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ABSTRACT
Freshwater mussels (order: Unionida) represent one of the most critically imperilled
groups of animals; consequently, there exists a need to establish a variety of molecular
markers for population genetics and systematic studies in this group. Recently, two
novel mitochondrial protein-coding genes were described in unionoids with doubly
uniparental inheritance of mtDNA. These genes are the f-orf in female-transmitted
mtDNA and the m-orf in male-transmitted mtDNA. In this study, whole F-type
mitochondrial genome sequences of two morphologically similar Lampsilis spp. were
compared to identify the most divergent protein-coding regions, including the f-orf
gene, and evaluate its utility for population genetic and phylogeographic studies in
the subfamily Ambleminae. We also tested whether the f-orf gene is phylogenetically
informative at the species level. Our preliminary results indicated that the f-orf gene
could represent a viable molecular marker for population- and species-level studies in
freshwater mussels.

Subjects Biodiversity, Conservation Biology, Genetics, Zoology, Freshwater Biology
Keywords Unionida, Freshwater mussels, Mitochondrial DNA, Bivalvia, DNA barcode, Doubly
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INTRODUCTION
Freshwater mussels (Bivalvia: Unionida) occur globally, except in Antarctica, with more
than 800 estimated species (Bogan & Roe, 2008). Despite high diversity, many species
are critically imperilled (Regnier, Fontaine & Bouchet, 2009; Lopes-Lima et al., 2017).
Approximately 70% of the ∼300 North American species are endangered at some level
(Lopes-Lima et al., 2017). Freshwater mussels are well recognized for their water filtration
capabilities, and for the production of obligate parasitic larvae that metamorphose on
fish hosts (Regnier, Fontaine & Bouchet, 2009; Lopes-Lima et al., 2017). They also possess
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an unusual system of mitochondrial transmission called doubly uniparental inheritance
(DUI), a characteristic shared with various other bivalves (Gusman et al., 2016). DUI is the
only exception to the strictly maternal inheritance of mitochondrial DNA (mtDNA) in
animals and is characterized by having two types of mtDNA inmales (the male-transmitted
orM-typemtDNA in germline cells and the female-transmitted or F-typemtDNA in soma),
and usually one type (the F-type) in females (Breton et al., 2007). DNA divergence between
M and F mtDNAs within a single male freshwater mussel can reach >40% (Doucet-Beaupré
et al., 2010). Moreover, each sex-associated mtDNA contains a novel protein-coding gene
in addition to the 13 typical genes involved in ATP production (m-orf in M-type and f-orf
in F-type mtDNA; Breton et al., 2009; Breton, Stewart & Hoeh, 2010; Milani et al., 2013).
These genes are among the fastest evolving mt genes in freshwater mussels (Breton et al.,
2011a; Breton et al., 2011b; Mitchell et al., 2016). They also have hypothesized roles in the
maintenance of DUI and sex determination in bivalves (Breton et al., 2011a; Breton et al.,
2011b), with recent in silico analyses supporting such hypotheses (Mitchell et al., 2016).

Molecular techniques are commonly used to study freshwater mussels (Mulvey et al.,
1997; Krebs, 2004; Campbell et al., 2008) since shell morphology alone is often inadequate
to define populations, species or subfamilies. Environmental conditions can affect
shell developmental patterns and obfuscate taxonomic identification (Bogan & Roe,
2008). Recent divergence (and retention of ancestral morphological characteristics)
and hybridization phenomena also make shell characters only partially efficient in
discriminating certain populations or lineages (Hoeh et al., 1995; Cyr et al., 2007). For
example, significant genetic differences have been discovered in Utterbackia populations
with little to no apparent differences in shell morphology (Hoeh et al., 1995). Several
studies have used both F- and M-type mtDNA sequences. For example, fragments of the
16S rRNA and cytochrome c oxidase subunit I (cox1) genes obtained with the universal
primers 16Sar-5 and 16Sbr-3 (Palumbi et al., 1991) and HCO2198 and LCO1490 (Folmer
et al., 1994), respectively (or with modified versions of the latter two (Walker et al., 2006)),
have been used to answer systematic, phylogenetic (Krebs, 2004; Krebs et al., 2013; Doucet-
Beaupré et al., 2012) and phylogeographical (Mioduchowska et al., 2016) questions about
freshwater mussels. Since the M-type mt genomes typically evolve faster than their F-type
counterpart in freshwater mussels (Krebs, 2004; Gusman et al., 2016), relatively older
(i.e., species- or family-level) divergences may be tracked more accurately with analyses
of the more slowly evolving F-type mtDNA, while analyses of relatively recent (e.g.,
population-level) divergences may be facilitated by analyses of the faster evolving M-type
mtDNA. For example, only the faster evolving male form of the 16S rRNA gene provided
strong evidence of geographical isolation among Pyganodon grandis populations from the
southern region of the Lake Erie watershed (Ohio, USA) (Krebs, 2004). However, because
the male mtDNA is restricted to the testes, this requires identification of males, and this
is impossible with juvenile specimens or with larvae (glochidia). Moreover, the precarious
situation of several freshwater mussel species sometimes require non-destructive sampling
of animals (e.g., using mantle snips and thus with no access to the M-type mtDNA), which
are then returned to the river bottom (Inoue et al., 2013).
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To explore species boundaries, evolutionary relationships and geographic distribution
of freshwater mussel species, researchers also tried other protein-coding loci of the F-type
mtDNA such as cytochrome c oxidase subunit II (cox2; Doucet-Beaupré et al., 2012) and
NADHdehydrogenase subunit 1 (nad1;Campbell et al., 2005). For example,Campbell et al.
(2005) used nad1 together with cox1 and 16S rRNA to study the phylogenetic diversity
of the subfamily Ambleminae, but their data could not resolve all the tribes (Amblemini,
Lampsilini, Pleurobemini, Quadrulini) as monophyletic assemblages. The same three gene
fragments were also found to be poor at resolving recent relationships (intrageneric level)
by other researchers (e.g., Sommer, 2007; McCartney et al., 2016).

Recently, Wares (2014) used a straightforward approach and compared whole
mitochondrial genome sequences of recently-diverged taxa to identify the most divergent
protein-coding region and verify its utility for population genetics (see also Shearer &
Coffroth, 2008) and systematic studies in scleractinian corals. Although its results suggested
that this region alone (cytochrome b, cytb) was unlikely to improve researchers’ ability
to separate coral taxa using DNA sequence-based methods, the proposed pipeline, i.e., to
find the most divergent region and to analyze its divergence across available GenBank
data, could certainly be adopted to find another useful F-type mitochondrial region for
population genetics and systematic studies in freshwater mussels.

Following Wares’ pipeline, we focused on Ambleminae, an important freshwater
mussel subfamily with several species listed as threatened or endangered (IUCN, 2015),
and searched for another useful region in the F-type mtDNA to explore phylogenetic
diversity and phylogeographic or population genetic structure in this taxa. We compared
F mt genomes between two putative species (i.e., two species that are difficult to tell
apart morphologically), the Arkansas Fatmucket, Lampsilis powellii (I. Lea, 1852) and the
Fatmucket,Lampsilis siliquoidea (Barnes, 1823) (Harris et al., 2004;Harris et al., 2010;Krebs
et al., 2013), and identify highly divergent protein-coding regions such as the f-orf gene.
We then analyzed sequence divergence in this region (and test whether it is phylogenetically
informative) across available amblemine data as a first step to see if it could represent a
viable molecular marker for population- and species-level studies in freshwater mussels.

MATERIALS AND METHODS
Lampsilis mussels were collected from two major river drainages in the state of Arkansas:
Ouachita River drainage - Ouachita River (Polk County = isolate H2610), and Red
River drainage - Mountain Fork Little River (Polk County = isolate H2655). Specimens
were obtained under permit, including Arkansas Game and Fish Commission Scientific
Collection Permits Nos. 022220078 and 062220101, and Federal Fish and Wildlife Permit
No. TE079883-2 issued to JL Harris. Samples were identified as Lampsilis siliquoidea or
L. powellii according to Harris et al. (2004) and Harris et al. (2010), i.e., based on external
shell morphology (color rays absent, pit rays present, nacre color matte yellow to tan
= L. powellii; color rays present, pit rays absent, nacre color shiny yellow to tan =
L. siliquoidea). Each individual was sexed through microscopic examination of gonad
tissues. Total DNA was extracted from female mantles to obtain the female-transmitted
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Table 1 Primers pairs used in the amplification of the entire F genomes.

Mitotype
Region
(Amplicon size)

Primer name Primer sequence (5′ to 3′)

F genome
cox2 –rrnL
(∼11 kb)

*UNIOCOII.2a

Ambl16SForc
CAGTGGTATTGGAGGTATGAGTA
CTGGGTTTGCGACCTCGATGTTGGCTTAGGGAAA

cox1 –rrnL
(∼5.5 kb)

*HCO-700y2b

Ambl16SRevc
TCAGGGTGACCAAAAAAYCA
TTTCCCTAAGCCAACATCGAGGTCGCAAACCCAG

Notes.
For primer names: Ambl and *, Amblemine-specific primers.

aFrom Curole & Kocher (2002).
bFromWalker et al. (2006).
cSee Breton et al. (2011b).

mtDNA using a QIAGEN DNeasy animal kit following the manufacturer’s protocol.
Complete mtDNAs were PCR amplified, according to the method of Breton et al. (2011b)
using primers listed in Table 1. Purified products were sequenced using FLX sequencing
(McGill University and Genome Quebec Innovation Centre).

Sequences were assembled with MacVector v10.0 (Rastogi, 1999), annotated using
MITOS (Bernt et al., 2013), and compared to published freshwater mussel mtDNAs.
Further assessment of tRNAgenes used tRNAScan-SE v1.21 (Lowe & Eddy, 1997).MUSCLE
(Edgar, 2004) was used within Geneious v10.0.9 (Kearse et al., 2012) to align complete
mtDNAs. Nucleotide divergence K(JC) across F-to-F mt genomes was determined with
DnaSP v5 (sliding-window = 500 bp; step size = 25 bp) (Librado & Rozas, 2009).

DNA alignments of individual genes were produced via MUSCLE in MEGA7 (Kumar,
Stecher & Tamura, 2016). MEGA7 was used to: determine p-distances and dN /dS
values (dN = nonsynonymous substitutions/nonsynonymous sites; dS = synonymous
substitutions/synonymous sites), calculate Z -tests, and generate trees. The best substitution
model for each gene was chosen via a model selection test in MEGA7, alignments
were manually trimmed to start/end positions without gaps, and Maximum-likelihood
(ML) trees were generated with 500 bootstrap replicates (complete deletion was used
to account for gaps in ML trees). Bayesian inference trees were produced via BEAST
v2.4.6 (Drummond et al., 2012), using a Hasegawa-Kishino-Yano model for f-orf and a
Tamura-Nei evolutionary model for cox1 (based on BEAST modeltest results), a Yule
speciation process, and 80 million Markov chain Monte Carlos steps (sampling every
1000 steps). A 10% burn in was used and resulting trees were compiled into the highest
probability topology using TreeAnnotator v1.4 (Rambaut & Drummond, 2002). Graphs
were produced using ggplot2 within R Team (2015). Specimens used in our phylogenetic
analyses and in analysis of f-orf and cox1 sequences variability are described in Table 2.
Nomenclature followed Williams et al. (2017). Mitochondrial genomes were deposited in
GenBank (accession nos. MF326971 and MF326973).
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Table 2 Cox1 and f-orf sequences used in Ambleminae phylogenies and in analysis of f-orf and cox1 sequences variability.

Species cox1 f-orf

Accession Reference Accession Reference

Ellipsaria lineolata AY654994 Campbell et al. (2005) HM849378a Breton et al. (2011b)
GU085285a Boyer et al. (2011) – –
HM849071 Breton et al. (2011b) – –

Fusconaia flava DQ298537a Burdick & White (2007) HM849380 Breton et al. (2011b)
DQ298538 Burdick & White (2007) HM849381a Breton et al. (2011b)
EF033261 Chapman et al. (2008) HM849382 Breton et al. (2011b)
HM849073 Breton et al. (2011b) – –

Lampsilis ornata AF385112 Roe, Hartfield & Lydeard
(2001)

AY365193a Serb & Lydeard (2003)

AY365193a Serb & Lydeard (2003) – –
Lampsilis powellii HM849075a Breton et al. (2011b) MF326971a This study

– – HM849384 Breton et al. (2011b)
Lampsilis siliquoidea HM849076 Breton et al. (2011b) MF326973* This study

– – HM849385 Breton et al. (2011b)
Lemiox rimosus AY655002a Campbell et al. (2005) – –

EF033256 Chapman et al. (2008) – –
HM849093 Breton et al. (2011b) – –

Megalonaias nervosa AY655007a Breton et al. (2011b) HM849404a Breton et al. (2011b)
Potamilus metnecktayi HM849099a Breton et al. (2011b) HM849405a Breton et al. (2011b)

– – HM849406 Breton et al. (2011b)
Quadrula quadrula FJ809750a Breton et al. (2009) FJ809750a Breton et al. (2009)

KX853888–KX853982 Mathias et al. (2018) – –
Reginaia ebenus AY654999 Unpublished HM849379a Breton et al. (2011b)

HM849072 Breton et al. (2011b) – –
KF035133a Inoue et al. (2013) – –

Cyclonaias houstonensis KT285649a Pfeiffer et al. (2016) HM849440a Breton et al. (2011b)
– – HM849441 Breton et al. (2011b)

Cyclonaias tuberculata GU085284a Boyer et al. (2011) HM849376a Breton et al. (2011b)
HM849069,
HM849070

Breton et al. (2011b) HM849377 Breton et al. (2011b)

Toxolasma lividum AF231756a Bogan & Hoeh (2000) HM849451,
HM849452,
HM849453,
HM849454,
HM849455

Breton et al. (2011b)

JF326436 Campbell & Lydeard (2012) HM849456a Breton et al. (2011b)
Toxolasma sp. aff. paulum 1 HM849131a Breton et al. (2011b) HM849458 Breton et al. (2011b)

HM849133 Breton et al. (2011b) HM849459,
HM849460,
HM849461,
HM849462,
HM849463,

Breton et al. (2011b)

– – HM849464a Breton et al. (2011b)
(continued on next page)
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Table 2 (continued)

Species cox1 f-orf

Accession Reference Accession Reference

Toxolasma sp. aff. paulum 2 HM849129a Breton et al. (2011b) HM849465,
HM849466,
HM849467,
HM849468,
HM849469,
HM849470,
HM849471,
HM849472,
HM849473

Breton et al. (2011b)

HM849130 Breton et al. (2011b) HM849474a Breton et al. (2011b)
HM849132 Breton et al. (2011b) HM849475 Breton et al. (2011b)

Toxolasma pullus – – MF326970a This study
Toxolasma texasiense AY655023a Campbell et al. (2005) HM849476 Breton et al. (2011b)

– – HM849477a Breton et al. (2011b)
Truncilla macrodon HM849165a Breton et al. (2011b) HM849478a Breton et al. (2011b)

KT285658 Pfeiffer et al. (2016)
Venustaconcha ellipsiformis EF033260a Chapman et al. (2008) FJ809753 Breton et al. (2009)

– – HM849529a Breton et al. (2011b)
– – HM849530 Breton et al. (2011b)

Villosa iris HM849199a Breton et al. (2011b) HM849531 Breton et al. (2011b)
HM849200,
HM849201

Breton et al. (2011b) HM849532a Breton et al. (2011b)

– – HM849533 Breton et al. (2011b)

Notes.
Cox1 sizes range from 339 to 1,541 bp. F-orf sizes range from 240 to 410 bp. Note that for trees sequences were trimmed to a common start and end position in alignments.

aSequences that were specifically used in Ambleminae phylogenies.

RESULTS
Mitochondrial genome sizes (F = 16,043 and 16,990 bp for L. powelli and L. siliquoidea,
respectively), gene order and compositions are consistent with those of other freshwater
mussels (Doucet-Beaupré et al., 2010). We detected one large, potentially species-specific
indel: a 51 bp indel in the cox2/nad3 spacer region between the two F genomes.

Individual gene p-distances and dN /dS ratios are given in Fig. 1. Our results show,
consistent with the degree of nucleotide divergence across mt genes in F genomes (Fig. S1),
that the f-orf gene is among the least conserved genes in F genomes (Fig. 1). Only atp8 has
a higher dN /dS ratio (>0.4) than f-orf, although a Z -test for selection indicated that the
probability of rejecting the null hypothesis of dN = dS (neutrality) for this gene was 0.092.

Phylogenetic analyses focused on the f-orf gene because several f-orf sequences are
available in GenBank compare to atp8. Three Bayesian phylogenetic trees were built for
Ambleminae using: the f-orf gene (Fig. 2A), the standard animal mitochondrial cox1 DNA
barcode (Hebert, Ratnasingham & De Waard, 2003; Fig. 2B), and both genes concatenated
(Fig. 2C). Corresponding ML analyses are in Fig. S2. The f-orf sequences led to better
bootstrap values than cox1. Moreover, members of Toxolasma were grouped as a single
clade only in the f-orf containing trees. Similar results were obtained with ML analyses. BI
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Figure 1 Nucleotide distances calculated for individual mitochondrial gene comparisons. (A) dN /dS
ratios/scores; (B) p-distance scores.

Full-size DOI: 10.7717/peerj.5007/fig-1

and ML trees with the highest bootstrap values were obtained using both f-orf and cox1
together.

We further examined Ambleminae f-orf variability, again using cox1 for comparison
(Fig. 3). For the f-orf gene, intraspecific comparisons have lower variability and smaller
p-distances (range = 0.000–0.011) versus cox1 (range = 0.000–0.031), and intrageneric
comparisons for the f-orf gene have overall greater p-distances.

DISCUSSION
Our research objective was to provide guidance towards the identification of another
useful region in the F-type mtDNA to explore phylogenetic diversity and phylogeographic
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Figure 2 Bayesian inference (BI) trees produced in BEAUti and BEAST 2.4.6 for (A) f-orf, (B) cox1, and
(C) concatenated f-orf and cox1 sequences also used in maximum likelihood trees of Fig. S2. (A) was
produced using a Hasegawa-Kishino-Yano model, (B) a Tamura-Nei model and (C) both these models of
nucleotide substitution. Sequences used in BI trees refer to those listed and starred in Table 2.

Full-size DOI: 10.7717/peerj.5007/fig-2
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Figure 3 The distribution of pair-wise p-distance scores for f-orf and cox1 genes within Ambleminae.
The taxa compared are listed in Table 2. Intrageneric comparisons exclude intraspecific comparisons.

Full-size DOI: 10.7717/peerj.5007/fig-3

or population genetic structure in freshwater mussels. As pointed out by Wares (2014),
finding gene regions that provide sufficient information, above and beyond the variation
found within a population, might be challenging and we agree with him that it may be
more optimal to first explore available genomic data (mitochondrial or whole mtDNA)
rather than only use available primer regions or the same gene region that has proven
useful in other animal species. In this study, we show that f-orf, and also atp8, have high
divergence between morphologically similar members of Lampsilis. Although atp8 had the
highest dN/dS ratios, the pattern was consistent with neutrality. This gene has historically
been either missing and/or found to be the least conserved in bivalve mtDNAs (Breton,
Stewart & Hoeh, 2010). Therefore, it is not surprising that it evolves in a different manner
than all other mt genes.

Based ondivergence data, f-orf and atp8 could thus represent valuablemolecularmarkers
in the context of population genetic studies in Ambleminae. Such genes, and in particular
f-orf, could also potentially help test the hypothetical involvement ofmitochondria and their
genomes in establishing reproductive barriers and speciation events (Gershoni, Templeton
& Mishmar, 2009). The general research trend has shown the involvement of sex-linked
genes in reproductive isolation (Qvarnström & Bailey, 2009), therefore, demonstrating the
participation of F- and M-ORF proteins in sex determination, as predicted by Breton et al.
(2011b), would particularly corroborate the potential of mitochondrial genetic speciation
mechanisms. There were not enough atp8 sequences (or whole mitochondrial genome
sequences) available in GenBank for Ambleminae to see if they could be more informative
for population genetic or species delineation studies, however, enough f-orf sequences
were available to achieve the brief goal of our study.

At the species level, an optimal marker should have a fairly high level of sequence
variability, but at the same time it should be sufficiently conserved to reduce phylogenetic
noise. Analyses have suggested the systematic usefulness of the f-orf gene, while atp8
appears too noisy. We proceeded with phylogenetic analyses using f-orf compared to cox1
to evaluate the systematic utility of this gene. The f-orf BI phylogeny, like cox1, was able
to distinguish L. siliquoidea from L. powellii with high bootstrap support. Overall, our data
suggest that both genes are somewhat limited in fully resolving Ambleminae phylogenies on
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their own, which is illustrated by each tree having relatively low bootstrap values. However,
in combination, f-orf+cox1 produced a phylogeny with higher bootstraps, indicating their
value for systematic studies.

We further determined p-distances in f-orf and cox1 for more sequences within the
same lineages. These preliminary data suggest that at the population level, the f-orf gene
displays relatively fewer nucleotide differences within species, while within genera, there are
a relatively larger number of differences (compared to cox1). This point is exemplified by
f-orf s typically having >20% sequence differences between species of the same genus (with
the exception of the anomalous Toxolasma species pair that had a p-distance of <0.05).

CONCLUSION
This preliminary study indicates that the f-orf gene in freshwater mussels could represent
a viable molecular marker for population- and species-level studies. This is based on: (1)
the f-orf gene experiencing a high degree of relaxed purifying selection; (2) the f-orf gene,
especially when used in combination with cox1 (and it remains to be seen whether it is
the case with other genes), can be phylogenetically informative, and (3) our detection of
generally low within-species variability for the f-orf, and relatively high between-species
variability for most closely related taxa.
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C, Karatayev A, Kebapçi U, Killeen I, Lajtner J, Larsen BM, Lauceri R, Legakis
A, Lois S, Lundberg S, Moorkens E, Motte G, Nagel KO, Ondina P, Outeiro A,
Paunovic M, Prié V, Von Proschwitz T, Riccardi N, Rudsite M, Rudzitis M,
Scheder C, SeddonM, Sereflisan H, Simic V, Sokolova S, Stoeckl K, Taskinen J,
Teixeira A, Thielen F, Trichkova T, Varandas S, Vicentini H, Zajac K, Zajac T,
Zogaris S. 2017. Conservation status of freshwater mussels in Europe: state of the
art and future challenges. Biological Reviews of the Cambridge Philosophical Society
92(1):572–607 DOI 10.1111/brv.12244.

Lowe TM, Eddy SR. 1997. tRNAscan-SE: a program for improved detection of
transfer RNA genes in genomic sequence. Nucleic Acids Research 25(5):955–964
DOI 10.1093/nar/25.5.0955.

Mathias PT, Hoffman JR,Wilson CC, Zanatta DT. 2018. Signature of postglacial colo-
nization on contemporary genetic structure and diversity of Quadrula quadrula (Bi-
valvia: Unionidae). Hydrobiologia 810(1):207–225 DOI 10.1007/s10750-016-3076-0.

McCartneyMA, Bogan AE, Sommer KM,Wilbur AE. 2016. Phylogenetic analysis of
lake Waccamaw endemic freshwater mussel species. American Malacological Bulletin
34(2):109–120 DOI 10.4003/006.034.0207.

Milani L, Ghiselli F, Guerra D, Breton S, Passamonti M. 2013. A comparative analysis
of mitochondrial ORFans: new clues on their origin and role in species with
doubly uniparental inheritance of mitochondria. Genome Biology and Evolution
5(7):1408–1434 DOI 10.1093/gbe/evt101.

MioduchowskaM, Kaczmarczyk A, Zając K, Zając T, Sell J. 2016. Gender-associated
mitochondrial DNA heteroplasmy in somatic tissues of the endangered freshwater
mussel Unio crassus (Bivalvia: Unionidae): implications for sex identification

Robicheau et al. (2018), PeerJ, DOI 10.7717/peerj.5007 14/16

https://peerj.com
http://dx.doi.org/10.1093/bioinformatics/bts199
http://dx.doi.org/10.1111/j.1365-294X.2004.02133.x
http://dx.doi.org/10.1111/bij.12025
http://dx.doi.org/10.1093/molbev/msw054
http://dx.doi.org/10.1093/bioinformatics/btp187
http://dx.doi.org/10.1111/brv.12244
http://dx.doi.org/10.1093/nar/25.5.0955
http://dx.doi.org/10.1007/s10750-016-3076-0
http://dx.doi.org/10.4003/006.034.0207
http://dx.doi.org/10.1093/gbe/evt101
http://dx.doi.org/10.7717/peerj.5007


and phylogeographical studies. Journal of Experimental Zoology A Ecological and
Inegrative Physiology 325(9):610–625.

Mitchell A, Guerra D, Stewart DT, Breton S. 2016. In silico analyses of mitochondrial
ORFans in freshwater mussels (Bivalvia: Unionoida) provide a framework for future
studies of their origin and function. BMC Genomics 17:597
DOI 10.1186/s12864-016-2986-6.

MulveyM, Lydeard C, Pyer DL, Hicks KM, Brim-Box J, Williams JD, Butler RS. 1997.
Conservation genetics of North American freshwater mussels Amblema andMega-
lonaias. Conservation Biology 11(4):868–878 DOI 10.1046/j.1523-1739.1997.95487.x.

Palumbi S, Martin A, RomanoWO,McMillan L, Stice L, Grabowski G. 1991. The simple
fools guide to PCR, version II. Honolulu: University of Hawaii.

Pfeiffer JM, Johnson NA, Randklev CR, Howells RG,Williams JD. 2016. Generic
reclassification and species boundaries in the rediscovered freshwater mussel
‘Quadrula’ mitchelli (Simpson in Dall, 1896). Conservation Genetics 17(2):279–292
DOI 10.1007/s10592-015-0780-7.

Qvarnström A, Bailey RI. 2009. Speciation through evolution of sex-linked genes.
Heredity 102:4–15 DOI 10.1038/hdy.2008.93.

R Core Team. 2015. R: a language and environment for statistical computing. Available at
https://www.r-project.org .

Rambaut A, Drummond A. 2002. Tree annotator version 1.4 part of the BEAST package.
Available at http:// beast.community/ version_history.html .

Rastogi P. 1999. MacVector. In: Misener M, Krawetz S, eds. Bioinformatics methods and
protocols: methods in molecular biology. New York: Humana Press, 47–69.

Regnier C, Fontaine B, Bouchet P. 2009. Not knowing, not recording, not listing:
numerous unnoticed mollusk extinctions. Conservation Biology 23(5):1214–1221
DOI 10.1111/j.1523-1739.2009.01245.x.

Roe KJ, Hartfield PD, Lydeard C. 2001. Phylogeographic analysis of the threatened and
endangered superconglutinate-producing mussels of the genus Lampsilis (Bivalvia:
Unionidae).Molecular Ecology 10(9):2225–2234
DOI 10.1046/j.1365-294X.2001.01361.x.

Serb JM, Lydeard C. 2003. Complete mtDNA sequence of the North American fresh-
water mussel, Lampsilis ornata (Unionidae): an examination of the evolution and
phylogenetic utility of mitochondrial genome organization in Bivalvia (Mollusca).
Molecular Biology and Evolution 20(11):1854–1866 DOI 10.1093/molbev/msg218.

Shearer TL, CoffrothMA. 2008. DNA BARCODING: barcoding corals: limited by
interspecific divergence, not intraspecific variation.Molecular Ecology Resources
8(2):247–255 DOI 10.1111/j.1471-8286.2007.01996.x.

Sommer K. 2007. Genetic identification and phylogenetics of Lake Waccamaw endemic
freshwater mussel species. M.S. thesis, Department of Biology and Marine Biology.
University of North Carolina, Wilmington, Wilmington, NC.

Walker JM, Curole JP, Wade DE, HoehWR. 2006. Taxonomic distribution and
phylogenetic utility of gender-associated mitochondrial genomes in the Unionoida
(Bivalvia).Malacologia 48:265–284.

Robicheau et al. (2018), PeerJ, DOI 10.7717/peerj.5007 15/16

https://peerj.com
http://dx.doi.org/10.1186/s12864-016-2986-6
http://dx.doi.org/10.1046/j.1523-1739.1997.95487.x
http://dx.doi.org/10.1007/s10592-015-0780-7
http://dx.doi.org/10.1038/hdy.2008.93
https://www.r-project.org
http://beast.community/version_history.html
http://dx.doi.org/10.1111/j.1523-1739.2009.01245.x
http://dx.doi.org/10.1046/j.1365-294X.2001.01361.x
http://dx.doi.org/10.1093/molbev/msg218
http://dx.doi.org/10.1111/j.1471-8286.2007.01996.x
http://dx.doi.org/10.7717/peerj.5007


Wares JP. 2014.Mitochondrial cytochrome b sequence data are not an improvement for
species identification in scleractinian corals. PeerJ 2:e564 DOI 10.7717/peerj.564.

Williams JD, Bogan AE, Butler RS, Cummings KS, Garner JT, Harris JL, Johnson
NA,Watters GT. 2017. A revised list of the freshwater mussels (Mollusca: Bivalvia:
Unionida) of the United States and Canada. Freshwater Mollusk Biology and
Conservation 20(2):33–58.

Robicheau et al. (2018), PeerJ, DOI 10.7717/peerj.5007 16/16

https://peerj.com
http://dx.doi.org/10.7717/peerj.564
http://dx.doi.org/10.7717/peerj.5007

