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ABSTRACT: The active site in ethene oligomerization
catalyzed by Ni-zeolites is proposed to be a mobile Ni(II)
complex, based on density functional theory-based molecular
dynamics (DFT-MD) simulations corroborated by continu-
ous-flow experiments on Ni-SSZ-24 zeolite. The results of the
simulations at operating conditions show that ethene
molecules reversibly mobilize the active site as they exchange
with the zeolite as ligands on Ni during reaction. Microkinetic
modeling was conducted on the basis of free-energy profiles
derived with DFT-MD for oligomerization on these mobile
[(ethene)2-Ni-alkyl]

+ species. The model reproduces the
experimentally observed high selectivity to dimerization and
indicates that the mechanism is consistent with the observed
second-order rate dependence on ethene pressure.

KEYWORDS: adsorption, host−guest systems, molecular dynamics, agostic interactions, alkene oligomerization,
homogeneous catalysis

Homogeneous and heterogeneous catalysts are tradition-
ally distinguished by the active site being either in

solution or anchored on a support. However, recent works
have revealed heterogeneous catalysts where the active sites are
mobilized: selective catalytic reduction of nitrogen oxides with
ammonia in Cu-SSZ-13 zeolite1 and with hydrocarbons in Ag-
ZSM-5 zeolite,2 reactant-mobilized protons in methanol to
hydrocarbons conversion in H-ZSM-5,3 and ethylene dimeri-
zation/hydrogenation on Rh sites in Y zeolite.4 In this work,
we present findings on a reaction, ethene oligomerization in
Ni-SSZ-24 zeolite, that indicate that the active site is reversibly
mobilized and anchored to the support during the catalytic
cycle.
There is increasing interest in selective oligomerization of

alkenes, and in particular heterogeneous catalysts for ethene
dimerization, as it is both a fundamentally challenging topic of
catalysis and a versatile reaction for the chemical industry, such
as forming butene from biobased ethylene.5 Ni-aluminosili-
cates have long been known as promising heterogeneous
catalysts.6 Intriguingly, they work without the alkylaluminox-
ane cocatalysts required for homogeneous and metal−organic
framework (MOF)-based heterogeneous catalysts.7 Never-

theless, there is accumulating evidence provided by us and
others that the reaction follows the Cossee−Arlman mecha-
nism (Scheme 1)8−11 known from homogeneous catalysis. The
three-dimensional structure of the Ni-aluminosilicates plays a
central role in alkene oligomerization: experimental results
show that dimer formation is first order in alkene pressure on
Ni-silicaalumina10,12 but second order in Ni-zeolites.12,13 1-
Butene formation is also second order in mesoporous Ni-
silicaalumina at low temperatures, where it was demonstrated
that condensation of ethene in the pores stabilized catalytic
activity.14 These observations suggest that surrounding
molecules can have a significant influence on alkene
oligomerization in Ni-aluminosilicates, an influence we for
the first time elucidate with molecular simulations mimicking
operating conditions.
We simulated ethene oligomerization in Ni-SSZ-24 using

density-functional-theory-based molecular dynamics (DFT-
MD) simulations and advanced free-energy sampling techni-
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ques. Such an approach has proven to account for the
complexity of catalytic reactions at operating conditions by
allowing for dynamic active sites and the influence of
surrounding molecules.3,15 The latter was found to be critical
to investigate the nature of the active site in the presence of
multiple ethene molecules. The computational results show a
remarkable resemblance between the active sites in Ni-zeolites
and homogeneous catalysts for alkene oligomerization, as
ethene molecules reversibly mobilize the Ni site inside the
zeolite pores. Continuous-flow experiments were conducted to
verify the corresponding kinetic parameters predicted from
theory. This leads us to predict that the active site within the
Ni-zeolite dynamically crosses the border between homoge-
neous and heterogeneous catalysis throughout the reaction.
The computational part of this work takes its starting point

in the Cossee−Arlman cycle, shown in Scheme 1, inferring that
the Ni-ethyl species initially forms in situ by reaction between
Ni(II) ions and ethene (Section S1).11 We seek to unravel the

dynamics of the active site at operating conditions by
simulating the catalytic cycle in Ni-SSZ-24 zeolite with DFT-
MD (see details in Computational and Experimental
Methods), starting from the simplest Cossee−Arlman species
[ethene-Ni-ethyl]+ surrounded by 2 ethene molecules in the
micropore of the simulation cell (Section S2.2). This ethene
loading corresponds to equilibrium at typical experimental
conditions of 120 °C and 25 bar ethene pressure,10,12 as
evidenced by Grand Canonical Monte Carlo simulations
(Section S3). We have investigated several reaction steps and
obtain good agreement in the free-energy barriers of the few of
these steps that were investigated in our previous work
(Section S2.4).8 We collected the free-energy profiles of the
elementary steps that make up the most favorable pathways for
ethene oligomerization in the diagram shown in Figure 1. Note
that alkene adsorption/desorption in this diagram occurs
from/to the zeolite pore encompassing the adsorbates. By
using the equilibrium loading of two ethene molecules
surrounding the [ethene-Ni-ethyl]+ species, we ensure that in
this state the free energy of ethene in the pore is equivalent to
that of gas phase ethene at 120 °C and 25 bar.
Remarkably, the catalytic cycle of oligomerization proceeds

on mobile complexes. Such a species is created from [ethene-
Ni-ethyl]+ by coordination of an additional ethene to Ni,
thereby detaching the Ni complex from the ion-exchange
position of the zeolite to create a mobile active site. The
mobility is observed in the distribution of Ni−Al distances in
Figure 2: the distribution is shifted toward larger values and is
wider for the detached [(ethene)2-Ni-ethyl]+ than the
anchored species. In the mobile species Ni can achieve its
preferred square-planar coordination, realizing the maximal
potential of the metal site by opening up a favorable pathway
for C−C coupling (vide infra). Figure 2 shows the simulated
free-energy profiles for coordination of ethenes on Ni-alkyl

Scheme 1. Cossee−Arlman Catalytic Cycle of Ethene
Oligomerization in Ni(II) Cationic Complexes

Figure 1. Free-energy diagram for ethene oligomerization pathways in Ni-SSZ-24 zeolite at 25 bar and 120 °C, based on free-energy profiles of
elementary steps obtained with DFT-MD umbrella sampling simulations. The reference state is the equilibrium loading of ethene surrounding
[ethene-Ni-ethyl]+, as discussed in the text. The numbers indicate intrinsic free energies of activation in kJ/mol. As indicated in the diagram, the
[ethyl-Ni-butene]+ species can also be reached by ethene desorption; see Section S2.3 for a detailed discussion of how the diagram was constructed.
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species originally anchored to the zeolite. The results show that
[ethene-Ni-ethyl]+ is stabilized by coordination of up to two
additional ethene molecules. In [(ethene)2-Ni-ethyl]

+, one
oxygen coordination is replaced by ethene and the second by
an agostic bond with a β hydrogen of the ethyl group, creating
a square planar coordination of Ni (Figure 2, right inset). The
same is the case for the butyl analogue (Figure S8). This
square-planar geometry is preferred for Ni as a d8 metal when
coordinated to strong-field ligands,16 such as alkyl and
hydride.17

The mobile Ni complexes resemble a homogeneous
oligomerization catalyst in solution; the noncovalent inter-
actions with the zeolite framework parallel the nondirectional
stabilization by a solvent shell. However, the positively charged
complex is tethered to the zeolite framework by the negative
charge of the ion-exchange site. Note that there is a potential
energy gain on formation of the [(ethene)2-Ni-ethyl]+

detached species (28 kJ/mol, Section S2.6.1). Ethene
coordination thus counteracts the energy required to separate
the positive Ni ion from the framework (78 kJ/mol, Figure 2).
As complex formation is also favored in free energy (19 kJ/
mol, Figure 2), the entropy loss of coordinating ethene is partly
compensated by the configurational entropy of the mobile
[(ethene)2-Ni-ethyl]

+ complex; translation (Figure S9) and
rotation (inset of Figure 2). This rotation may also explain why
ethene coordination to [ethene-Ni-butyl]+ is favored in
potential energy (38 kJ/mol, Section S2.6.1) but slightly
disfavored in free energy (3 kJ/mol, Figure 2); the Ni-butyl

species is bulkier than the ethyl analogue, limiting rotation in
the zeolite micropore (Figure S8).
C−C coupling is the central reaction step in ethene

oligomerization, which in the mobile species proceeds through
migratory insertion of ethene in the Ni-alkyl bond. We find the
intrinsic free-energy barrier in [(ethene)2-Ni-ethyl]

+ to be
significantly lower than in both the anchored [ethene-Ni-
ethyl]+ species and the mobile [(ethene)3-Ni-ethyl]

+ species
(Table 1). We explain this trend using Hammond’s postulate18

considering the structures shown in Figure 3; C−C coupling in
[ethene-Ni-ethyl]+ is an endergonic reaction (Figure S11)
leading to a large activation barrier with a late transition state
that resembles a [Ni-butyl]+ product with a γ-agostic hydrogen
bond. In [(ethene)2-Ni-ethyl]

+, the reaction is exergonic
(Figure S13), leading to a low activation barrier with an
early transition state that resembles the reactant with the
favorable square-planar coordination of Ni. In [(ethene)3-Ni-
ethyl]+ the transition state (trigonal bipyramid) resembles
neither the reactant (half trigonal bipyramid) nor the product
([(ethene)2-Ni-butyl]

+, square planar) and is hence signifi-
cantly higher in free energy than either state (Figure S14). The
Ni-butyl analogues exhibit the same trend (Figures S11 and
S13).
Following C−C coupling, the reaction proceeds from

[(ethene)2-Ni-butyl]
+ via transfer of a β hydrogen of the

butyl chain to form 1-butene, which subsequently desorbs.
Like for C−C coupling, the hydrogen transfer has the lowest
barrier in the mobile [(ethene)2-Ni-butyl]

+ species (20 kJ/mol,
Figures 1 and S21), as hydrogen is already involved in an

Figure 2. Free-energy profiles for ethene coordination to [ethene-Ni-ethyl]+ (left) and [ethene-Ni-butyl]+ (right) at 25 bar and 120 °C, derived
from DFT-MD simulations. The left inset shows histograms of Ni−Al distances, illustrating that the doubly and triply ethene-coordinated Ni-ethyl
species are detached from the framework and more mobile than their anchored counterpart. The associated charge-separation energy is estimated
to 78 kJ/mol (Section S2.5). The right insets show snapshots from the simulations of the Ni-ethyl species, including the trajectories of the Ni (light
blue) and the α alkyl C (dark blue) atoms (Figure S8 shows the butyl analogues).

Table 1. Intrinsic Free-Energy Barriers (kJ/mol) of Ethene Desorption and C−C Coupling in [(ethene)x-Ni-ethyl]
+ Species in

SSZ-24 Zeolite, Obtained from DFT-MD Simulations at 120 °C (Sections S2.7 and S2.8)

[ethene-Ni-ethyl]+ [(ethene)2-Ni-ethyl]
+ [(ethene)3-Ni-ethyl]

+

C−C coupling 77 37 76
ethene desorption 72 54 20
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agostic bond to Ni prior to reaction (see Ni-ethyl analogue in
Figure 3). In contrast, the anchored [ethene-Ni-butyl]+ species
undergoes a significant rearrangement to reach the transition
state, reflected in a higher barrier (38 kJ/mol, Figures 1 and
S18).
The last step toward dimerization is desorption of 1-butene.

Analogously to ethene (Table 1), the 1-butene desorption
barrier decreases with ethene coordination and is hence lowest
in [(ethene)2-ethyl-Ni-1-butene]

+ (Table S5). This can be
explained by the late transition state of desorption: in this
species, the 1-butene weakly interacts with the favored square-
planar [(ethene)2-Ni-ethyl]

+ (Figure S22). In the latter species,
the catalytic cycle is closed.
In summary, we have used DFT-MD to predict that both

ethene dimerization and trimerization are catalyzed by
positively charged Ni complexes mobilized by ethene
coordination. The transition states involved in butene
formation are slightly lower in free energy than that for
hexene formation (Figure 1), indicating a preference toward
butene over higher oligomers. Indeed, when employing the
free-energy profiles in a microkinetic model (Section S4), we
obtain a rate of formation of 1-butene that is 2 orders of
magnitude higher than that of 1-hexene (Section S4.3).
We now consider experimental results to verify our

computational findings. Ethene oligomerization was inves-
tigated in continuous-flow experiments on Ni-SSZ-24 zeolite
(see details in Computational and Experimental Methods).
The catalyst achieves a selectivity of more than 98% to butenes
at ethene pressures ranging from 4 to 26 bar (Section S5.3), in
agreement with the computational result that the production
rate of butene is 2 orders of magnitude higher than that of
hexene as a representative of higher oligomers. Figure 4 shows
that the rate of butene (and hexene) formation is second order
in ethene pressure and that the apparent activation energy is
virtually pressure-independent. These findings strongly suggest
that the oligomerization mechanism is the same over a wide
pressure range. The observed reaction order agrees with
microkinetic modeling based on the free-energy profiles shown
in Figure 1, where oligomerization occurs on mobile active
sites. Note that a second order is only obtained from the model
when [ethyl-Ni-alkene]+ species are the most abundant
adsorbates, the catalyst resting states (Table S7, Section
S4.3). We note that the predicted coverage of [ethyl-Ni-
alkene]+ and hence the reaction order is sensitive to the free

energy of these species (Table S7), which is associated with
some uncertainty (Section S2.3). However, a zeolite-anchored
[ethyl-Ni-alkene]+ resting state is consistent with recent
experimental X-ray absorption data, which indicate that in
the catalyst resting state in Ni-Beta zeolite, Ni is in tetrahedral
coordination with oxygens in the first coordination shell.11 In
the context of resting states it is instructive to consider the
concept of the energetic span introduced by Kozuch and Shaik:
the largest free-energy difference between an adsorbate and a
transition state along the catalytic cycle, corresponding to the
apparent free energy of activation.19 While being cautious
about using the free energies from Figure 1 directly (Section
S2.3), we derive an energetic span for butene formation of 71
kJ/mol between the [ethyl-Ni-butene]+ and the transition state
of hydrogen transfer, which is in fairly good agreement with
the 58 kJ/mol derived from the experiments (Section S5.3.1).
Finally, the experimental results indicate that both 1- and 2-

butenes are primary products (Section S5.3), as was also
observed on Ni-Beta.11 This supports the Cossee−Arlman
mechanism, as the [ethyl-Ni-butene]+ species can isomerize
between 1- and 2-butene through β-hydrogen elimination on
the Ni site prior to desorption (Figure S17), analogously to
homogeneous catalysts.20 Note also that 1-butene selectivity
increases with pressure (Figure 4), contrary to what would be
expected for isomerization at Brønsted acid sites, but
paralleling the results of previous work by Agirrezabal-Telleria
and Iglesia on mesoporous Ni-silicaalumina.14 Interestingly,
the same work demonstrated stabilization of catalytic activity at
subambient temperatures when ethene condenses in the
mesopores.14 Such conditions likely favor coordination of
multiple ethene molecules to form the mobile sites described
here (Section S6). These sites may be involved in the
stabilization, as they facilitate butene desorption over further
oligomerization.
In conclusion, we have conducted an experimental and

computational investigation of ethene oligomerization in Ni-
SSZ-24 zeolite. The computational results allow us to make
detailed predictions about the reaction at operating conditions;
two ethene molecules adsorb on Ni-alkyl species, creating
mobile active sites in the zeolite pores. The mobilization is
reversible, as ethene dynamically exchanges with oxygens of

Figure 3. Snapshots from DFT-MD umbrella simulations of the initial
(IS) and transition states (TS) of C−C coupling in [(ethene)x-Ni-
ethyl]+ species in SSZ-24 zeolite. Planes of square and trigonal
coordination are shown in blue and yellow, respectively.

Figure 4. Results from continuous-flow experiments on ethene
oligomerization in Ni-SSZ-24: (a) Arrhenius plot for butene
formation at 4 and 26 bar ethene pressure, (b) reaction order of
butene and hexene formation at 150 °C, and (c) butene isomer
selectivity at 150 °C. All results were obtained at differential ethene
conversions of 1−7%.
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the zeolite support as ligand on Ni during the reaction.
Microkinetic modeling based on calculated free-energy profiles
reproduces the experimentally observed relative production
rate of butene over higher oligomers of 102. The model
indicates that the proposed mechanism leads to a second-order
rate dependence on ethene pressure as experimentally
observed here and elsewhere.12,14 An analogous mechanism
may explain the second-order rate dependence observed in 1-
butene dimerization.13 Such reactant-mobilized active sites
have also been observed in selective catalytic reduction of
nitrogen oxides with ammonia in Cu-SSZ-13 zeolite1 and with
hydrocarbons in Ag-ZSM-5,2 in methanol to hydrocarbons
conversion in H-ZSM-5,3 and ethylene dimerization/hydro-
genation on Rh sites in Y zeolite.4 Together these works
present materials that appear as hybrids between heteroge-
neous and homogeneous catalysts, highlighting an intriguing
regime of catalysis21 that likely extends beyond the examples
known to date.

■ COMPUTATIONAL AND EXPERIMENTAL
METHODS

Density functional theory (DFT)-based Molecular Dynamics
(DFT-MD) simulations were carried out with CP2K,22

versions 2.6 and 3.0.23 Energies and forces were calculated
from DFT based on a mixed Gaussian and plane wave
approach24 using the revPBE functional25 with Grimme D3
dispersion correction.26 DFT-MD calculations were carried out
nonspinpolarized, as our previous work determined the singlet
state to be the most stable for the Ni(II) species investigated
here.8 The majority of the simulations employed a super cell
constructed by repeating the AFI unit cell twice along the
channel direction (1 × 1 × 2) and making one Si/Al
substitution (Si/Al = 47), while a larger super cell (Si/Al = 72)
was used in a few simulations (Figure S23). Enhanced free-
energy sampling in the DFT-MD simulations was done using
umbrella sampling27,28 with quadratic potentials by interfacing
CP2K with PLUMED 2.29 Free-energy profiles of elementary
reaction steps were computed from the output of umbrella
simulations along collective variables, using the Weighted
Histogram Analysis Method (WHAM).27 Monte Carlo
simulations were carried out using LAMMPS,30 while
microkinetic modeling was conducted with CatMAP.31

Graphics of molecular structures from the DFT-MD
simulations were created using POV-Ray 3.6 and VMD 1.9.1.32

The synthesis of SSZ-24 was conducted as described in
literature.33 The zeolite was ion-exchanged five consecutive
times with 0.1 M Ni(NO3)2(aq), washed and calcined to form
Ni-SSZ-24, Si/Al = 80, Ni/Al = 0.34. Kinetic experiments were
carried out in a continuous-flow, fixed-bed, stainless steel
reactor. Standard measurement conditions were 150 °C and 30
bar total pressure, P(ethene)=26 bar, P(inert)=4 bar, with a
total flow rate of 30 mL/min (contact time at STP: 6.7 mgcat·
min·mLethene

−1 ). A small fraction of the effluent was analyzed on
an online gas chromatograph. Carbon mass balances closed
witin 2%. Further computational and experimental details can
be found in the Supporting Information.
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