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Chaperone-directed ubiquitylation maintains proteostasis at the expense
of longevity
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ABSTRACT
The integrity of the cellular proteome is supported by quality control networks, which govern
protein synthesis, folding, and degradation. It is generally accepted that an age-related decline in
protein homeostasis (proteostasis) contributes to protein aggregation diseases. However, the
mechanistic principles underlying proteostasis imbalance and the impact on life expectancy are not
well understood. We recently demonstrated that this interrelation is affected by chaperone-directed
ubiquitylation, shifting the amount of the conserved DAF-2/insulin receptor both in Caenorhabditis
elegans and Drosophila melanogaster. The ubiquitin ligase CHIP either targets the membrane bound
insulin receptor or misfolded proteins for degradation, which depends on the cellular proteostasis
status. Increased proteotoxicity triggers chaperone-assisted redirection of CHIP toward protein
aggregates, limiting its capacity to degrade the insulin receptor and prevent premature aging. In
light of these findings, we discuss a new concept for understanding the impact of proteome
imbalance on longevity risk.
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Proteostasis and aging are intricately balanced

The proteome is defined as the entire set of proteins
expressed in a given cell-type or organism, which can
vary with time and physiologic status.1 The integrity
of the proteome is maintained through numerous
quality control pathways, which form a complex pro-
teostasis network. The coordination between the dif-
ferent proteostatic nodes is tightly balanced and
adjusted in response to proteotoxic stress caused by
environmental and metabolic challenges.2,3 The
human proteostasis network involves>1000 accessory
factors and regulatory components, which govern pro-
tein synthesis, folding, and degradation.3 For example,
molecular chaperones support efficient folding of
nascent polypeptides synthesized at the ribosome to
secure their biologic function(s).1 Otherwise, defective
folding could result in increased abundance of toxic
protein aggregates, which endanger the integrity of
the entire proteome.1 Molecular chaperones

additionally participate in refolding of damaged pro-
teins that accumulate upon proteotoxic stress condi-
tions. In case protein refolding cannot be sufficiently
executed, chaperones team up with the ubiquitin/pro-
teasome-system (UPS) or autophagy pathway to trig-
ger degradation of misfolded proteins.4-8 The UPS is
one major proteolytic component of the cellular pro-
teostasis network mediating the degradation of regula-
tory or damaged proteins.8,9 Turnover by the 26S
proteasome is highly selective and initiated by cova-
lent attachment of the small, evolutionarily conserved
protein ubiquitin predominantly to internal lysine res-
idues.10 Recent studies in different organisms sup-
ported the idea that the activity of the 26S proteasome
progressively declines during aging, although molecu-
lar aspects of this regulation have not been
addressed.11 One limiting factor important for protea-
somal activity in worms and human embryonic stem
cells is the 19S regulatory particle (RP) subunit RPN-
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6/PSMD11, as its overexpression causes increased pro-
teasome assembly, proteotoxic stress resistance, and
lifespan extension.12

The most extensively studied genetic program regu-
lating stress tolerance and longevity is the insulin/
insulin-like growth factor 1 (IGF-1) signaling (IIS).13

The central regulator of the conserved IIS pathway in
C. elegans is the insulin receptor DAF-2, which is
important for lifespan, stress responses, and metabo-
lism.13 Loss of DAF-2 signaling induces nuclear trans-
location and activation of the downstream FOXO
transcription factor DAF-16, which regulates gene
expression to enhance stress resistance and life-
span14,15 including molecular chaperones and protea-
somal subunits like RPN-6 (Fig. 1).12,16-18 The current
literature on IIS indicates that proteostasis and aging
are inextricably linked to stress tolerance. Surprisingly,
however, recent proteomic approaches performed in
C. elegans did not show any age-related activity
decline of the protein degradation machinery.19

Whereas protein synthesis decreased, protein degrada-
tion pathways seem to be more efficient. This result
contradicts the general concept of proteostasis collapse
explained by reduced proteasomal turnover of mis-
folded proteins. In the course of aging, errors in pro-
tein synthesis pathways increase, which is caused by
genomic instability,20 an accumulation of transcrip-
tion errors,21 mistranslation, and misfolding.22,23

These hallmarks of aging lead to the accumulation of
misfolded proteins and finally to the formation of

protein aggregates. Here, we discuss an alternative
concept for understanding the complex interplay
between proteostasis and aging, highlighting an active
role of misfolded proteins, which ultimately limit the
capacity of protein quality control networks and fur-
ther accelerate the aging process (Fig. 2).

The quality control ubiquitin ligase CHIP – A
central regulator of proteostasis

The C terminus of Hsc70-interacting protein (CHIP)
was originally identified as a binding partner of molec-
ular chaperones.24 The direct interaction between the
E3 ligase CHIP and Hsp70 or Hsp90 facilitates chap-
erone-assisted ubiquitylation of misfolded proteins
that are bound to the chaperone complex. This intri-
cate cooperation between both chaperone and protea-
some systems facilitates the cellular balance of protein
folding and degradation and maintains the cellular
proteostasis network.25-27 Besides proteasomal turn-
over, CHIP-dependent ubiquitylation of damaged
proteins also triggers disposal through endocytic-lyso-
somal pathways,28,29 and autophagy.30 In agreement
with its central role in proteostasis, CHIP prevents an
age-related pathological accumulation of protein
aggregates.25,31 CHIP directly modulates the proteo-
toxic stress response by activating heat shock factor 1
(HSF-1) and by reducing the level of Hsp70 after heat
shock.32,33 However, the molecular mechanism that
determines between refolding or destruction of chap-
erone substrates is not fully understood.

Figure 1. CHN-1 defines insulin signaling and longevity through DAF-2 ubiquitylation. (A) In the absence of stress, (1) CHN-1 binds to
and monoubiquitylates the DAF-2/insulin receptor in collaboration with an E2 enzyme (e.g. LET-70),24 which triggers (2)-(3) endocytic-
lysosomal degradation of the insulin receptor.6 Reduced insulin signaling supports nuclear localization of the transcription factor DAF-
16 and expression of pro-longevity genes. (B) Stress- or aging-related decline in proteostasis cause increased level of misfolded proteins,
which redirects CHN-1 activity toward chaperone-assisted ubiquitylation. The stabilization of membrane-bound DAF-2 triggers insulin
signaling, which limits nuclear translocation of DAF-16 and consequently shortens lifespan.
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CHIP is conserved and orthologs exist in worms, flies,
fish, mammals, and even plants. The worm ortholog
CHN-1 has been shown to team up with another E3
ligase called UFD-2 to target the myosin chaperone
UNC-45 for degradation.24 Here, the E3/E4 ligase com-
plex regulates the assembly and maintenance of myosin
filaments in striated C. elegansmuscle. In agreement with
its role in protein quality control, CHIP knockout mice
exhibit reduced lifespan associated with age-related path-
ophysiological defects.34 Otherwise, CHIP knockout
mice exhibit normal embryonic development and unaf-
fected turnover of various CHIP substrates.34,35 These
physiologic characteristics indicate functional redun-
dancy among different quality control E3 ligases and the
existence of at least one critical CHIP-specific substrate
that restricts longevity. Due to the fact that CHIP exists
in a variety of eukaryotic organisms, its role in aging reg-
ulation may be evolutionarily conserved. Indeed, CHIP
triggers degradation of the insulin receptor (INSR),
which regulates metabolic changes and determines life-
span in worms, flies, and human cells.6

CHIP regulates the turnover of the insulin
receptor

IIS is well known to affect both lifespan andmetabolism
in C. elegans.36We have recently shown that the ubiqui-
tin ligase CHIP either mediates endocytic-lysosomal
degradation of the INSR or collaborates with chaper-
ones to degrade misfolded and aggregated proteins.6

Deletion of the C. elegans homolog chn-1 shortens the
lifespan and reduces the body size of worms. Although
these deletion phenotypes point toward limited nutrient

uptake, CHN-1 acts independently of dietary restric-
tion.37 chn-1mutants show a delayed nuclear transport
of DAF-16 leading to reduced expression of longevity
genes, which indicates regulation of DAF-2/INSR sig-
naling (Fig. 1). Moreover, depletion of Drosophila
CHIP (dCHIP) causes increased phosphorylation of
AKT kinase,38 which is another indication for activated
insulin signaling. CHIP directly interacts with and
monoubiquitylates multiple lysine residues of the INSR
with Lys1047 being the main ubiquitylation site, also
identified in an unbiased proteomic study.39 Substitu-
tion of Lys1047 (Lys1047Arg) elevates the INSR level,
indicating that CHIP-dependent ubiquitylation at this
site is crucial for endocytic-lysosomal degradation of
the receptor. Indeed, down regulation of chn-1, dCHIP,
and human STUB1 leads to a stabilization of DAF-2/
INSR, both in C. elegans, Drosophila, and HEK293T
cells, respectively. In contrast to INSR regulation, CHIP
does not ubiquitylate the insulin-like growth factor
receptor 1, which underlines its substrate specificity.

According to its role as quality control E3 ligase,
overexpression of aggregation-prone polyglutamine
(polyQ) proteins fosters recruitment of CHIP toward
inclusion bodies, thereby reducing the free pool of
CHIP. Consequently, CHIP activity is shifted from
INSR binding to chaperone-assisted ubiquitylation of
misfolded proteins, causing stabilization of the mem-
brane-bound INSR, increased insulin signaling, and
reduced expression of longevity genes (Fig. 1). To con-
firm the tight interplay between CHIP-mediated pro-
teostasis and lifespan regulation we tested the impact
of proteotoxic stress on proteome stability and longev-
ity. In fact, chn-1 deletion worms are highly sensitive
to paraquat treatment especially during late stages of
adulthood. In line with this observation, depletion of
dCHIP leads to a dramatic accumulation of oxida-
tively damaged proteins in aged flies. Oxidative stress
causes stabilization of the insulin receptor, which is
most likely a result of limited ubiquitin ligase activity
because degradation of the INSR can be restored by
CHIP overexpression. Given its role in chaperone-
assisted ubiquitylation, it is intriguing to note that
CHN-1 is mainly required during aging to confer heat
stress resistance in worms. Our observation might be
linked to an age-related decline in proteostasis known
to cause high abundance of misfolded proteins,40-42

which would redirect CHN-1 activity toward the deg-
radation of misfolded proteins, especially during
aging. In fact, worms shifted to high temperature at

Figure 2. Proteostasis collapse redirects substrate specificities of
the proteolytic network. Stress and aging induce
a rearrangement of protein quality control networks, including
molecular chaperones and protein degradation pathways, to
maintain proteostasis. Among other quality control factors, this
process recruits the E3 ubiquitin ligase CHN-1 and co-working
chaperone Hsp90 to protein aggregates for chaperone-assisted
ubiquitylation of misfolded proteins. Consequently, the activity
of natural CHN-1 substrates remains uncontrolled, which pro-
vokes pathologies and further accelerates aging.
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the beginning of adulthood show elevated levels of
DAF-2 protein similar to chn-1 lacking mutants
grown at normal conditions. Moreover, the shifted
worms exhibit shortened lifespan, reflecting increased
insulin signaling based on DAF-2 stabilization.

These intriguing findings shed new light on the
mechanism by which proteostasis dysfunction acceler-
ates the aging process, showing that there is a signifi-
cant change in substrate preferences of key regulatory
proteolytic pathways, directed toward toxic protein
aggregates (Fig. 2). As a consequence, metabolic sig-
naling pathways like IIS are “let off the leash” resulting
in physiologic changes and lifespan reduction.

Future directions –mechanisms modifying CHIP
activity and specificity

The role of CHIP in chaperone-directed ubiquityla-
tion of non-native proteins is well known to prevent
an age-dependent pathological accumulation of pro-
tein folding stress. Our work identified a novel func-
tion of CHIP in lifespan control, which defines INSR
abundance and consequently activity of IIS.6 Since
CHIP level remain unchanged even upon proteotoxic
stress conditions, CHIP activity is bypassed toward
toxic protein aggregates during aging (Fig. 2). This
competitive rewiring of quality control pathways
results in severe metabolic changes linked to increased
IIS, accelerating proteostasis collapse and the aging
process (Fig. 1B). Both spatiotemporal control of
CHIP function as well as substrate specificity and
processing remain to be further addressed. It is tempt-
ing to speculate that ligase activity and substrate bind-
ing might be coordinated by post-translational
modifications of CHIP.43 Interestingly, CHIP is differ-
ently ubiquitylated by the E2 enzymes UbcH5A or
Ube2W.44,45 Otherwise the neuroprotective function
of CHIP is negatively affected by Cdk5-dependent
phosphorylation.46

At physiologic concentrations, CHIP proteins
from different species form homodimers.47 The
structure of dimeric mouse CHIP reveals an unusual
asymmetry in which the protomers adopt radically
different conformations48 and breaking of symmetry
during homodimeric assembly induces E3 ubiquitin
ligase activity.49 As a consequence of this asymmetric
arrangement, one of the 2 catalytical U-box domains
is sterically hindered and not accessible for E2
enzyme binding. Thus, the asymmetric structure of

the CHIP dimer provides an elegant means for cou-
pling a dimeric chaperone to a single ubiquitylation
system, supporting the formation of a monotonic
polyubiquitin chain. In line with the suggested struc-
tural model for CHIP mediated ubiquitylation,
dimerization of CHIP might determine E2 enzyme
binding, ubiquitin chain topology, and substrate
selection. Indeed, a first attempt has been made to
test how disease-related mutations affect the molecu-
lar architecture and the activity of CHIP.50 Decipher-
ing the molecular mechanisms underlying the
regulation of CHIP activity and substrate specificity
might contribute to develop novel therapeutic strate-
gies directed against age-related diseases including
diabetes, cancer, and neurodegenerative disorders.
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