimizers subject to imposed boundary
conditions. We work with 2D domains, Ω ⊂ R

2, in the context of modelling thin 3D systems. In
the absence of a surface anchoring energy and external fields, the LdG free energy is given by

F [Q] :=
∫

Ω

fel(Q, ∇Q) + fb(Q) dA, (2.1)

where fel and fb are the elastic and thermotropic bulk energy densities, respectively. We consider
a two-term elastic energy density:

fel(Q) = L
2

(|∇Q|2 + L2(divQ)2), (2.2)

where L > 0 is an elastic constant, and L2 ∈ (−1, ∞) is the ‘elastic anisotropy’ parameter. The elastic
energy density penalizes spatial inhomogeneities, typically quadratic in ∇Q. In terms of notation,
we use |∇Q|2 := (∂Qij/∂xk)(∂Qij/∂xk) and (divQ)2 := (∂Qij/∂xj)(∂Qik/∂xk), i, j, k = 1, 2, 3, where the
Einstein summation convention is assumed throughout this manuscript. We work with a 2D
confining geometry Ω in this paper and hence, ∂Qij/∂x3 = 0 for all 1 ≤ i, j ≤ 3. We work with the
simplest form of fb, that allows for a first-order isotropic–nematic transition:

fb(Q) := A
2

trQ2 − B
3

trQ3 + C
4

(trQ2)2. (2.3)

Here, trQ2 = QijQij, and trQ3 = QijQjkQki, for i, j, k = 1, 2, 3. We take A = α(T − T∗) to be the
rescaled temperature and α, B, C > 0 are material-dependent constants. In this regime, T is the
absolute temperature, and T∗ is the characteristic nematic supercooling temperature. The rescaled
temperature, A, has three physically relevant values: (i) A = 0, below which the isotropic state,
Q = 0, loses stability; (ii) the nematic super-heating temperature A = B2/24C, above which Q = 0
is the unique critical point of fb and (iii) the nematic-isotropic phase transition temperature
A = B2/27C, at which fb is minimized by the isotropic phase and a continuum of uniaxial states.
We work with low temperatures, A < 0, for which fb is minimized on the set of uniaxial Q-tensors
defined by N := {Q ∈ S0 : Q = s+(n ⊗ n − I/3)} where S0 is the space of traceless symmetric 3 × 3
matrices and

s+=B +
√

B2 + 24|A|C
4C

, n ∈ S2 arbitrary. (2.4)

We non-dimensionalize the system using, x̄ = x/λ, where λ is a characteristic geometrical length-
scale, e.g. half edge length of a 2D regular polygon. The rescaled LdG energy functional (up to a
multiplicative constant) is given by

Fλ[Q] :=
∫

Ω̄

{
1
2
|∇x̄Q|2 + L2

2
(divx̄Q)2 + λ2

L
fb(Q)

}
dĀ, (2.5)

where Ω̄ is the rescaled domain in R
2, and dĀ is the rescaled area element. We drop the ‘bars’ but

all computations should be interpreted in terms of the rescaled variables.
Next, we define the working domain and Dirichlet boundary conditions, although we believe

that our methods can be generalized to arbitrary 2D domains. We focus on square domains,
building on the substantial work in [7,14,15]. We impose almost uniaxial Dirichlet TBCs on the
square edges, which require the nematic director to be tangent to the edges, necessarily creating
a mismatch at the square vertices. This is consistent with the experimentally and numerically
investigated TBCs, [6,11,12]. To avoid the discontinuities at the vertices, we take Ω ⊂ R

2 to be a
truncated square whose edges are parallel to the coordinate axes:

Ω := {(x, y) ∈ R
2 : |x| < 1, |y| < 1, |x + y| < 2 − ε, |x − y| < 2 − ε}. (2.6)

Provided ε � 1, the truncation does not change the qualitative properties of the LdG energy
minimizers away from the square vertices. The boundary, ∂Ω , has four ‘long’ edges parallel to
the coordinate axes, defined in a clockwise fashion as C1, . . . , C4, where C1 lies parallel to the x-
axis at y = 1. The truncation creates four additional ‘short’ edges, of length

√
2ε, parallel to the
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lines y = x and y = −x, labelled as S1, . . . , S4 in a clockwise fashion, starting at the top-left corner
of the domain. The domain is illustrated in figure 1. In particular, we fix the uniaxial director to
be n = (±1, 0) on the edges, C1 and C3, and n = (0, ±1) on C2 and C4. From a physical standpoint,
this constitutes strong (infinite) anchoring on the long edges. One could also model weak (finite)
anchoring condition with an additional surface energy in the LdG free energy [16], but that would
make the analysis more complicated. We set

Q = Qb on ∂Ω , (2.7)

where

Qb(x, y) :=
⎧⎨
⎩

s+
(
x̂ ⊗ x̂ − I/3

)
, (x, y) ∈ C1 ∪ C3,

s+
(
ŷ ⊗ ŷ − I/3

)
, (x, y) ∈ C2 ∪ C4,

(2.8)

where x̂ and ŷ are unit vectors in the x- and y-directions, respectively. In particular, Qb ∈N on
C1, . . . , C4. On the short edges, S1, . . . , S4, we prescribe a continuous interpolation between the
boundary conditions on the long edges (2.8) given by

Qb(x, y) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g(x + y)(x̂ ⊗ x̂ − ŷ ⊗ ŷ) − s+
2

(
ẑ ⊗ ẑ − I

3

)
, (x, y) ∈ S1,

g(y − x)(x̂ ⊗ x̂ − ŷ ⊗ ŷ) − s+
2

(
ẑ ⊗ ẑ − I

3

)
, (x, y) ∈ S2,

g(−x − y)(x̂ ⊗ x̂ − ŷ ⊗ ŷ) − s+
2

(
ẑ ⊗ ẑ − I

3

)
, (x, y) ∈ S3,

g(x − y)(x̂ ⊗ x̂ − ŷ ⊗ ŷ) − s+
2

(
ẑ ⊗ ẑ − I

3

)
, (x, y) ∈ S4,

(2.9)

where ẑ is a unit vector in the z-direction, and g : [−ε, ε] → [−s+/2, s+/2] is a smoothing function,
i.e. g(l) = (s+/2ε)l, −ε ≤ l ≤ ε. Although the boundary conditions (2.9) do not minimize fb on
S1, . . . , S4, and do not respect TBCs, they are short by construction and are chosen purely for
mathematical convenience. Given the Dirichlet boundary conditions (2.8) and (2.9), the admissible
space is

A := {Q ∈ W1,2(Ω ; S0) : Q = Qb on ∂Ω}. (2.10)

The energy minimizers, or indeed any critical point of the LdG energy (2.5), are solutions of the
associated Euler–Lagrange equations:

�Qij + L2

2

(
Qik,kj + Qjk,ki − 2

3
δijQkl,kl

)
= λ2

L

{
AQij − B

(
QikQkj − 1

3
δijtrQ2

)
+ CQijtrQ2

}
, (2.11)

which comprise a system of five nonlinear coupled partial differential equations. The terms
(2/3)Qkl,kl and (1/3)trQ2 are Lagrange multipliers associated with the tracelessness constraint.

Finally, we comment on the physical relevance of the 2D domain, Ω ⊂ R
2. Consider a 3D well,

B = {(x, y, z) ∈ R
3; (x, y) ∈ Ω ; z ∈ (0, h)},

where h � λ, and λ is a characteristic length scale of Ω . In this limit, one can assume (at least
for modelling purposes) that physically relevant Q-tensors are independent of the z-coordinate,
i.e. the profiles are invariant across the height of the well, and that ẑ is a fixed eigenvector (see
[17,18] for some rigorous analysis and justification). This implies that we can restrict ourselves to
Q-tensors with three degrees of freedom:

Q = q1(x, y)(x̂ ⊗ x̂ − ŷ ⊗ ŷ) + q2(x, y)(x̂ ⊗ ŷ + ŷ ⊗ x̂) + q3(x, y)(2ẑ ⊗ ẑ − x̂ ⊗ x̂ − ŷ ⊗ ŷ), (2.12)

subject to the boundary conditions

q1(x, y) = qb(x, y), on ∂Ω (2.13)
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C1

C3

WC4 C2

S2S1

S3S4

Figure 1. The truncated square domainΩ .

where qb = s+/2, on C1 ∪ C3; qb = −s+/2, on C2 ∪ C4; qb = g(x + y), on S1; qb = g(y − x), on S2; qb =
g(−x − y), on S3; qb = g(x − y), on S4, and

q2 = 0, and q3(x, y) = −s+
6

on ∂Ω . (2.14)

The conditions (2.13) and (2.14) are equivalent to Dirichlet conditions in (2.7).

3. Qualitative properties of equilibrium configurations
In [12], the authors numerically compute critical points of (2.5) with L2 = 0, satisfying the Dirichlet
boundary conditions (2.7), on the square cross-section Ω . For the edge length, λ small enough, the
authors report a new WORS. The WORS has a constant set of eigenvectors, x̂, ŷ and ẑ, which are
the coordinate unit vectors. The WORS is further distinguished by a uniaxial cross, with negative
scalar order parameter, along the square diagonals. Physically, this implies that there is a planar
defect cross along the square diagonals, and the nematic molecules are disordered along the
square diagonals. In [7], the authors analyse this system at a fixed temperature A = −B2/3C with
L2 = 0, and show that the WORS is a classical solution of the associated Euler–Lagrange equations
(2.11) of the form:

QWORS(x, y) = q(x̂ ⊗ x̂ − ŷ ⊗ ŷ) − B
6C

(2ẑ ⊗ ẑ − x̂ ⊗ x̂ − ŷ ⊗ ŷ). (3.1)

The single degree of freedom, q : Ω → R, is a solution of the Allen–Cahn equation with the
following symmetry properties:

q = 0 on {y = x} ∪ {y = −x}, (y2 − x2)q(x, y) ≥ 0. (3.2)

Notably, q2 = 0 everywhere for the WORS (refer to (2.12)), which is equivalent to having a set
of constant eigenvectors. They prove that the WORS is globally stable for λ small enough, and
unstable for λ large enough, demonstrating a pitchfork bifurcation in a scalar setting. Their
analysis is restricted to the specific temperature and, in [8], the authors extend the analysis to
all A < 0, with L2 = 0. In this section, we analyse the equilibrium configurations with L2 �= 0,
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including their symmetry properties in the small λ limit. Notably, we show that the cross structure
of the WORS does not survive with L2 �= 0.

Proposition 3.1. There exists at least one solution to the Euler–Lagrange equations (2.11) of the form
(2.12) in A , given the Dirichlet boundary conditions (2.8) and (2.9). For this solution, the functions
q1, q2, q3 satisfy the following systems of PDEs:(

1 + L2

2

)
�q1 + L2

2
(q3,yy − q3,xx) = λ2

L
q1(A + 2Bq3 + 2C(q2

1 + q2
2 + 3q2

3)), (3.3)

(
1 + L2

2

)
�q2 − L2q3,xy = λ2

L
q2(A + 2Bq3 + 2C(q2

1 + q2
2 + 3q2

3)) (3.4)

(
1 + L2

6

)
�q3 + L2

6
(q1,yy − q1,xx) − L2

3
q2,xy = λ2

L
q3(A − Bq3 + 2C(q2

1 + q2
2 + 3q2

3))

+ λ2B
3L

(q2
1 + q2

2), (3.5)

and the boundary conditions (2.13) and (2.14).

Proof. Our proof is analogous to theorem 2.2 in [18]. Substituting the Q-tensor ansatz (2.12) into
the general form of the LdG energy (2.5), let

J[q1, q2, q3] :=
∫

Ω

fel(q1, q2, q3) + λ2

L
fb(q1, q2, q3) dA, (3.6)

where

fel(q1, q2, q3) := |∇q1|2 + |∇q2|2 + 3|∇q3|2 + L2

2
((q1,x + q2,y − q3,x)2 + (q2,x − q1,y − q3,y)2), (3.7)

and
fb(q1, q2, q3) := A(q2

1 + q2
2 + 3q2

3) + C(q2
1 + q2

2 + 3q2
3)2 + 2Bq3(q2

1 + q2
2 − q2

3), (3.8)

are the elastic and thermotropic bulk energy densities, respectively. We prove the existence of
minimizers of J in the admissible class

A0 := {(q1, q2, q3) ∈ W1,2(Ω ; R3) : q1 = qb, q2 = 0, q3 = −s+
6

on ∂Ω}, (3.9)

which will also be solutions of (2.11) in the admissible space, A . Since the boundary conditions
(2.13) and (2.14) are piece-wise of class C1, A0 is non-empty. If L2 ∈ [0, ∞), fel is in the form of (3.7).
If L2 ∈ (−1, 0), the elastic energy density can be rewritten as a function of (q1, q2, q3) ∈ W1,2(Ω ; R3)
in the following way:

fel = (1 + L2)(|∇q1|2 + |∇q2|2 + 3|∇q3|2)

− L2

2
((−q3,x − q1,x − q2,y)2 + (q2,x − q1,y + q3,y)2 + 4|∇q3|2). (3.10)

The difference between the expressions for fel in (3.7) and (3.10), is a null Lagrangian, and hence
can be ignored with the Dirichlet boundary condition. Since we assume that 1 + L2 > 0, the elastic
energy density is the sum of non-negative terms for any L2 > −1 and, more specifically,

fel(q1, q2, q3) ≥ min{1, 1 + L2}(|∇q1|2 + |∇q2|2 + 3|∇q3|2). (3.11)

Furthermore, fb also satisfies fb(q1, q2, q3) ≥ fb(±(s+/2), 0, −(s+/6)) =: M1(A, B, C), for some
constant, M1 > 0, depending only on A, B and C. Hence J[q1, q2, q3] is coercive in A0. Finally,
we note that J is weakly lower semi-continuous on W1,2(Ω), which follows immediately from
the fact that fel is quadratic and convex in ∇(q1, q2, q3). Thus, the direct method in the calculus
of variations yields the existence of a global minimizer of J, among the finite energy triplets
(q1, q2, q3) ∈ W1,2(Ω ; R3), satisfying the boundary conditions (2.13) and (2.14) [19]. One can verify
that the semilinear elliptic system (3.3)–(3.5) are the Euler–Lagrange equations associated with J,



8

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20210966

..........................................................

and the minimizers for J are C∞(Ω) ∩ C2(Ω̄) solutions of (3.3)–(3.5). The corresponding Q-tensor
(2.12) is an exact solution of the LdG Euler–Lagrange equations (2.11). �

Proposition 3.2. There exists a critical point (qs
1, qs

2, qs
3) of the energy functional (3.6) in A0, for all

λ > 0, such that q1 = 0 on the square diagonals y = x and y = −x, and q2 = 0 on x = 0 and y = 0.

Proof. We follow the approach in [7]. Consider 1/8th of a square located in the positive quadrant
of Ω :

Ωq := {(x, y) ∈ Ω : 0 < y < x, 0 < x < 1}. (3.12)

The following boundary conditions on Ωq are consistent with the boundary conditions (2.13) and
(2.14) on the whole of Ω :

q1 = qb, q2 = 0, q3 = − s+
6

, (x, y) ∈ ∂Ωq ∩ ∂Ω ;

q1 = ∂νq2 = ∂νq3 = 0, (x, y) ∈ ∂Ωq ∩ {y = x}
and ∂νq1 = q2 = ∂νq3 = 0, (x, y) ∈ ∂Ωq ∩ {y = 0},

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.13)

where ∂ν represents the outward normal derivative. We minimize the associated LdG energy in
Ωq, given by

J[q1, q2, q3] =
∫

Ωq

fel(q1, q2, q3) + λ2

L
fb(q1, q2, q3) dA, (3.14)

on the admissible space Aq := {(q1, q2, q3) ∈ W1,2(Ωq; R3) : ( 3.13) is satisfied}. As the boundary
conditions on Ωq are continuous and piecewise of class C1, Aq is non-empty. Furthermore, we
have shown that J is coercive on Aq and convex in the gradient ∇(q1, q2, q3). Thus, by the direct
method in the calculus of variations, there exists a minimizer (q∗

1, q∗
2, q∗

3) ∈ Aq. We define a function
qs

1 ∈ Ω by odd reflection of q∗
1 ∈ Ωq about the square diagonals, and even reflection about x- and y-

axes. We do the same for qs
2 ∈ Ω defined by even reflections of q∗

2 about the square diagonals, and
odd reflection about x- and y-axes and lastly, for the function qs

3 ∈ Ω defined by even reflections of
q∗

3 about the square diagonals and x- and y-axes. By repeating arguments in [20], the new triple,
(qs

1, qs
2, qs

3), is a weak solution of the Euler–Lagrange equations on Ω . One can verify that (qs
1, qs

2, qs
3)

is a critical point of J on A0 with the desired properties. �

Proposition 3.3. For A < 0 and L2 �= 0, the critical point constructed in proposition 3.2, denoted by
(qs

1, qs
2, qs

3), has non-constant qs
2 on Ω , for all λ > 0.

Proof. We proceed by contradiction. Assume that qs
2 is constant on Ω . Recalling the boundary

conditions (2.14), we necessarily have that qs
2 ≡ 0 in Ω . Substituting qs

2 ≡ 0 into (3.4), we obtain

qs
3(x, y) = F(x) + G(y), (3.15)

for arbitrary real-valued functions F, G, with qs
3 = −s+/6 on ∂Ω . Therefore, qs

3 ≡ −s+/6 in Ω .
Substituting qs

2 ≡ 0 and qs
3 ≡ −s+/6 into (3.3) and (3.5) yields

qs
1,yy + qs

1,xx = f (qs
1) (3.16)

and
qs

1,yy − qs
1,xx = g(qs

1) + Cg, (3.17)

where

f (qs
1) = 4Cλ2

(2 + L2)L
(qs

1)3 + 2λ2

(2 + L2)L

(
A − Bs+

3
+ Cs2+

6

)
qs

1, (3.18)

g(qs
1) = 2λ2

LL2
(B − Cs+)(qs

1)2, (3.19)

and Cg = −λ2s+
LL2

(
A + Bs+

6
+ Cs2+

6

)
. (3.20)
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From the reduced PDEs for qs
1, (3.16) and (3.17), one can calculate

2(qs
1,xx)yy − 2(qs

1,yy)xx = f ′′(qs
1)((qs

1,y)2 − (qs
1,x)2) − g′′(qs

1)((qs
1,y)2 + (qs

1,x)2)

+ f ′(qs
1)(g(qs

1) + Cg) − g′(qs
1)f (qs

1). (3.21)

Furthermore, from the symmetry properties of the constructed solution qs
1 in proposition 3.2, we

have
qs

1|(0,0) = qs
1,x|(0,0) = qs

1,y|(0,0) = 0. (3.22)

Substituting (3.22) into (3.21), we obtain

(2qs
1,xxyy − 2qs

1,yyxx)|(0,0) = (f ′(qs
1)Cg)|(0,0) (3.23a)

= − 2λ2

(2 + L2)L

(
A − Bs+

3
+ Cs2+

6

)
λ2s+
LL2

(
A + Bs+

6
+ Cs2+

6

)
. (3.23b)

If A �= −B2/3C, then equation (3.23b) at (0, 0) is non-zero, which leads to a contradiction. If
A = −B2/3C, then qs

3 ≡ −s+/6 = −B/6C and (3.17) reduces to qs
1,yy − qs

1,xx = 0, and hence, qs
1(x, y) =

F1(x − y) + F2(x + y), for arbitrary real-valued functions F1, F2.
From proposition (3.2), we know that for any λ > 0, qs

1 satisfies the symmetry property
qs

1(x, y) = qs
1(x, −y) and hence,

F1(x − y) + F2(x + y) = F1(x + y) + F2(x − y), (x, y) ∈ Ω . (3.24)

Subtracting F2(x − y) + F2(x + y) on both sides of the equality (3.24), we get

G(z) = F1(z) − F2(z) ≡ K, z ∈ (−2, 2), (3.25)

for some constant K. The function qs
1 may now be rewritten as

qs
1(x, y) = F1(x + y) + F1(x − y) − K, (x, y) ∈ Ω . (3.26)

This formulation cannot be extended continuously on the boundary since, for (x, y) = (0, 1), (−1, 0)
and (1, 0), we have

F1(1) + F1(−1) − K = s+
2

, 2F1(−1) − K = − s+
2

, 2F1(1) − K = − s+
2

, (3.27)

which again leads to the required contradiction. �

Proposition 3.4. There exists a critical edge length λ0 > 0 such that, for any λ < λ0, the critical point,
(q1, q2, q3), in proposition 3.2 is the unique critical point of the LdG energy (3.6).

Proof. We adapt the uniqueness argument in lemma 8.2 of [21]. Let (qλ
1, qλ

2, qλ
3) be a global

minimizer of J in (3.6), for λ > 0. Let (q∞
1 (x), q∞

2 (x), q∞
3 (x)) ∈ A0 be such that

fb(q∞
1 (x), q∞

2 (x), q∞
3 (x)) = min fb = A

3
s2
+ − 2B

27
s3
+ + C

9
s4
+, (3.28)

a.e. x ∈ Ω . Defining f̄b(q1, q2, q3) = (1/L)(fb(q1, q2, q3) − min fb(q1, q2, q3)), where L is constant, we
have∫

Ω

fel(q
λ
1, qλ

2, qλ
3) dA ≤

∫
Ω

fel(q
λ
1, qλ

2, qλ
3) + λ2 f̄b(qλ

1, qλ
2, qλ

3) dA ≤
∫

Ω

fel(q
∞
1 , q∞

2 , q∞
3 ) dA (3.29a)

=: M2(A, B, C, L2), (3.29b)

for some constant, M2 > 0, depending only on A, B, C and L2. Thus, we restrict ourselves to the
following admissible space of Q-tensors:

Aupper =
{

Q :
∫

Ω

|∇Q|2dA ≤ M2(A, B, C, L2)
}

. (3.30)

The second derivatives of fb are quadratic polynomials in (q1, q2, q3). By an application of the
relevant embedding theorem in [22] (theorem 9.16 which implies that for a bounded domain
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Ω ⊂ R
N with Lipschitz boundary, for any u ∈ C1

c (Ω), ||u||Lp ≤ c||u||W1,2 , ∀p ∈ [N, ∞), with constant
c depending only on Ω), there exist some constant c0, depending only on A, B, C and Ω , such that(∫

Ω

|f ′′
b |2dA

)1/2
≤ c0(A, B, C, Ω)

(∫
Ω

|∇Q|2 dA
)1/2

≤ c0
√

M2. (3.31)

We apply the Hölder inequality to get, for any x, y ∈ Aupper ∩ A0,∫
Ω

fb

(
x + y

2

)
− 1

2
fb(x) − 1

2
fb(y) dA

≤ 1
8

sup
Aupper

(∫
Ω

|f ′′
b |2dA

)1/2 (∫
Ω

|x − y|4 dA
)1/2

≤ c0
√

M2

8
||x − y||2L4

. (3.32)

Therefore, for any (q1, q2, q3), (q̃1, q̃2, q̃3) ∈ Aupper ∩ A0, we have∫
Ω

fb

(
q1 + q̃1

2
,

q2 + q̃2

2
,

q3 + q̃3

2

)
− 1

2
fb(q1, q2, q3) − 1

2
fb(q̃1, q̃2, q̃3) dA (3.33a)

≤ c1||q1 − q̃1, q2 − q̃2, q3 − q̃3||2L4
(3.33b)

where c1 = c1(A, B, C, L2, Ω) > 0. Using (3.11), an application of the Poincaré inequality, and
repeating the same arguments as above, we have∫

Ω

fel(q1 − q̃1, q2 − q̃2, q3 − q̃3) dA (3.34a)

≥ min{1, 1 + L2}
∫

Ω

|∇(q1 − q̃1)|2 + |∇(q2 − q̃2)|2 + 3|∇(q3 − q̃3)|2 dA

≥ min{1, 1 + L2}K(Ω)(||q1 − q̃1||2W1,2 + ||q2 − q̃2||2W1,2 + 3||q3 − q̃3||2W1,2 )

≥ c2(Ω , L2)||q1 − q̃1, q2 − q̃2, q3 − q̃3||2L4 (3.34b)

for some constant, c2 > 0, depending only on Ω and the sign of L2. Using both (3.33a,b) and
(3.34a,b), we have

J
[

q1 + q̃1

2
,

q2 + q̃2

2
,

q3 + q̃3

2

]
(3.35a)

≤ 1
2

J[q1, q2, q3] + 1
2

J[q̃1, q̃2, q̃3] − c2

8
||q1 − q̃1, q2 − q̃2, q3 − q̃3||2L4

− c1

(
c2

8c1
− λ2

L

)
||q1 − q̃1, q2 − q̃2, q3 − q̃3||2L4 ,

≤ 1
2

J[q1, q2, q3] + 1
2

J[q̃1, q̃2, q̃3] (3.35b)

for λ ≤ λ0 :=√
c2L/(8c1). Thus, J is strictly convex for the finite energy triplets (q1, q2, q3), and has

a unique critical point for λ < λ0. Hence, the critical point constructed in proposition 3.2 is the
unique minimizer of J[q1, q2, q3] and, in fact, the unique global LdG energy minimizer (when we
consider Q-tensors with the full 5 d.f.), for sufficiently small λ. �

Lemma 3.5. Let (q1, q2, q3) be the unique global minimizer of the energy (3.6), for λ < λ0 given by
proposition 3.4. Then for any L2 > −1, the function q1 : Ω → R vanishes along the square diagonals y = x
and y = −x, and the function q2 : Ω → R vanishes along y = 0 and x = 0.

Proof. This is an immediate consequence of proposition 3.2, but we present an alternative short
proof based on symmetry. Suppose that (q1, q2, q3) ∈ W1,2(Ω , R3) is a global minimizer of J, in
A0 for a given λ > 0. Then (q1(x, y), q2(x, y), q3(x, y)) is a solution of the Euler–Lagrange system
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(3.3)–(3.5), subject to the boundary conditions (2.13) and (2.14). So are the triples

(q1(−x, y), −q2(−x, y), q3(−x, y)), (q1(x, −y), −q2(x, −y), q3(x, −y)), (−q1(y, x), q2(y, x), q3(y, x)),

that are compatible with the imposed boundary conditions. We combine this symmetry result
with the uniqueness result in proposition 3.4 to get the desired conclusion. For example, use
q1(x, y) = −q1(y, x) with x = y to deduce that q1(x, x) = 0. Also, q1(−x, y) = q1(x, y) with x = y yields
that q1(x, −x) = q1(x, x) = 0. Furthermore, we use the relation q2(x, y) = −q2(−x, y) with x = 0 to
deduce q2(0, y) = 0, and similarly, q2(x, y) = −q2(x, −y) with y = 0 to obtain q2(x, 0) = 0. �

As in [8,15], we refer to the following dimensionless parameter in our numerical simulations:

λ̄2 := 2Cλ2

L
.

In figure 2, we plot the unique stable solution of (3.3)–(3.5) with λ̄2 = 5, for L2 = −0.5, 0, 1, 10.
In this figure, and all subsequent figures, we fix A = −B2/3C with B = 0.64 × 104 Nm−2 and
C = 0.35 × 104 Nm−2. When L2 = 0, the solution is the WORS defined by (3.1). When L2 = −0.5, 1,
and 10, q2 and q3 are non-constant as proven above. One can check that q1 : Ω → R vanishes along
the square diagonals y = x and y = −x, and the function q2 : Ω → R vanishes along y = 0 and x = 0,
as proven in lemma 3.5. When L2 = −0.5, 1 and 10, we observe a central +1-point defect in the
profile of (q1, q2), and we label this as the Ring+ solution. We then perform a parameter sweep
of λ̄2, from 5 to 500, and find one of the symmetric solution branches in proposition 3.2, which
is a continuation of the Ring+ branch. The solutions with λ̄2 = 500 are plotted in figure 3. When
L2 = 0, we find the WORS for all λ > 0. When −1 < L2 < 0, the solution exhibits a +1-defect at the
square centre, continued from the Ring+ branch and hence, we refer to it as the Ring+ solution.
When L2 is positive and moderate in value, we again recover the Ring+ solution branch and the
corresponding q3 < −s+/6 at the square centre for negative L2, but q3 > −s+/6 for positive L2.
When L2 is large enough, we recover a symmetric solution which is approximately constant,
(0, 0, s+/3), away from the square edges, shown in the fourth column of figure 3 for L2 = 10.
We refer to this solution as the Constant solution throughout this manuscript.

4. Asymptotic studies
In the following, we work on a square domain without truncated vertices. For a truncated domain,
we keep ε fixed, with short edges of length

√
2ε, where ε is sufficiently small.

(a) The smallλ and small anisotropy, L2 → 0 limit
We work at the special temperature A = −B2/3C to facilitate comparison with the results in
[23], where the authors investigate solution landscapes with L2 = 0. Notably, for L2 = 0 and
A = −B2/3C, reduced LdG solutions have q3 ≡ −s+/6 = −B/6C for our choice of TBCs on 2D
polygons, and it is natural to investigate the effects of the anisotropy parameter, L2, in these 2D
frameworks. At A = −B2/3C, the governing Euler–Lagrange equations are given by the following
system of partial differential equations:(

1 + L2

2

)
�q1 + L2

2
(q3,yy − q3,xx) = λ2

L
q1

(
− B2

3C
+ 2Bq3 + 2C(q2

1 + q2
2 + 3q2

3)

)
, (4.1)

(
1 + L2

2

)
�q2 − L2q3,xy = λ2

L
q2

(
− B2

3C
+ 2Bq3 + 2C(q2

1 + q2
2 + 3q2

3)

)
, (4.2)

d
(

1 + L2

6

)
�q3 + L2

6
(q1,yy − q1,xx) − L2

3
q2,xy

= λ2

L
q3

(
− B2

3C
− Bq3 + 2C(q2

1 + q2
2 + 3q2

3)

)
+ λ2B

3L
(q2

1 + q2
2), (4.3)
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9.143 × 10–1

1.201 × 10–4

0.4572

9.143 × 10–1

1.209 × 10–5

0.45714

9.143 × 10–1

4.884 × 10–5

0.45717

9.143 × 10–1

2.089 × 10–4

0.45725

9.143 × 10–1

–9.143 × 10–1 

2.3973 × 10–6

9.143 × 10–1

–9.143 × 10–1 

0

9.143 × 10–1

–9.143 × 10–1 

0

9.143 × 10–1

–9.143 × 10–1 

0

9.483 × 10–3

–9.507 × 10–3

0

1.000 × 10–16

0

5 × 10–17

1.604 × 10–2

–1.599 × 10–2

2.1776 × 10–5

2.539 × 10–1

–2.532 × 10–1 

0

–3.048 × 10–1

–3.595 × 10–1

–0.32856

–3.048 × 10–1

–3.048 × 10–1

–1.797 × 10–1

–3.048 × 10–1

–0.24222

6.316 × 10–1

–3.048 × 10–1 

0.16344

Figure 2. The unique stable solution of the Euler–Lagrange equations (3.3)–(3.5), with λ̄2 = 5, and (from the first to fourth
row) L2 = −0.5, 0, 1 and 10, respectively. In the first column, we plot the scalar order parameter s2 = q21 + q22 by colour from
blue to red, and the director profile n= (cos(arctan(q2/q1)/2), sin(arctan(q2/q1)/2)) in terms of white lines. The q1, q2 and q3
profiles are plotted in the second to fourth columns, respectively. The same convention is used throughout the paper. (Online
version in colour.)

9.143 × 10–1

1.747 × 10–3

0.45802

–3.017 × 10–1

–3.623 × 10–1

–3.048 × 10–1

–3.048 × 10–1

–0.33199

–2.096 × 10–1

–3.087 × 10–1
–0.29727

0.24772

–6.101 × 10–1

–3.056 × 10–1

0.15228

–9.143 × 10–1

2.972 × 10–4

0.45729

–9.143 × 10–1

8.646 × 10–4

0.45758

9.178 × 10–1

1.462 × 10–8

0.45888

Figure3. Asolutionbranch for the system(3.3)–(3.5)with λ̄2 = 500, and L2 = −0.5, 0, 1 and 10 from left to right. This solution
branch is a symmetric solution branch, as described in proposition 3.2, is unstable for L2 = −0.5, 0 and 1, and stable for L2 = 10.
We plot s2 and n in the first row. and q3 in the second row. (Online version in colour.)

satisfying q1 = qb, q2 = 0 and q3 = −B/6C on ∂Ω . We take a regular perturbation expansion of
these functions in the L2 → 0 limit. The leading-order approximation is given by the WORS,
(q, 0, −B/6C), where q is a solution of the Allen–Cahn equation, as in [7]:

�q = 2Cλ2

L
q

(
q2 − B2

4C2

)
, q = qb on ∂Ω . (4.4)



13

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20210966

..........................................................

–1.074 × 10–4

–1.065 × 10–4

4.3756 × 10–7

2.847 × 10–4

–2.840 × 10–4

3.5326 × 10–7

5.551 × 10–17

–3.813 × 10–4

–0.00019066

Figure 4. The difference between the solution of (3.3)–(3.5) with λ̄2 = 0.01, L2 = 0.1 and asymptotic solution (q0 +
L2f0, L2g0,−(s+/6) + L2h0)= (q0, 0,−(s+/6) + L2h0). (Online version in colour.)

We may assume that q1, q2, q3 can be expanded in powers of L2 as follows:

q1(x, y) = q(x, y) + L2f (x, y) + · · ·
q2(x, y) = L2g(x, y) + · · ·

and q3(x, y) = − B
6C

+ L2h(x, y) + · · ·

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.5)

for some functions f , g, h which vanish on the boundary. For λ small enough, one can show
that there exists a unique solution (f , g, h) ∈ W1,2

0 (Ω ; R3) with g ≡ 0 and the symmetry property
(−q(y, x), −f (y, x), g(y, x), h(y, x)) = (q(−x, y), f (−x, y), g(−x, y), h(−x, y)), i.e. f (x, y) = 0 on diagonals.
Hence, for λ small enough, the cross structure of the WORS is lost mainly because of effects of L2
on the component q3, as we discuss below.

From [24], the solutions of (4.3) with λ = 0, are a good approximation to the solutions of (4.3)
for sufficiently small λ. When λ = 0, q = q0 where

�q0 = 0, (x, y) ∈ Ω , q0 = q1b, on ∂Ω . (4.6)

The analytical solution of (4.5) is given by [25]:

q0(x, y) = s+
2

∑
k odd

4
kπ

(
sin

(
kπ (x + 1)

2

)
sinh(kπ (1 − y)/2) + sinh(kπ (1 + y)/2)

sinh(kπ )

− sin
(

kπ (y + 1)
2

)
sinh(kπ (1 − x)/2) + sinh(kπ (1 + x)/2)

sinh(kπ )

)
. (4.7)

The formula will also hold on a truncated square, with Dirichlet conditions on the truncated
edges extracted from the explicit formula for q0, i.e. we can choose boundary conditions on the
short truncated edges that are compatible with q0, once we compute q0 on the full square domain
without truncations. When λ = 0, the unique solution of f , g, h in (4.4) is f = f0 ≡ 0, g = g0 ≡ 0 and
h = h0 where

�h0 = −1
6

(q0,yy − q0,xx), (4.8)

with h0 = 0 on ∂Ω . See figure 4 for a numerical comparison between the asymptotic solution and
relevant solutions of the Euler–Lagrange equations. The asymptotic solution in (4.3) is a good
approximation of the solution of the Euler–Lagrange equations in (3.3)–(3.5) when λ̄2 is small
enough (see figure 4).

Proposition 4.1. (Proof in electronic supplementary material) The analytical solution of (4.7) is given
by

h0(x, y) =
∑

m,n odd

16s+mn
3π2(m2 + n2)2 sin

(
mπ (x + 1)

2

)
sin

(
nπ (y + 1)

2

)
, (4.9)

where h0(0, 0) is positive.
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(b) The L2 → +∞ limit
Consider a regular perturbation expansion, in powers of 1/L2, of the solutions, (q1, q2, q3), of the
Euler–Lagrange system (3.3)–(3.5), subject to (2.13) and (2.14). Let ρ, σ , τ be the leading-order
approximations of q1, q2, q3, respectively, in the L2 → ∞ limit. Then we have:

1
2
�ρ + 1

2
(τyy − τxx) = 0, (4.10)

1
2
�σ − τxy = 0 (4.11)

and
1
6
�τ + 1

6
(ρyy − ρxx) − 1

3
σxy = 0. (4.12)

Proposition 4.2. The leading-order system in the L2 → ∞ limit, given by (4.9)–(4.11), is not an elliptic
PDE system.

Proof. The system of equations (4.9)–(4.11) can be written as

Aq0,xx + 2Bq0,xy + Cq0,yy = 0,

where q0 = (ρ, σ , τ ) and

A =

⎛
⎜⎝

1
2 0 − 1

2
0 1

2 0
− 1

6 0 1
6

⎞
⎟⎠ , B =

⎛
⎜⎝0 0 0

0 0 − 1
2

0 − 1
6 0

⎞
⎟⎠ , C =

⎛
⎜⎝

1
2 0 1

2
0 1

2 0
1
6 0 1

6

⎞
⎟⎠ .

The system is said to be elliptic, in the sense of I.G. Petrovsky [26], if the determinant

|Aα2 + 2Bαβ + Cβ2| �= 0,

for any real numbers α, β �= 0. We can check that

|Aα2 + 2Bαβ + Cβ2| ≡ 0.

for any real numbers α, β. Hence, the limiting problem (4.9)–(4.11) is not an elliptic problem. �

Proposition 4.3. There is no classical solution of the limiting problem (4.9)–(4.11), with the boundary
conditions (2.13) (in the ε → 0 limit) and (2.14), where ε is the short edge length of the truncated square.

Proof. As L2 → ∞, the minimizers (q1, q2, q3) of J in (3.6), with fel as in (3.7), are constrained to
satisfy

fdiv(q1, q2, q3) = (q1,x + q2,y − q3,x)2 + (q2,x − q1,y − q3,y)2 = 0, a.e. (x, y) ∈ Ω ,

subject to the Dirichlet TBCs (2.13) and (2.14). Up to O(L2), this corresponds to the following PDEs
for the leading-order approximations ρ, σ , τ :

(ρ − τ )x + σy = 0 (4.13)

and
σx − (ρ + τ )y = 0, (4.14)

almost everywhere, subject to the same TBCs, ρ = qb, σ = 0, τ = −s+/6 on ∂Ω . As ε → 0, the
boundary conditions for ρ, σ , τ are piecewise constant, and hence the tangential derivatives of
ρ, σ and τ vanish on the long square edges. On y = ±1, the tangential derivative (ρ − τ )x = 0,
hence we obtain σy = 0 in (4.12). Similarly, we have σx = 0 on x = ±1. This implies that ∂νσ = 0 on
∂Ω , where ∂ν is the outward pointing normal derivative, and we view equation (4.10) to be of the
form

�σ = u(x, y), ∂νσ |∂Ω = 0.

By the Hopf lemma, when ∂νσ = 0 on the boundary, we have σ ≡ 0. Following the same arguments
as in proposition 3.3, this requires that τ ≡ −s+/6. Substituting τ ≡ −s+/6 into equations (4.12)
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Figure 5. Solutions,ρ , σ , τ , (x, y, τ ) of the leading-order system (4.9)–(4.11) in the L2 → ∞ limit. (Online version in colour.)

and (4.13), we obtain ρx = ρy = 0, contradicting the boundary condition (2.13). Hence, there are
no classical solutions of the system (4.9)–(4.11). �

Although there is no classical solution of (4.9)–(4.11) subject to the imposed boundary
conditions, we can use finite difference methods to calculate a numerical solution, see figure 5.
We label this solution (ρ, σ , τ ) ≡ (0, 0, s+/3) on Ω as the Constant solution, where ρ and τ are
discontinuous on ∂Ω . We now give a heuristic argument to explain the emergence of the Constant
solution, as L2 → ∞. With constant (ρ, σ , τ ) in the interior of Ω , we have fdiv = 0 in Ω up to O(L2).
The choice of constant value (ρ, σ , τ ) = (0, 0, , s+/3) is determined by the boundary conditions to
minimize the elastic energy fdiv. Therefore, ρ = σ = 0, τ = s+/3 is the unique stable solution of
(4.9)–(4.10), except for zero measure sets and we label (q1, q2, q3) = (0, 0, s+/3) as the physically
relevant Constant solution in the L2 → ∞ limit. This is consistent with the numerical results
in figure 5.

(c) Theλ → ∞ limit
The set of minimizers of, fb, in the (q1, q2, q3)-plane can be written as S = S1 ∪ S2, where

S1 =
{

(q1, q2, q3) : q2
1 + q2

2 = s2+
4

, q3 = − s+
6

}
, S2 =

{(
0, 0,

s+
3

)}
. (4.15)

The λ → ∞ limit is equivalent to the vanishing elastic constant limit, and fb converges uniformly
to its minimum value in this limit [27].

Proposition 4.4. Let Ω ∈ R
2 be a simply connected bounded open set with smooth boundary. Let

(qλ
1, qλ

2, qλ
3) be a global minimizer of J(q1, q2, q3) in the admissible class A0 in (3.9), when L2 > −1. Then

there exists a sequence λk → ∞ such that (qλk
1 , qλk

2 , qλk
3 ) → (q∞

1 , q∞
2 , q∞

3 ) strongly in W1,2(Ω ; R3) where
(q∞

1 , q∞
2 , q∞

3 ) ∈ S. If (q∞
1 , q∞

2 , q∞
3 ) ∈ S1, i.e.

q∞
1 = s+

2
cos(2θ∞), q∞

2 = s+
2

sin(2θ∞), q∞
3 = − s+

6
, (4.16)

then θ∞ is a minimizer of ∫
Ω

|∇θ |2 dA, (4.17)

in the admissible class Aθ = {θ ∈ W1,2(Ω); θ = θb on ∂Ω}. The boundary condition, θb, is compatible with
(q1, q2) on ∂Ω by the relation (q1b, q2b) = (s+/2)(cos(2θb), sin(2θb)). Otherwise, (q∞

1 , q∞
2 , q∞

3 )(x, y) ∈ S2,
i.e.

(q∞
1 , q∞

2 , q∞
3 ) =

(
0, 0,

s+
3

)
. (4.18)

Proof. Our proof is analogous to lemma 3 of [27]. See electronic supplementary material. �

This proposition cannot be applied to square domains directly, because θb cannot be defined at
the square vertices. The TBCs necessarily mean that θb is constant on each square edge, and hence,
discontinuous at the vertices. However, we can still use the Proposition above to understand the
qualitative properties of energy minimizers in the λ → ∞ limit, by smoothening the boundary
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Figure 6. The D solution with λ̄2 = 1000, with L2 = −0.5, 0, 10, 30 and 45, respectively. In the first row, we plot s2 and n.
In the second row, we plot the q3-profiles. (Online version in colour.)

near the vertices and by defining θb appropriately. Firstly, the TBCs imply that θb must be a
multiple of π on the horizontal edges, and an odd multiple of π/2 on the vertical square edges.
Secondly, we prescribe θb so that the degree of nb = (cos θb, sin θb) is zero on the square boundary.
For example, experiments suggest that there are two classes of stable equilibria, which are almost
in the set S1, for large λ—the diagonal and rotated states. The diagonal states, D, are such that the
nematic director (in the plane) is aligned along one of the square diagonals. The rotated states,
labelled as R states, are such that the director rotates by π radians between a pair of opposite
square edges. There are two rotationally equivalent D states, and four rotationally equivalent
R states. The corresponding boundary conditions in terms of θ are given by θb = θD

b or θR
b ,

respectively, where

⎧⎨
⎩

θD
b = π

2
, on x = ±1,

θD
b = 0, on y = ±1,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

θR
b = π

2
, on x = −1,

θR
b = −π

2
, on x = 1,

θR
b = 0, on y = ±1.

(4.19)

These conditions can be translated to Dirichlet conditions for θb on the truncated square as well;
for example, we can solve �θ = 0 on a square domain, subject to these boundary conditions and
use this solution to prescribe the Dirichlet conditions on the short edges of the truncated square.

In figure 6, we study the effect of increasing L2 on a D state with λ̄2 = 1000. When L2 = 0, we see
that s2 = q2

1 + q2
2 ≈ s2+/4, q3 = −s+/6 almost everywhere. In [13], the authors show that the limiting

profiles described in proposition 4.4 are a good approximation to the solutions of (3.3)–(3.5), for
large λ. The differences between the limiting profiles and the numerically computed D solutions
concentrate around the vertices, for large λ. As |L2| increases, q3 deviates significantly from the
limiting value q∞

3 = −s+/6, near the square vertices. From an optical perspective, we expect to
observe larger defects near the square vertices for more anisotropic materials with L2 � 1, on
large square domains.

In [25], the authors compute the limiting energy, J∞, of D and R solutions on a unit square to
be:

J∞(D) = 2πs2
+
(

1 + L2

2

)(
ln
(

1
ε

)
+ ln

(
2
π

)
+ s1 − s2 + O(ε2)

)
(4.20)

and

J∞(R) = 2πs2
+
(

1 + L2

2

)(
ln
(

1
ε

)
+ ln

(
2
π

)
+ s1 + s2 + O(ε2)

)
, (4.21)

respectively, where

s1 = 2
∞∑

n=0

coth((2n + 1)π ) − 1
2n + 1

and s2 = 2
∞∑

n=0

csch((2n + 1)π )
2n + 1

.
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Figure 7. Left three figures: plots of γ in (4.22), with λ̄2 = 5, 100 and 500 from the left to right. Right two figures: the
configurations of the numerically computed pWORS with L2 = 3.5, λ̄2 = 350 and 1000. (Online version in colour.)

Since csch((2n + 1)π ) is positive, we have J∞(D) < J∞(R). The numerical values of ln(2/π ) + s1 −
s2 and ln(2/π ) + s1 + s2 are approximately zero, so J∞(D) and J∞(R) are approximately ln(1/ε) for
small ε, and the limiting energies are linear in L2.

The Constant solution qc ≡ (0, 0, s+/3) has transition layers on the boundary from (0, 0, s+/3)
to (s+/2, 0, −s+/6) or (−s+/2, 0, −s+/6). The limiting energy in (4.16) is the same for the L2 = 0
and L2 �= 0 cases. Therefore, there are no additional complexities from the L2 term. Analogous to
section 4 of [15], using classical arguments in the theory of Γ -convergence, the limiting energy
of the Constant solution is the sum of four transition costs: d((±s+/2, 0, −s+/6), (0, 0, s+/3)), where
d(q∗

0, q∗
1) is the geodesic distance between q∗

0 and q∗
1 associated with the Riemannian metric F1/2,

where F = fb − min fb. The numerical value of d((±s+/2, 0, −s+/6), (0, 0, s+/3)) is 41.6817 in [15].
The limiting energy G∞(Constant) = 4d((±s+/2, 0, −s+/6), (0, 0, s+/3)) is independent of L2. Hence,
there is a critical value

L∗
2 = 4c1

s2+π (ln(1/ε) + ln(2/π ) + s1 − s2 + O(ε2))
− 2,

such that for L2 > L∗
2, the limiting Constant solution is energetically preferable to the D and R

solutions, i.e. G∞(Constant) < J∞(D) < J∞(R).

(d) The Novel pWORS solutions
For all λ > 0 and L2 = 0, the WORS is a solution of (3.3)–(3.5) given by (q, 0, −B/6C), where q
satisfies (4.3). In §4a, we study the Euler–Lagrange equations, in the small λ and small L2 limit,
up to O(L2); see (4.4). However, g ≡ 0 is a solution for all λ and we assume that the solution,
(q1, q2, q3), of (3.3)–(3.5), can be expanded as follows:

q1(x, y) = q(x, y) + L2f (x, y) + L2
2ϕ(x, y) + · · · , (4.22)

q2(x, y) = 0 + L2g(x, y) + L2
2γ (x, y) + · · · (4.23)

and q3(x, y) = − B
6C

+ L2h(x, y) + L2
2μ(x, y) + · · · (4.24)

In figure 7, we plot a branch of the γ solutions. As λ increases, we observe an increasing
number of zeroes on the square diagonals, where γ = 0. For any λ > 0, we can use the initial
condition (q1, q2, q3) = (q + L2f , L2g + L2

2γ , −(s+/6) + L2h) to numerically find a new branch of
unstable solutions, referred to as pWORS configurations in figure 7. In the (q1, q2) plane, the
pWORS has a constant set of eigenvectors away from the diagonals, and has multiple ±1/2-point
defects on the two diagonals, so that the pWORS is similar to the WORS away from the square
diagonals. As λ increases, the number of alternating +1/2 and −1/2 point defects on the square
diagonals increases, for the numerically computed pWORS. This is mirrored by the function γ

that encodes the second-order effect of L2 on the WORS.

5. Bifurcation diagrams
We use the open-source package FEniCS [28] to perform all the finite-element simulations,
numerical integration and stability checks in this paper [29,30]. We apply the finite-element
method on a triangular mesh with mesh-size h ≤ 1/256, for the discretization of a square domain.
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The non-linear equations (3.3)–(3.5) are solved by Newton’s methods with a linear LU solver
at each iteration. The tolerance for convergence is set to 1 × 10−13. We check the stability of
the numerical solution by numerically calculating the smallest real eigenvalue of the Hessian
matrix of the energy functional (3.6), using the LOBPCG (locally optimal block preconditioned
conjugate gradient) method [31]. If the smallest real eigenvalue is negative, the solution is
unstable, and stable otherwise. In what follows, we compute bifurcation diagrams for the solution
landscapes, as a function of λ̄2, with fixed temperature A = −B2/3C, for five different values of
L2 = 0, 1, 2.6, 3, 10. The C and L are fixed material-dependent constants, so λ̄ is proportional to λ

and we will use these diagrams to infer qualitative solution trends. in terms of the edge length, λ.
For λ small enough, there is a unique solution for any value of L2; see the results in §4. For

L2 = 0, the unique stable solution, for small enough λ, is the WORS. The unique solution deforms
to the Ring+, with a central point defect, for relatively small L2 > 0 such as L2 = 1, 2.6. For L2 = 10,
the unique solution is the Constant solution, on the grounds that this solution approaches the
constant state, (q1, q2, q3) → (0, 0, s+/3), in the square interior as λ → ∞. The Ring+ and Constant
solution branches coexist for some values of L2 (2.7 ≤ L2 ≤ 3.4 for λ̄2 = 100, 2.85 ≤ L2 ≤ 5.5 for
λ̄2 = 200). When L2 is large enough, the Constant solution has lower energy than the Ring+
solution.

We distinguish between the distinct solution branches by defining two measures
∫
Ω q1(1 +

x + y)dxdy and
∫
Ω q2(1 + x + y) dx dy. In addition to the WORS, Ring+, Constant solutions, there

also exist the unstable Ring− and unstable pWORS solution branches with the same symmetries
in proposition 3.2, which are indistinguishable by these measures. Hence, they appear on the
same line in bifurcation diagram in figure 8 for all L2 > 0. The difference between the Ring+,
Ring−, WORS, Constant and pWORS can be spotted from the associated q2-profiles. If q2 < 0 on
x = y and x > 0, the corresponding solution is the Ring+ solution. If q2 > 0 on x = y and x > 0, the
corresponding solution is the Ring− solution. The Ring+ and Ring− solutions also exist for L2 = 0.
If q2 ≡ 0, the solution is either the WORS or Constant solutions. If q2 has isolated zero points on
the square diagonals, the corresponding solution is identified to be the pWORS solution branch.

We numerically solve the Euler–Lagrange equations (3.3)–(3.5) with λ̄2 = 0.1 by using
Newton’s method to obtain the unique stable solutions for the different values of L2. The initial
condition is not important here, since the solution is unique and the nonlinear term is small for
λ̄2 = 0.1. We perform an increasing λ̄2 sweep for the WORS, Ring+ and Constant solution branches
and a decreasing λ̄2 sweep for the diagonal D, and rotated R solution branches (as described
in §4c). The stable Ring+ branch for L2 = 3 is obtained by taking the stable Ring+ branch, with
L2 = 2.6 as the initial condition. The unstable WORS and Ring+ are tracked by continuing the
stable WORS and stable Ring+ branches. If the Ring+ branch is given by (q1, q2, q3) for a fixed
L2 > 0, then the initial condition for the unstable Ring−-solution is given by the corresponding
(q1, −q2, q3) solution, for any λ > 0. The initial condition for the unstable pWORS branch is given
by (q1, q2, q3) = (q + L2f , L2g + L2

2γ , −(s+/6) + L2h), where q, f , g, h, γ are O(L2) perturbations in
(4.4) and O(L2

2) perturbation in (4.22), for any λ > 0 (figure 7).
Consider the case L2 = 0. For λ < λ∗, there is the unique WORS. For λ = λ∗, the stable WORS

bifurcates into an unstable WORS, and two stable D solutions. When λ = λ∗∗ > λ∗, the unstable
WORS bifurcates into two unstable BD, which are featured by isotropic lines or defect lines
localized near a pair of opposite square edges. When λ = λ∗∗∗ > λ∗∗, unstable Ring± solutions
appear simultaneously. When L2 = 0, the Ring+ and Ring− solution have the same energy. Each
unstable BD further bifurcates into two unstable R solutions. As λ increases, the unstable R
solutions gain stability. The WORS has the highest energy amongst the numerically computed
solutions for L2 = 0, for large λ. For L2 �= 0, the WORS ceases to exist and the unique solution is
the stable Ring+ solution. For L2 = 2.6, the Ring+ solution is stable for λ̄2 ≤ 200 and the unstable
pWORS and Ring− appear for large λ. At the first bifurcation point λ = λ∗, the Ring+ bifurcates
into two stable D solutions. At the second bifurcation point, λ = λ∗∗ > λ∗, it further bifurcates
into two unstable BD solutions and for λ = λ∗∗∗ > λ∗∗, the unstable Ring− and unstable pWORS
solution branches appear. The Ring− and pWORS are always unstable and the Ring+ solution
has slightly lower energy than the Ring−. The unstable pWORS has higher energy than the
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x + y)dx dy verses λ̄2. Right: plot of the energy J − ∫
Ω
min fb dA verses λ̄2. (Online version in colour.)

unstable Ring± solutions when λ is large. For larger L2, the unique stable solution, for small λ,
is the Constant solution, which remains stable for λ̄2 ≤ 200. We can clearly see that the Constant
solution approaches (q1, q2, q3) → (0, 0, s+/3) as λ gets large. For L2 = 10, the pWORS and Ring±

states disappear, and the Constant solution does not bifurcate to any known states. The BD and D
solution branches are now disconnected from the stable Constant solution branch. As we perform
a decreasing λ̄2 sweep for the D or BD solution branches, we cannot find a D or BD solution for
λ < λD or λ < λBD, for small λD and λBD. The Constant solution has lower energy than the R and D
solutions for large λ, as suggested by the estimates in §4c. For much larger values of L2, we only
numerically observe the Constant solution branch.
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To summarize, the primary effect of the anisotropy parameter, L2, is on the unique stable
solution for small λ. The elastic anisotropy destroys the cross structure of the WORS, and also
enhances the stability of the Ring+ and Constant solutions. A further interesting feature for large
L2, is the disconnectedness of the D and R solution branches from the parent Constant solution
branch. This indicates novel hidden solutions for large L2, which may have different structural
profiles to the discussed solution branches, and this will be investigated in greater detail, in future
work.

In the next proposition (proof in electronic supplementary material), we prove a stability result
which gives partial insight into the stabilizing effects of positive L2. Let (q1, q2, q3) be an arbitrary
critical point of the energy functional (3.6). As is standard in the calculus of variations, we say that
a critical point is locally stable if the associated second variation of the energy (3.6) is positive for
all admissible perturbations, and is unstable if there exists an admissible perturbation for which
the second variation is negative.

Proposition 5.1. For L2 ≥ (λ2/L)c(A, B, C, Ω), where c is some constant depending only on A, B, C
and Ω , the critical points of the energy functional (3.6) in the restricted admissible space

A∗ =
{

(q1, q2, q3) ∈ A0 :
∫

Ω

|∇q1|2 ≤ M1(A, B, C),

∫
Ω

|∇q2|2 ≤ M2(A, B, C),
∫

Ω

|∇q3|2 ≤ M3(A, B, C)
}

,

are locally stable with respect to the perturbations

V(x, y) = v1(x, y)(x̂ ⊗ x̂ − ŷ ⊗ ŷ) + v2(x, y)(x̂ ⊗ ŷ + ŷ ⊗ x̂) (5.1)

and

V(x, y) = v3(x, y)(2ẑ ⊗ ẑ − x̂ ⊗ x̂ − ŷ ⊗ ŷ). (5.2)

6. Conclusion and discussions
We study the effects of elastic anisotropy on stable nematic equilibria on a square domain, with
TBCs, primarily focusing on the interplay between the square edge length, λ, and the elastic
anisotropy, L2. We study LdG critical points with three degrees of freedom, q1, q2, q3. We use
symmetry arguments on an 1/8th of the square domain, to construct symmetric LdG critical
points for which q1 vanishes on the square diagonals, and q2 vanishes on the coordinate axes.
The WORS is a special symmetric critical point for L2 = 0, with q2 ≡ 0 . In particular, q2 cannot
be identically zero for L2 �= 0. There are different classes of these symmetric critical points, and
we perform asymptotic studies in the small λ and small L2 limit, and large L2 limits, to provide
good asymptotic approximations for the novel Ring+ and Constant solutions, both of which can
be stable in physically relevant regimes. The large λ-picture for L2 �= 0 is qualitatively similar to
the L2 = 0 case, with the stable diagonal, D and rotated, R solutions. The notable difference is the
emergence of the competing stable Constant solution, which is energetically preferable to the D
and R-solutions, for large L2 and large λ. This suggests that for highly anisotropic materials with
large L2, the experimentally observable state is the Constant solution with q2

1 + q2
2 ≈ 0 in the square

interior. In other words, the Constant state is almost perfectly uniaxial, with uniaxial symmetry
along the z-direction, and will offer highly contrasting optical properties compared to the D and
R solutions. This offers novel prospects for multistability for highly anisotropic materials.

Another noteworthy feature is the stabilizing effect of L2, as discussed in §5. The Ring+

solution has a central point defect in the square interior and is unstable for L2 = 0. However,
it gains stability for moderate values of λ, as L2 increases, and ceases to exist for very large
positive values of L2. We note some similarity with recent work on ferronematics [32], where
the coupling between the nematic director and an induced spontaneous magnetization stabilizes
interior nematic point defects, with L2 = 0. It remains an open question as to whether elastic
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anisotropy or coupling energies (perhaps with certain symmetry and invariance properties) can
stabilize interior nematic defects for tailor-made applications.
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