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Abstract: Metabolic disorders are closely associated with the dysregulation of circadian rhythms.
Many bioactive components with lipid metabolism-regulating effects have been reported to function
through circadian clock-related mechanisms. As the main pungent principle of black pepper, piperine
(PIP) has been demonstrated to possess anti-obesity bioactivity by affecting hepatic lipid metabolism-
related factors. However, whether the circadian clock genes Bmal1 and Clock are involved in the
protective effect of PIP against lipid metabolism disorders remains unknown. In this work, oleic acid
(OA) induced lipid accumulation in HepG2 cells. The effect of PIP on redox status, mitochondrial
functions, and circadian rhythms of core clock genes were evaluated. Results revealed that PIP
alleviated circadian desynchrony, ROS overproduction, and mitochondrial dysfunction. A mechanism
study showed that PIP could activate the SREBP-1c/PPARγ and AMPK/AKT-mTOR signaling
pathways in a Bmal1/Clock-dependent manner in HepG2 cells. These results indicated that Bmal1
and Clock played important roles in the regulating effect of PIP on hepatic lipid homeostasis.
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1. Introduction

The circadian clock is a molecular pacemaker in the human body that regulates
24-h physiological and behavioral processes [1,2]. It is controlled by the central clock
system located in the hypothalamus suprachiasmatic nucleus (SCN), which receives en-
vironmental light signals through the retinohypothalamic tract [3]. As shown in Figure 1,
cell-autonomous mammalian circadian rhythm oscillators function through an autoregu-
latory transcriptional/translational feedback loop (TTFL), which is driven by activators
(CLOCK and BMAL1) and inhibitors (PER and CRY) [4]. Heterodimers of the CLOCK
and BMAL1 proteins could bind to the E-box of CACGTG and activate the transcription
of cryptochrome (CRY) and period (PER) genes [5]. The PER and CRY proteins gradually
accumulate and form a heterodimer to inhibit CLOCK/BMAL-mediated transcription of
the Per and Cry genes [6].

Multiple studies have shown that the misalignment of circadian rhythms is associated
with various metabolic disorders, such as obesity, cancer, inflammatory response, insulin
resistance, and diabetes [5,7–10]. Many phytochemicals with metabolism-modulation
effects have been proved to restore normal circadian rhythm in cell models and animal
models, such as tea polyphenols, resveratrol, cichoric acid, and capsaicin [11–16]. Guo
et al. reported that cichoric acid could attenuate the lipid metabolism dysfunction by
modulating the circadian gene Bmal1 expressions in hepatocytes [11]. Resveratrol could
also normalize the liver circadian rhythmic disorder of lipid metabolism induced by a
high-fat diet in male C57BL/6 mice [17]. In our previous work, capsaicin ameliorated
the circadian disruption triggered by glucosamine treatment in HepG2 cells, suggesting
that the circadian clock played an important role in metabolism homeostasis regulated by
bioactive food ingredients [12].
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the circadian clock played an important role in metabolism homeostasis regulated by bi-
oactive food ingredients [12]. 

Piperine (1-piperoylpiperidine, PIP), the major pungent alkaloid constituent of Piper 
nigrum (black pepper), has been reported to possess lipid metabolism-improving effects 
both in vitro and in vivo [18]. However, whether circadian clock regulators are involved 
in the modulation process of lipid metabolism by PIP remains unknown. In this work, we 
examined the intervention effect of PIP on circadian disorders and lipid accumulation in-
duced by oleic acid (OA) in human hepatoma HepG2 cells. The role of circadian clock 
genes Bmal1 and Clock in the regulation process of PIP on lipid accumulation was also 
investigated. 

 
Figure 1. Transcriptional/translational feedback loop of mammalian circadian genes. The cellular 
circadian system contains an autoregulatory transcriptional/translational feedback loop. 
PERs/CRYs and CLOCK/BMAL1 loop are the core of the cellular oscillator. CLOCK and BMAL1 
form heterodimers and translocate into the nucleus, then bind to the E-box response element of the 
upstream promoter region of the clock control gene to activate the transcription of the target gene. 
Meanwhile, the PERs and CRYs proteins also form heterodimers and translocate into the nucleus to 
inhibit the transcription of Clock and Bmal1. Besides, the expression of Nampt, Rev-erbs, Ppars, Ccgs, 
and Rors is also promoted by CLOCK/BMAL1 heterodimer. Abbreviations: BMAL1 (aryl hydrocar-
bon receptor nuclear translocator like 1 proteins), Bmal1 (aryl hydrocarbon receptor nuclear trans-
locator like 1), CLOCK (circadian locomotor output cycles kaput proteins), Clock (circadian locomo-
tor output cycles kaput), PERs (period proteins), Pers (period genes 1/2/3), CRYs(cryptochrome pro-
teins), Crys (cryptochrome genes 1/2), RORs (retinoid-related orphan receptors), Reverbs(reverse 
erythroblastosis virus α/β), Ccgs (other clock-controlled genes), SIRT1 (silent information regulator 
1), Nampt (nicotinamide phosphoribosyltransferase gene), RORE (ROR response element), PGC-
1α(proliferator-activated receptor gamma coactivator 1-α), AMPK (AMP-activated protein kinase), 
PPARs (peroxisome proliferator-activated receptors). 

Figure 1. Transcriptional/translational feedback loop of mammalian circadian genes. The cellular
circadian system contains an autoregulatory transcriptional/translational feedback loop. PERs/CRYs
and CLOCK/BMAL1 loop are the core of the cellular oscillator. CLOCK and BMAL1 form het-
erodimers and translocate into the nucleus, then bind to the E-box response element of the upstream
promoter region of the clock control gene to activate the transcription of the target gene. Meanwhile,
the PERs and CRYs proteins also form heterodimers and translocate into the nucleus to inhibit the
transcription of Clock and Bmal1. Besides, the expression of Nampt, Rev-erbs, Ppars, Ccgs, and Rors is
also promoted by CLOCK/BMAL1 heterodimer. Abbreviations: BMAL1 (aryl hydrocarbon receptor
nuclear translocator like 1 proteins), Bmal1 (aryl hydrocarbon receptor nuclear translocator like
1), CLOCK (circadian locomotor output cycles kaput proteins), Clock (circadian locomotor output
cycles kaput), PERs (period proteins), Pers (period genes 1/2/3), CRYs (cryptochrome proteins),
Crys (cryptochrome genes 1/2), RORs (retinoid-related orphan receptors), Reverbs (reverse ery-
throblastosis virus α/β), Ccgs (other clock-controlled genes), SIRT1 (silent information regulator
1), Nampt (nicotinamide phosphoribosyltransferase gene), RORE (ROR response element), PGC-1α
(proliferator-activated receptor gamma coactivator 1-α), AMPK (AMP-activated protein kinase),
PPARs (peroxisome proliferator-activated receptors).

Piperine (1-piperoylpiperidine, PIP), the major pungent alkaloid constituent of Piper
nigrum (black pepper), has been reported to possess lipid metabolism-improving effects
both in vitro and in vivo [18]. However, whether circadian clock regulators are involved
in the modulation process of lipid metabolism by PIP remains unknown. In this work,
we examined the intervention effect of PIP on circadian disorders and lipid accumula-
tion induced by oleic acid (OA) in human hepatoma HepG2 cells. The role of circadian
clock genes Bmal1 and Clock in the regulation process of PIP on lipid accumulation was
also investigated.
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2. Results and Discussion
2.1. Preventive Effects of PIP on OA-Induced Lipid Accumulation in HepG2 Cells

The effect of different concentrations of PIP and OA on the cell viability of HepG2
cells was assessed using the MTT assay. As shown in Figure 2A, with the increase in the
OA concentration from 20 to 300 µM, the cell viability increased from 104.35 ± 5.95 to
108.63 ± 2.79% (p < 0.001), indicating a cell proliferation-promoting effect of OA at low
concentrations. After the concentration of OA reached 400 µM, cell viability started to
decrease. At PIP concentrations of 400 to 800 µM, the viability reduced from 90.94 ± 3.16 to
78.15 ± 4.19% (p < 0.001), suggesting that 400 µM was the critical concentration of OA to
perform the cell study with low cytotoxicity.
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Figure 2. Effect of PIP and OA on HepG2 cell viability measured by MTT assay. (A) Relative viability
of HepG2 cells treated with different concentrations of OA. (B) Relative viability of HepG2 cells
treated with different concentrations of PIP. (C) Relative cell viability treated with 25, 50, 75 µM
PIP and co−treated with/without 400 µM OA. The results are expressed as the means ± SD, n ≥ 3.
# p < 0.05, ## p < 0.01 ### p < 0.001 versus control group, * p < 0.05versus OA group.

According to Figure 2B, HepG2 cells were treated with 0, 5, 12.5, 25, 50, 75, 100,
150, and 200 µM PIP. At concentrations of 0 to 25 µM, the PIP showed no toxic effect
on cell viability. As PIP concentration gradually increased from 25 to 75 µM, the cell
viability was decreased from 97.40 ± 3.02 to 89.77 ± 8.72% (p < 0.001) in a dose-dependent
manner. As concentration further accumulated, the cell death rate increased significantly to
52.63 ± 6.35% (p < 0.001), indicating that PIP at a concentration below 75 µM was critical to
maintaining normal cell activity. As shown in Figure 2C, PIP (50, 75 µM) treatment for 24 h
could significantly increase the viability of HepG2 cells from 90.85± 3.16% to 96.65± 4.69%
(50 µM) and 97.96 ± 4.33% (75 µM) (p < 0.05) respectively compared with the OA-treated
group, suggesting that PIP efficiently reversed OA-induced decrease of cell viability. In this
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study, HepG2 cells treated with OA and PIP were examined based on the effect of PIP on
lipid levels, cell redox states, and mitochondrial functions disrupted by OA.

To evaluate the protective effects of PIP on OA-induced hepatotoxicity in HepG2
cells, the levels of ALT, AST, and LDH were examined. As the notable signs of cellular
damage and integrity of the liver cell membrane, AST, ALT, and LDH were released
into the serum when cells were damaged or necrotic [19]. Compared to the untreated
group, OA treatment significantly increased the activities of ALT, AST, and LDH, which
indicated that hepatocyte damage was induced by OA. As shown in Figure 3, the addition
of PIP (50, 75 µM) decreased the level of ALT from 55.61 ± 6.56 U/L to 33.63 ± 3.32 U/L
and 26.67 ± 1.39 U/L (p < 0.01), respectively. PIP (75 µM) treatment also reduced the
content of AST (from 94.53 ± 10.16 U/L to 35.05 ± 9.39 U/L (p < 0.05)) and LDH (from
34.17 ± 2.19 U/L to 16.14 ± 4.77 U/L (p < 0.01)), demonstrating that PIP at 50 and 75 µM
could significantly inhibit liver cell damage induced by OA.
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red fluorescence by 68.07 ± 2.07% (p < 0.001) in the OA-treated group compared with the 
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Figure 3. Effects of PIP on OA−induced liver function in HepG2 cells. (A) Aspartate aminotransferase
(AST) level at wavelength of 510 nm (B) Alanine aminotransferase (ALT) level at wavelength of
510 nm. (C) Lactate dehydrogenase (LDH) level at wavelength of 450 nm. Results were expressed as
the means ± SD, n ≥ 3. # p < 0.05, ## p < 0.01 ### p < 0.001 versus control group, * p < 0.05, ** p < 0.01,
*** p < 0.001 versus OA group.

2.2. Inhibitory Effects of PIP on OA-Induced Lipids Accumulation in HepG2 Cells

Nile red staining method was used to quantitatively measure lipid levels and to
qualitatively observe lipid distribution across cells [20–22]. As shown in Figure 4A,B, a large
number of red-stained lipid droplets could be observed with increased intensity of Nile red
fluorescence by 68.07± 2.07% (p < 0.001) in the OA-treated group compared with the control
group, showing that OA treatment-induced intracellular lipid accumulation in HepG2 cells.
25 µM PIP decreased the Nile red fluorescence intensity by 13.07 ± 1.31% compared to
the OA group. With the increase in the PIP concentration from 25 to 75 µM, the inhibition
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effect was further enhanced from 13.07 ± 1.31 to 54.3 ± 2.13% (p < 0.001), indicating that
PIP could suppress the OA-induced lipid accumulation in a dose-dependent manner.
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Figure 4. Effects of PIP on OA-induced lipids levels of HepG2 cells. HepG2 cells were treated with
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OA group.
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TG, TC, LDL-C, and HDL-C contents in hepatocytes were commonly used to measure
the lipid levels [23]. As presented in Figure 4C–F, OA elevated cellular TG, TC, and LDL-C
contents and reduced the level of HDL-C compared to the control group, suggesting that
OA disrupted the lipid metabolism homeostasis in HepG2 cells. It was reported that PIP
could regulate lipid levels by enhancing cholesterol efflux, reducing cholesterol uptake,
and leading to a reversal of hepatic homeostasis induced by HFD [24]. In our experiment,
after PIP treatment, TG, TC, and LDL-C contents were reduced dose-dependent, showing
that PIP ameliorated the accumulation of lipids in HepG2 cells.

2.3. Effects of PIP on OA-Induced Mitochondrial Dysfunction and ROS Overproduction in
HepG2 Cells

Oxidation of fatty acids mainly occurs in the mitochondria, leading to the production
of a considerable amount of ROS [25]. Studies revealed that oxidative damage could be
induced through the overgeneration of ROS and reducing cellular GSH levels, consequently
resulting in lipid accumulation and even cell apoptosis [26,27]. As an important tripeptide
reductant that can protect lipid from oxidation and maintain cellular redox status [28], GSH
level was measured and shown in Figure 5B. The OA-treated cells exhibited a significant
decrease in GSH content by 6.75 ± 1.30% compared to control groups, indicating that OA
caused oxidative damage in HepG2 cells. After PIP treatment, GSH level was recovered
dose-dependently, which suggested that PIP could modulate redox status and prevent
oxidative damage in HepG2 cells. The ROS production level measured by fluorochrome
dichloroflurorescin diacetate (DCFH-DA) was shown in Figure 5C. After OA treatment,
the relative ROS level increased from 100 to 168.81 ± 1.79% (p < 0.001), showing that OA
induced the overproduction of ROS in HepG2 cells. Different concentrations of PIP (25, 50,
75 µM) decreased ROS levels to 144.83 ± 5.14, 130.04 ± 4.17, and 129.48 ± 6.13% (p < 0.001),
respectively, suggesting that PIP inhibited the ROS overproduction stimulated by OA.
These results revealed that PIP supplementation alleviates oxidative damage by reducing
the ROS levels and increasing GSH levels of HepG2 cells in a dose-dependent manner.

As an important marker of cellular damage, the mitochondrial membrane potential
(MMP) in HepG2 cells was measured by JC-1 staining to further evaluate the protective
effect of PIP on mitochondrial functions [29,30]. JC-1 could form complexes with intense
red fluorescence spontaneously in cells under high MMP, and form monomers with green
fluorescence in unhealthy cells with low MMP [31]. As shown in Figure 5D, compared
to the control group, the treatment with OA for 24 h decreased the MMP from 100 to
70.51 ± 5.26% (p < 0.01), indicating that OA caused oxidative damage in mitochondria.
The MMP levels were increased to 86.74 ± 8.09, 93.69 ± 4.78, and 98.41 ± 2.70% (p < 0.05)
by PIP (25, 50, 75 µM) treatment, respectively, which meant that PIP could reverse the
mitochondrial dysfunction induced by OA in a dose-dependent manner. Overall, PIP was
essential in preventing oxidative damage in HepG2 cells injured by OA.

2.4. Intervention Effect of PIP on Circadian Misalignment

Recent studies revealed that circadian desynchrony was closely related to the disrup-
tion of glucose and lipid homeostasis [32–36]. According to Li et al., the misalignment
of circadian clock genes could be caused in the lipid accumulation model using HepG2
cells [13]. Similar trends were also observed in our study. The expressions of circadian
clock genes in HepG2 cells were measured every 6 h to evaluate their rhythmic patterns.
As shown in Figure 6, rhythmic gene expressions could be found for Bmal1, Clock, Per1-2,
Cry1-2, and Reverbα in the control group. OA treatment-induced phase shift in Clock and
Per2 genes and shallowed oscillation of Cry2 gene and increased the oscillatory amplitude
of Per1, Cry1, and Reverbα expression levels, indicating that circadian rhythm desynchrony
was triggered in the lipid accumulation model. After PIP treatment, the phase shift of the
Clock gene and shallowed oscillation of the Cry2 gene were ameliorated, and the intensity
of oscillatory amplitude of Per1 expression was recovered. These results demonstrated that
PIP could alleviate the circadian misalignment triggered by OA in HepG2 cells.
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2.5. PIP Attenuated OA-Induced Redox Imbalance and Mitochondrial Dysfunction via Regulating
Bmal1 and Clock in HepG2 Cells

To verify whether the circadian clock genes were involved in the modulation process of
lipid metabolism by PIP, HepG2 cells were transfected with si-Bmal1 or si-Clock, respectively,
for 24 h. The mRNA expression of Bmal1 and Clock were inhibited to 15.32 ± 1.42% and
21.46 ± 4.79% (p < 0.001) (Figure 7), suggesting that the siRNA transfection inhibited the
RNA expressions of Bmal1 and Clock genes successfully.
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According to Figure 8, the Nile Red staining results indicated that the silencing of
Bmal1 or Clock expression inhibited the recovery effect of PIP on lipid accumulation. The
intensity of Nile red staining in the OA + PIP-treatment group was 29.60± 1.06% (p < 0.001)
lower than in the OA group, whereas OA + PIP + si-Bmal1 and OA + PIP + si-Clock-
treatment groups showed significant 14.60 ± 1.79% and 12.18 ± 0.10% (p < 0.05) increase
compared with the OA + PIP group, demonstrating that PIP treatment could inhibit the
OA-disrupted lipid homeostasis, and knockdown of genes Bmal1 and Clock suppressed this
alleviation effect of PIP. As shown in Figure 8C,D, after the knockdown of Bmal1 or Clock
gene, the ROS level was increased from 116.31 ± 2.77% in the OA + PIP-treatment group to
149.99 ± 3.87% (p < 0.05) and 139.65 ± 3.81% (p < 0.001) in the OA + PIP + si-Bmal1 and
OA + PIP + si-Clock-treatment groups respectively. Similarly, the MMP was decreased from
90.99 ± 1.20% in the OA + PIP group to 84.48 ± 1.61% and 85.56 ± 3.32% (p < 0.01) in the
OA + PIP + si-Bmal1 and OA + PIP + si-Clock groups respectively. These results indicated
that PIP regulated the intracellular redox imbalance and mitochondrial dysfunction via
modulating the expressions of the circadian clock genes Bmal1 and Clock.
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Figure 8. PIP attenuated OA-induced lipid metabolic disturbance, redox status imbalance and
mitochondria dysfunction in a Bmal1/Clock-dependent way. (A) Nile Red staining, DCF staining, and
JC-1 staining observed by inverted fluorescence microscope. (B) The relative fluorescence intensity
of Nile red staining. (C) Reactive oxygen species (ROS) measured using a reactive oxygen species
assay kit. (D) Mitochondrial membrane potential (MMP) reflected as the ratio of red/green using
fluorescence microscopy. Results were expressed as the means ± SD, n ≥ 3. ### p < 0.001 versus
control group, ** p < 0.01, *** p < 0.001 versus OA group, N p < 0.05, NN p < 0.01, NNN p < 0.001 versus
OA + PIP group.

2.6. Effects of PIP on OA-Induced Lipid Metabolism Disorder Imbalance in a
Bmal1/Clock-Dependent Way

To further explore the role of gene Bmal1 and Clock played in the preventative effect
of PIP on lipid metabolism disorder, core circadian genes Bmal1 and Clock were knocked
down in HepG2 cells. As shown in Figure 9, OA treatment increased the mRNA ex-
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pression levels of circadian clock genes Bmal1 and Clock, lipid metabolism-related genes
sterol-regulatory-element-binding protein 1c (Srebp-1c), peroxisome proliferator-activated
receptor γ (Pparγ), CCAAT enhancer-binding proteins β (Cebpb), fatty acid synthase (Fas),
acetyl-CoA carboxylase (Acc) and mammalian/mechanistic target of rapamycin (mTOR),
while PIP suppressed the overexpression of Srebp-1c, Cebpb, Pparγ, Fas, and Acc effec-
tively. As an adipokine involved in the regulation of the lipid metabolism process, the RNA
content of adiponectin as well as carnitine palmitoyltransferase 1 (CPT-1) and peroxisome
proliferator-activated receptor gamma coactivator 1α (PGC-1α) were also evaluated to
examine whether they functioned through circadian clock-involved mechanisms [37,38].
The mRNA expression levels of Adipoq, Pgc-1α, Cpt-1, AMP-activated protein kinase
(Ampk), and serine-threonine kinase (Akt) in the OA group were decreased compared to
the control group, which were increased after PIP treatment. These results indicated that
PIP ameliorated the OA-induced gene overexpression of lipid metabolism-related factors.
Additionally, knockdown of Bmal1 and Clock weakened the recovery effect of PIP on most
lipid metabolism-related gene expressions. Therefore, the regulation effect of PIP on the
mRNA level of lipid metabolism-related factors is dependent on the expression of circadian
clock gene Bmal1 and Clock.

The protein expression levels of circadian clock genes and lipid metabolism-related
factors were also evaluated by western blot. As a central controller of cell growth and
proliferation, mTOR could serve with AMPK and AKT as signaling pathways for regulating
cellular metabolism, energy homeostasis, and cell growth [39]. Ramanathan et al. also
reported a key role of AMPK and mTOR in regulating the rhythmic expression of the core
circadian clock genes in the SCN [40,41]. As presented in Figure 10A,D, OA decreased
the phosphorylated levels of AMPK and AKT, which were elevated by PIP, indicating
that the AMPK/AKT signaling pathway is involved in the regulation effect of PIP on
lipid homeostasis [42,43]. The increased phosphorylated level of mTOR by OA was also
reduced by PIP, suggesting that PIP attenuated the lipid accumulation by inhibiting the
activation of the mTOR signaling pathway [39]. In the si-Bmal1 and si-Clock groups, the
restoring effect of PIP on p-AMPK, p-AKT, and p-mTOR was weakened. The results
suggested that PIP may prevent lipid accumulation by activating AMPK/AKT-mTOR
signaling in a Bmal1/Clock-dependent manner in HepG2 cells. According to Figure 10,
the protein expression levels of circadian clock genes and lipid metabolism-related factors
were disrupted in the OA-treated group compared with the control group, but recovered
after PIP treatment. This result was consistent with the result in mRNA expression levels,
demonstrating that Bmal1 and Clock played an important role in the regulating effect of PIP
on OA-induced lipid-metabolism disorders in HepG2 cells.

In this study, HepG2 cells were also transfected with nonspecific scrambled siRNA
(OA + PIP + si-Control group) for 24 h to evaluate whether transfection reagents could
interfere with the regulating effect of PIP on the circadian rhythm and lipid metabolism
disorder. Compared with the OA + PIP group, the expression of circadian clock genes and
lipid metabolism-related genes showed no significant change in the OA + PIP + si-Control
group, suggesting that the transfection reagents did not affect the circadian rhythms and
lipid metabolism process.
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Figure 9. PIP ameliorated OA-induced lipid-metabolism disorder by regulating the circadian clock
and lipid metabolism-related factors in mRNA levels. HepG2 cells were transfected with the si-Control
or si-Bmal1/si-Clock for 24 h, the cultured cells treated with OA (400 µM) and PIP (50 µM) for 24 h.
GAPDH was used as a loading control. (A) The mRNA levels of Bmal1 and Clock. (B) The mRNA
levels of Adipoq, Pgc-1α, Cpt-1, Ampk, and Akt. (C) The mRNA levels of Srebp-1c, Cebpb, Pparγ, Fas,
Acc and mTOR. Results were expressed as the means ± SD, n ≥ 3. # p < 0.05, ## p < 0.01 ### p < 0.001
versus control group, * p < 0.05, ** p < 0.01, *** p < 0.001 versus OA group, N p < 0.05, NN p < 0.01,
NNN p < 0.001 versus OA + PIP group.
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Figure 10. The regulation of circadian clock and lipid metabolism-related factors by PIP in protein
levels. HepG2 cells were transfected with the si-Control or si-Bmal1/si-Clock for 24 h; the cultured
cells were treated with OA (400 µM) and PIP (50 µM) for 24 h. GAPDH was used as a loading
control. (A) The expression levels of core circadian clock genes and lipid-related factors in HepG2
cells determined by western blot analysis. (B) Protein content of BMAL1 and CLOCK. (C) Protein
content of SREBP-1C, CEBP/β, PPARγ, FAS, ACC, and p-mTOR/mTOR. (D) Protein content of
Adiponectin, PGC-1α, CPT-1, p-AMPK/AMPK, and p-AKT/AKT. The densitometric analysis of
the blots were expressed as the means ± SD, n ≥ 3. ### p < 0.001 versus control group, * p < 0.05,
** p < 0.01, *** p < 0.001 versus OA group, NN p < 0.01, NNN p < 0.001 versus OA + PIP group.

3. Materials and Methods
3.1. Materials

PIP (purity 98%) was purchased from Xi’an Tianfeng Biotechnology Co., Ltd. (Xi’an,
China). OA (purity~99%) was purchased from Shanghai Yuanye Biotechnology Co., Ltd.
(Shanghai, China). Milli-Q water (18.3 MΩ) was used in all experiments.

3.2. Cell Culture and Viability Assay

HepG2 cells were obtained from Sangon Biotech Co., Ltd. (D611027-0001, Shanghai,
China) and cultured in Dulbecco’s modified Eagle medium (DMEM) medium (Gibco, Carls-
bad, CA, USA) containing 10% fetal bovine serum (Gibco, Carlsbad, CA, USA), 100 KU/L
penicillin (Gibco, Carlsbad, CA, USA) and 100 µg/mL streptomycin (Gibco, Carlsbad,
CA, USA). Cells were maintained at 37 ◦C in a humidified atmosphere of 5% CO2. 3-
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(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) (purity~98%) was
purchased from Macklin Biochemical Co., Ltd. (Shanghai, China). Dimethyl sulfoxide
(DMSO) (purity~99%) was purchased from Macklin Biochemical Co., Ltd. (Shanghai,
China). Hifair® II 1st Strand cDNA Synthesis SuperMix for qPCR (gDNA digester plus)
and Hieff® qPCR SYBR Green Master Mix (Low Rox) were purchased from Yeasen Biotech-
nology Co., Ltd. (Shanghai, China).

HepG2 cells were incubated overnight in 96-well plates at a density of 1× 106 cells/well.
The cells were cultured with OA and PIP at different concentrations for 24 h. Subsequently,
the final concentration of 0.5 mg/mL MTT was added and incubated at 37 ◦C for 4 h. After
removing the MTT from each well, the insoluble formazan crystals were dissolved by DMSO,
and the absorbance was measured with a microplate reader (PerkinElmer, Waltham, MA,
USA) at 490 nm.

3.3. Measurement of Lipid Profiles and Enzyme Activity in HepG2 Cells

The levels of glutathione (GSH), total protein (TP), cholesterol (TC), triglyceride (TG),
HDL cholesterol (HDL-C), and LDL cholesterol (LDL-C) in HepG2 cells were measured
using enzymatic assay kits (Nanjing Jiancheng Bioengineering Institute, Nanjing, Jiangsu,
China). Aspartate aminotransferase (AST), Alanine aminotransferase (ALT), and lactate
dehydrogenase (LDH) were detected using enzymatic assay kits (Nanjing Jiancheng Bio-
engineering Institute, Nanjing, Jiangsu, China).

3.4. Transfection of HepG2 Cells

During transfection, the si-Control (forward, 5′-UUCUCCGAACGUGUCACGUTT-3′,
reverse, 5′-ACGUGACACGUUCGGAGAATT-3′), si-Bmal1 (forward, 5′-GGUUAUCCAUA-
UUCUGAUATT-3′, reverse, 5′- UAUCAGAAUAUGGAUAACCTT-3′), or si-Clock (5′-
GCAACUUGCACCUAUAAAUTT-3′, reverse, 5′-AUUUAUAGGUGCAGUUGCTT-3′)
plasmids were transfected into cells cultured in 6-well plates using Lipofectamine 2000
(Invitrogen). After transfection with small interfering RNA (siRNA) for 24 h (transfection
efficiency was checked by RT-qPCR), the cells were incubated with OA (400 µM) and PIP
(50 µM) for 24 h and then collected for further analysis.

3.5. JC-1, DCFDA, and Nile Red Staining

The mitochondrial membrane potential (MMP) was evaluated using the JC-1 assay
kit (Nanjing Jiancheng Bioengineering Institute, Nanjing, Jiangsu, China). After treatment,
cells were stained with 5 g/mL JC-1 for 30 min at 37 ◦C in the dark and washed twice with
PBS. The cell redox state was detected by a fluorescence microscope (Axio observer A1,
Carl Zeiss, Jena, Germany) and measured by PerkinElmer Enspire multimode plate reader
(PerkinElmer, Waltham, MA, USA). The levels of MMP were determined by the intensity
ratio of green/red fluorescence. The reactive oxygen species (ROS) from HepG2 cells was
assayed by reactive oxygen species assay kit (Nanjing Jiancheng Bioengineering Institute).
2′,7′-dichlorofluorescein diacetate (DCFH-DA) (Nanjing Jiancheng Bioengineering Institute)
could be converted to the 2′,7′-dichlorofluorescein (DCF), its highly fluorescent oxidation
product by intracellular ROS. The DCF fluorescence intensity of HepG2 cells was observed
by fluorescence at 495 nm excitation wavelength and 529 nm emission wavelengths.

Cells were stained with 10 µg/mL of Nile red (Macklin Biochemical Co., Ltd., Shanghai,
China), a selective fluorescent stain for intracellular lipid droplets. The stained cells
were observed under a fluorescent microscope at 543 nm excitation and 598 nm emission
wavelengths. Fluorescence was detected using a PerkinElmer Enspire multimode plate
reader (PerkinElmer, Waltham, MA, USA).

3.6. RNA Isolation and Real-Time qPCR

Total RNA was extracted from HepG2 cells with an extraction kit (TaKaRa, Dalian,
China), and cDNA was synthesized using the Primescript RT Master Mix reverse tran-
scription kit (TaKaRa, Dalian, China). The relative mRNA expression was quantified by
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RT-qPCR using an SYBR green PCR kit (TaKaRa, Dalian, China) and the CFX96 real-time
system (Bio-Rad, Hercules, CA, USA). The gene-specific primers used in the cell study
are summarized in Table 1. The method of 2−∆∆Ct was used to calculate the relative ex-
pression level of target genes, which were normalized to glyceraldehyde-3-phosphate
dehydrogenase (GAPDH).

Table 1. Primer Sequences Used for Quantitative Real-Time PCR Analysis.

Gene Forward Primer Reverse Primer

Bmal1 ATGGGGCTGGATGAAGACAA CTGTTGCCCTCTGGTCTACA
Clock ACGACGAGAACTTGGCATTG GGTGTTGAGGAAGGGTCTGA
Per1 AAGTCCGTCTTCTGCCGTAT TATCCGGGGAGCTTCGTAAC
Per2 AGCCGGAGTTAGAGATGGTG TCTGCTCCTCCTTCTGTGTG
Cry1 GTCTACATCCTGGACCCCTG CTGGGAAACACATCTGCTGG
Cry2 GGGAGGAGAGACAGAAGCTC AATAGGGAGAGGGGAGGTGT

Reverbα CTGGGAGGATTTCTCCATGA TTCACGTTGAACAACGAAGC
Srebp-1c CTGAGGCAAAGCTGAATAAATCTGCTG GTTCTCCTGCTTGAGTTTCTGGTTG
Pparγ TGCTGTTATGGGTGAAACTCTG CTGTGTCAACCATGGTAATTTCTT
Cebpb ACGAGCGCGCCATCGACTTC GAAGCCCGGCTCCGCCTTG
Adipoq CCTGAACCCTACAAGCGATG GGTTCCACTTCTTTGTCCTCG

Fas TGCCCAAGTGACTGACATCA CATCCCCATTGACTGTGCAG
Acc CAACTTTGTGCCCACGGTTA TTTGTCAGGAAGAGGCGGAT
Akt CTGCCCTTCTACAACCAGGA ATGATCTCCTTGGCGTCCTC

mTOR CCTGCCTTTGTCATGCCTTT CTGGGTTTGGATCAGGGTCT
Pgc-1α AGCGCCGTGTGATTTATGTC TGCGTCCACAAAAGTACAGC
Cpt-1 CCTCCGTAGCTGACTCGGTA GGAGTGACCGTGAACTGAAAG
Ampk GACAAGCCCACCTGATTC TTCCTTCGTACACGCAAA

GAPDH TCAAGAAGGTGGTGAAGCAGG TCAAAGGTGGAGGAGTGGGT

3.7. Western Blot Analysis

The treated HepG2 cell lysates were prepared by dissolving in an SDS sample buffer.
SDS-PAGE analysis and Western blot detection were performed as described in previous
research. [13] Antibodies including anti-BMAL1(14268-1-AP), anti-CLOCK (18094-1-AP),
anti-SREBP-1C (14088-1-AP), anti-PPARγ (16643-1-AP), anti-C/EBPβ (66649-1-IG), anti-
FAS (66369-1-Ig), anti-ACC (67373-1-Ig), anti-P-mTOR (67778-1-Ig), anti-mTOR (10176-2-
AP), adiponectin (21613-1-AP), anti-CPT-1 (15184-1-AP), anti-PGC-1α (20658-1-AP), anti-
AMPK (66536-1-Ig), anti-P-AKT (28731-1-AP), and anti-AKT (10176-1-AP) were purchased
from Proteintech (Chicago, IL, USA). And the anti-GAPDH (ATPA00013Rb) was purchased
from Atagenix (Wuhan, Hubei, China). The anti-P-AMPK (#2535) was purchased from Cell
Signaling Technology (Beverly, MA, USA). The primary antibodies for western blot in this
study are listed in Table 2. Densitometric analysis of Western blots was performed using
Quantity One software (Version 4.6.2, Bio-Rad, Hercules, CA, USA).

3.8. Statistical Analysis

Data were presented as means ± standard deviation (SD). Qualitative variables be-
tween groups were assesed through one-way analysis of variance (ANOVA) using Graph-
Pad Prism (Version 8.3, GraphPad Software, Inc., San Diego, CA, USA). Differences at
p < 0.05, 0.01, and 0.001 were considered statistically significant.
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Table 2. Primary Antibodies for Western Blot in This Study.

Primary Antibodies Catalogue Company Dilution Rates

BMAL1 14268-1-AP Proteintech 1:600
CLOCK 18094-1-AP Proteintech 1:600

SREBP-1C 14088-1-AP Proteintech 1:1000
PPARγ 16643-1-AP Proteintech 1:1000

C/EBPβ 66649-1-IG Proteintech 1:2000
FAS 66369-1-Ig Proteintech 1:5000
ACC 67373-1-Ig Proteintech 1:5000

p-mTOR 67778-1-Ig Proteintech 1:1000
mTOR 10176-2-AP Proteintech 1:1000

Adiponectin 21613-1-AP Proteintech 1:1000
CPT-1 15184-1-AP Proteintech 1:5000

PGC-1α 20658-1-AP Proteintech 1:1000
p-AMPK #2535 CST 1:1000
AMPK 66536-1-Ig Proteintech 1:1000
p-AKT 28731-1-AP Proteintech 1:1000
AKT 10176-1-AP Proteintech 1:1000

GAPDH ATPA00013Rb Atagenix 1:5000

4. Conclusions

In summary, PIP treatment ameliorated lipid metabolic disturbance, redox status
imbalance, mitochondria dysfunction, and the circadian misalignment triggered by OA.
Meanwhile, silencing of Bmal1 and Clock gene inhibited the recovery effect of PIP on the
lipid-metabolism disorder in HepG2 cells. The underlying mechanism might be that Bmal1
and Clock genes were involved in regulating the expression of lipid metabolism-related
factors by PIP in both protein and mRNA levels. Besides, PIP alleviated lipid disorders
via strengthening the SREBP-1c/PPARγand AMPK/AKT-mTOR signaling pathways in a
Bmal1/Clock-dependent manner. This study could provide new insights into the application
of PIP in the prevention and treatment of obesity-related metabolic disorders through the
modulation of circadian clock genes.
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Abbreviations

ACC acetyl coenzyme A carboxylase
ALT alanine aminotransferase
AMPK AMP-activated protein kinase
AST aspartate aminotransferase
BMAL1 aryl hydrocarbon receptor nuclear translocatorlike 1 proteins
Bmal1 aryl hydrocarbon receptor nuclear translocatorlike 1
C/EBPβ adipogenesis-associated transcription factor CCAAT enhancer binding proteins β
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Ccgs other clock-controlled genes
CLOCK circadian locomotor output cycles kaput proteins
Clock circadian locomotor output cycles kaput
CPT-1 carnitine palmitoyl transferase
CRYs cryptochrome proteins
Crys cryptochrome genes 1/2
DCF dichlorofluorescin
DCFH-DA 2,7-dichlorofluorescin diacetate
FAS fatty acid synthase
HDL-C HDL cholesterol
LDH lactate dehydrogenase
LDL-C LDL cholesterol
MMP mitochondrial membrane potential
mTOR mammalian/mechanistic target of rapamycin
NAD+ nicotinamide adenine dinucleotide
Nampt nicotinamide phosphoribosyltransferase gene
OA oleic acid
PERs period proteins
Pers period genes 1/2/3
PGC-1α peroxlsome proliferator-activated receptor-γ coactlvator-1α
PPARs peroxisome proliferator-activated receptors
PPARγ peroxisome proliferator activated receptor gamma
Reverbs reverse erythroblastosis virus α/β
RORE ROR response element
RORs retinoic acid-related orphan receptors
ROS reactive oxygen species
SCN suprachiasmatic nucleus
SIRT1 silent information regulator 1
SREBP-1c sterol-regulatory-element-binding protein 1c
TC total cholesterol
TG total triglyceride
TP total protein
TTFL transcriptional/translational feedback loop
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