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Photoacoustic imaging is an emerging noninvasive imaging technique with great potential for a wide range of biomedical imaging
applications. However, with few-view data the filtered back-projection method will create streak artifacts. In this study, the
regularized iterative weighted filtered back-projection method was applied to our photoacoustic imaging of the optical absorption
in phantom from few-view data. This method is based on iterative application of a nonexact 2DFBP. By adding a regularization
operation in the iterative loop, the streak artifacts have been reduced to a great extent and the convergence properties of the iterative
scheme have been improved. Results of numerical simulations demonstrated that the proposed method was superior to the iterative
FBP method in terms of both accuracy and robustness to noise. The quantitative image evaluation studies have shown that the

proposed method outperforms conventional iterative methods.

1. Introduction

Photoacoustic imaging (PAI) combining good acoustic res-
olution with high optical contrast in a single modality has
great potential for tremendous clinical applications [1]. It is
promising in many aspects, for example, the detection of
breast cancer, skin cancer, and osteoarthritis in humans [2-
4]. In the past decades, many algorithms have been proposed
for image reconstruction when the ultrasonic transducer
collects signals from a full view [5-7]. A limiting factor for
these algorithms is a large number of measurements made
with transducers. In addition, in many potential applications
of PAL, such as ophthalmic imaging and breast imaging, the
object is only accessible from limited angles. A practical need
exists for reconstruction from few-view data, as this can
greatly reduce the required scanning time and the number
of ultrasound sensors [8-11].

Analytic algorithms like filtered back-projection (FBP)
and time-reversal based reconstruction attain very fast recon-
struction performance [5, 12]. However, these algorithms
have an inherent limitation of requiring large number of data
points around the target object for accurately estimating the
optical absorption. And implementations of such formulae

may cause streak-type artifacts and negative values in the
reconstructed image. To overcome these limitations, iterative
image reconstruction algorithms have been proposed to
improve the reconstructed image quality [13-16], which can
mitigate artifacts from incomplete few-view data and permit
reductions in data-acquisition times. And iterative methods
can be significantly accelerated with GPU-based reconstruc-
tions [17]. Because of this, the development of iterative image
reconstruction algorithms for PAI is an important research
topic of current interest. By minimizing the least-square error
between the measured signals and the signals predicted by
the exact photoacoustic propagation model, the model-based
photoacoustic inversion method has been proved to be stable
and accurate. However, its reconstruction is computationally
burdensome which limits its application in the practical PAI
[16-18]. Finally, iterative weighted algorithms can effectively
mitigate image artifacts due to limited-view acoustic data [19-
21]. All of these methods provide the opportunity for accurate
image reconstruction from few-view data.

In this study, inspired by the iterative weighted
approaches in CT [20, 22, 23], we derived a regularized
iterative weighted FBP (RIWFBP) method to improve the
convergence properties of the iterative loop and improve
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image quality in few-view PAIL During the reconstruction,
we firstly use the effective few-view scanning angle improved
FBP method to reconstruct an initial image of the optical
absorption [24]. In each iteration step, the difference between
the collected signals and the calculated signals was used to
update the correction image, and a regularization operation
that improved the convergence properties of the iterative
loop was added. Numerical simulation and experimental
results reveal the good performance of the RIWFBP method.

This paper is organized as follows. In Section 2, the
iterative improved FBP method and the regularized enhanced
iterative scheme are reviewed briefly. In Section 3, besides
using numerical phantoms, we also conducted experimental
measurements and applied our reconstruction method to the
obtained data. Finally, the conclusions are drawn in Section 4.

2. Methods

2.1. Iterative Improved Filtered Back-Projection Method.
According to the forward problem for an acoustically homo-
geneous model present in [8], the acoustic wave pressure
p(ry,t) at a detector position r, and time t over a circle
in the 2D imaging is related to the spatial distribution of
electromagnetic absorption A(r),
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Here f3 is the coefficient of volumetric thermal expansion; C
is the isobaric specific heat; c is the speed of sound; and I is the
temporal profile. For 2D imaging, the approximate inverse
solution for the circular-scan geometry can be represented by
(25]
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To numerically model the above forward and inverse prob-
lems, we used vector x to represent A(r) and vector y to
represent p(r,, t). Then the forward problem can be described
as ¥y = Px, and the reconstruction formula can be written as
x = RPx [5], where R is the back-projection operator [8]. In
real biological tissue imaging only the noisy signals can be
detected from few-view data. P is an ill-conditioned matrix;
thus we cannot obtain an exact image.

Iterative improved FBP (IFBP) methods have been used
to reduce artifacts due to an insufficient data and streaks due
to missing angles. The update step of IFBP is then given by
[13]
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In this way, a sequence of image vectors is produced.

2.2. Regularized Iterative Weighted Filtered Back-Projection
Method. In this section, we will present the RIWFBP method
for the few-view PAI imaging. This contribution is an exten-
sion of theory and experiments on iterative weighted FBP
(IWFBP) presented in [26]. By using the effective scanning
angle the algorithm for full-view data can be approximately
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extended to the few-view case. The reconstructed inten-
sity error problem induced by few-view scanning can be
improved [24]

A(r) = (4
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where 0, is the effective scanning angle and 0, and 0, are,
respectively, the minimum and maximum angle of the signal
acquisition position. Based on (4), we used the RIWFBP
method to compensate for the nonexactness of FBP.

During the reconstruction, we firstly used 6, weighted
FBP method to reconstruct an initial distribution x° of
the absorbed energy density. Then we applied the RIWFBP
method to update the distribution x™ of the absorbed
energy density. To compensate for the difference between
the reconstruction x™ and the actual image x, a weighted
parameter [26],

A = max(y)=min() =040 @)
max (x™) — min (x™)
was used to correct the differences between the measured
signals ¥ and computed signals Px™. We obtained the error
correction image Ax™ from the differences between y and
A,,_1 Px™ at each iteration step. The recursion expression is
as follows:

K" =" A" = X" 4 aR (y - )Lm_lme_l) ,
(6)

m=12,....

In practice, it might be wise to employ only a fraction « €
(0,1) of the full values of the correction image Ax™. Inspired
by the idea of regularization [22, 23], the RIWFBP method
is designed to reconstruct the absorbed energy deposition by
adding a regularization operation in the iterative loop of IFBP.
This is accomplished through the quadratic regularization for
least-squares minimization of the following functional:
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where y is a parameter determining the amount of regular-
ization and d;; are the inverse distances between the pixels

i and j in a 3* neighborhood. The last term is obviously a
penalty term. The minimization of (7) can be realized by
differentiating F with respect to x; and setting each of the
resulting expressions to zero, leading to the following system
of equations:

3F . N /N
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(8)
(i=1,2,...,N),

where ZZI(Z;\; dij(x; — x;))e; = Kx [22] and {e;, e5,..., e}

is the standard basis for RY. By using the steepest descent
method the solution in an iterative form was given as

K=" [PT (y - meil)] —4ayKx". (9)
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FIGURE 1: Images reconstructed from simulated data corresponding to the numerical phantom (a). (b) 30 detectors over 90°, using IFBP. (c)
60 detectors over 180°, using IFBP. (d) 120 detectors over 360°, using RIWFBP. (e) 30 detectors over 90°, using RIWFBP. (f) 60 detectors over
180°, using RIWFBP.
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FIGURE 2: Photoacoustic imaging of the numerical phantom using 60 detections over 180°. (a) IFBP; (b) IWFBP; (c) RIWFBP. (d)
Reconstruction normalized mean absolute error from 180° under different number of iterations.

Finally, the last term in (9) has been added to the update step
in (6), resulting in

m
X

=x" v [R (y - /\m,lpxm_l) - )/me_l] . (10)
The convergence of the iteration has been explained by
Sunnegérdh and Danielsson [22]. In this paper, the quality
of the reconstructed image is measured via the normalized
mean absolute error (NMAE), which is most sensitive to

distortion artifacts defined as

_ lxi =,

’ lll

(1)

After a few iterations, artifacts are suppressed while the edge
and detailed information is preserved well. When a desired
minimum NMAE has been achieved the iterative process will
stop, and then the results will be output.

3. Results

3.1. Reconstructions from Simulated Few-View Data. Com-
puter simulations were conducted to demonstrate the effec-
tiveness of the proposed method. The imaged source with
a size of 256 x 256 pixels, as shown in Figure 1(a), was
approximately located within a thin slab. The photoacoustic
signals were calculated according to (1), and Gaussian noises
were also added to simulated signals. In the experiments,
all reconstruction methods were implemented in MATLAB
(MathWorks, Natick, MA).

Images reconstructed with the IFBP method and the
RIWFBP method from few-view data are displayed in Fig-
ure 1, respectively. There are many artifacts and blurs in Fig-
ures 1(b) and 1(c). We hypothesize that the distortions present
in Figures 1(b) and 1(e) come from the limited information
available. This result is in agreement with the theoretical
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FIGURE 3: Reconstruction normalized mean absolute errors from 180°

observation with (b) SNR = 40 dB; (c) SNR = 30 dB; (d) SNR = 20 dB.

prediction in [8]. When comparing Figures 1(d) and 1(f), it
can be seen that the quality of the image reconstructed from
few-view data is comparable with that from full-view. So we
can conclude that with the incomplete data, the RIWFBP
method can improve the quality of reconstruction with few-
view data.

Figures 2(a)-2(c) show the reconstructions utilizing the
IFBP method, the IWFBP method [26], and the RIWFBP
method with 60 detections over 180°, respectively. It is
obvious that the artifacts clearly seen in Figure 2(a) are
suppressed to a large degree in Figure 2(c). By choosing
an appropriate value for the regularization parameter v, the
artifact characteristics of the FBP method can be preserved.
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with a different detector number. (a) Noiseless observation; noisy

The nonregularized IWFBP is clearly outperformed by the
regularized.

Reconstruction errors between the original image and
the reconstructed images were calculated and shown in
Figure 2(d). We can see that the NMAE of the proposed
method decrease especially when the iterative numbers are
fewer. The reconstruction error for the RIWFBP falls to 0.18
in the first five iterations and continues to drop down to 0.17
after 10 iterations. In contrast to the IFBP method and the
IWFBP method, the proposed method is expected to deliver
a good result in less than five iterations.

To study the robustness of the RIWFBP method, Gaussian
noises with SNR 40, 30, and 20 were added to the signals.
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FIGURE 4: Reconstructed images based on few-view data. (a) 60 detectors over 180°, with FBP. The insert at the top-left corner is the photograph
of the phantom. (b) 60 detectors over 180°, with IFBP. (c) 60 detectors over 180°, with RIWFBP.

Figure 3 shows the tendency chart of reconstruction errors
between the phantom and the reconstruction obtained from
the IFBP method, the ARTFBP method [27, 28], and the
RIWEFBP method. It can be demonstrate that the RIWFBP
method has the minimum NMAE. The regularized iterative
scheme is robust to inaccurate measurements and has greater
improvement in calculation accuracy as predicted by the
theory presented in [8]. The RIWFBP method can not only
use the fewest measurements to get the best performance, but
also maintain the best effects whether the signals are noisy or
noiseless.

3.2. PAIImaging of the Phantom. In the phantom experiment,
the RIWFBP method was tested and evaluated. For compara-
tive purposes, reconstruction results of the FBP method and
the IFBP method are also presented. Two graphite rods with
a diameter * = 0.5mm and lengths of 5mm and 10 mm
were buried in a cylindrical phantom at a depth of 4 mm. The
phantom made of a mixture with 1% intralipid, 6% gelatin,
and 93% water was used to simulate biological tissues. The
inset in Figure 4(a) is the photograph of the phantom.

The sample was irradiated with pulses from a Q-switched
Nd: YAG Laser. The pulse duration was 7.5 ns and the pulse
repetition rate was 10 Hz. A focused hydrophone (Precision
Acoustics Ltd.) with frequency response of 5 MHz was con-
trolled by a high precision stepping motor to scan around
the phantom in a circular manner for photoacoustic signal
acquisition. The distance between the transducer and the
rotation center was 45 mm. The induced photoacoustic waves
were captured at 60 positions over 180°. At each position 50
signals were averaged. In real experiments, we did not know
the true image, so the iterative stop criteria,

_ i = xiall

<e (i=1,2,...n), (12)
i,

were taken.

Figures 4(a)-4(c) show the reconstructed photoacoustic
image utilizing the FBP method, the IFBP method, and
the RIWFBP method, respectively. As expected, the image
reconstructed with the FBP method contains artifacts and
distortions. The artifacts in Figure 4(b) are much smaller than
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those in Figure 4(a). There is almost no artifact in Figure 4(c)
which is in good agreement with the phantom. The results
of the phantom experiment demonstrate that the RIWFBP
method works well with few-view photoacoustic data.

4. Conclusions

In this work, the RIWFBP method has been applied to
reconstruct photoacoustic images with few-view data. From
the experiments we conclude that during the first five
iterations, the RIWFBP method efficiently suppresses strips
artifacts produced by IWFBP over 180°. The NMAE cal-
culation also denoted that the RIWFBP method has an
advantage in accuracy compared with other test methods.
With regularization, the proposed method reaches the final
solution faster than without. It is therefore easier to decide
when to terminate the iterative loop. The application of the
RIWFBP method will significantly reduce the number of
ultrasound transducers and scanning time needed for high
quality photoacoustic image reconstruction. Therefore, it can
be a promising candidate for resolving the few-view PAI
problem.
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