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Abstract

Nuclear factor erythroid-2 related factor 2 (NRF2) encoded by the NFE2L2 gene is a tran-

scription factor critical for protecting cells from chemically-induced oxidative stress. We

developed computational procedures to identify chemical modulators of NRF2 in a large

database of human microarray data. A gene expression biomarker was built from statisti-

cally-filtered gene lists derived from microarray experiments in primary human hepatocytes

and cancer cell lines exposed to NRF2-activating chemicals (oltipraz, sulforaphane, CDDO-

Im) or in which the NRF2 suppressor Keap1 was knocked down by siRNA. Directionally con-

sistent biomarker genes were further filtered for those dependent on NRF2 using a microar-

ray dataset from cells after NFE2L2 siRNA knockdown. The resulting 143-gene biomarker

was evaluated as a predictive tool using the correlation-based Running Fisher algorithm.

Using 59 gene expression comparisons from chemically-treated cells with known NRF2 acti-

vating potential, the biomarker gave a balanced accuracy of 93%. The biomarker was com-

prised of many well-known NRF2 target genes (AKR1B10, AKR1C1, NQO1, TXNRD1,

SRXN1, GCLC, GCLM), 69% of which were found to be bound directly by NRF2 using

ChIP-Seq. NRF2 activity was assessed across ~9840 microarray comparisons from ~1460

studies examining the effects of ~2260 chemicals in human cell lines. A total of 260 and 43

chemicals were found to activate or suppress NRF2, respectively, most of which have not

been previously reported to modulate NRF2 activity. Using a NRF2-responsive reporter

gene in HepG2 cells, we confirmed the activity of a set of chemicals predicted using the bio-

marker. The biomarker will be useful for future gene expression screening studies of

environmentally-relevant chemicals.

Introduction

The vast number of chemicals used in industry have limited toxicity testing. The time and

financial costs to screen these chemicals via traditional methods is prohibitive. These con-

straints have driven the development of high-throughput in vitro screening assays to aid in
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assessing chemical toxicity and to prioritize chemicals for traditional testing. Great strides

have been made by United States governmental chemical screening programs including the

EPA’s ToxCast program and the cross-agency Tox21 program in this regard, screening over

1800 chemicals in as many as 700 assays [1]. Landmark studies have developed computa-

tional models that for example predict modulation of estrogen and androgen receptors,

important targets for endocrine disrupting chemicals with remarkable accuracy based on

results from in vitro assays [2–4]. Yet, despite the success of these programs in prioritiza-

tion, there are still obstacles to overcome. Most HTS assays are targeted to specific events in

biological pathways, and while this aids in specificity, it also leaves a large biological space

that is not covered by the current assay battery [5, 6]. To more completely assess the effects

of chemicals on a wider range of molecular targets of regulatory interest, broader

approaches are needed.

Gene expression profiling represents a robust complementary approach to HTS screening

and has the potential to cover some of the biological space missed by HTS assays. The Library

of Integrated Network-Based Cellular Signatures (LINCS) and the Connectivity Map (CMAP)

projects have both made significant contributions to the field of large-scale gene expression

profiling, using network-based approaches to link chemical exposure to gene expression and

disease. The CMAP project screened ~1300 small molecules in 3 cell lines with whole tran-

scriptome expression data [7, 8]. One of the major hurdles to these early gene expression pro-

filing efforts was the inherently low throughput of microarray technologies. However, the field

has seen great advancements in throughput in recent years. The aforementioned LINCS data-

base uses the L1000 gene expression technology that measures the expression of 1000 genes,

and through computational inference can predict transcriptional changes in nearly 80% of the

genome. The LINCS project has generated over 1 million profiles using the L1000 technology

from a large battery of human cell lines perturbed with chemicals and gene probes [9]. Fur-

thermore, new RNA sequencing (RNA-seq) technologies, such as the TempO-Seq platform

show great promise in their ability to measure expression changes in both smaller, targeted

gene sets, and the whole transcriptome in a high-throughput manner [10]. Lastly, there is a

wealth of microarray- and RNA-Seq-derived gene expression data currently available in multi-

ple public repositories that can be used to develop procedures for predicting the molecular tar-

gets of chemicals.

A major challenge in the field of gene expression analysis is identifying signals that are

indicative of modulation of specific molecular targets. One mechanism by which chemicals

can exert toxic effects on a cell is by activating or repressing transcription factors, thus chang-

ing gene expression and altering normal cellular signaling events. We have previously devel-

oped gene expression biomarkers that can accurately identify chemicals that activate and/or

suppress a number of transcription factors in the mouse or rat liver important in cancer and

steatosis [11–21]. Our group has also characterized biomarkers that predict modulation of

estrogen receptor (ERα) and androgen receptor or predict genotoxicity in human cells [22–

24]. These biomarkers consist of short lists of genes (up to ~150) whose expression consistently

change as a result of exposure to structurally-diverse chemicals or other perturbants, indicating

either activation or suppression of a specific transcription factor. The modulation of the tran-

scription factors that our group has focused on are often molecular initiating events (MIEs) or

key events (KEs) in Adverse Outcome Pathways (AOPs). AOPs are defined as a series of mech-

anistically linked KEs starting with a MIE in which a chemical interacts with a target, culmi-

nating in an adverse outcome in a tissue [25]. Thus, gene expression biomarkers can be

utilized to interpret microarray profiles with the goal of populating MIE/KE activity in AOP

networks [26].
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Nuclear factor erythroid-2 related factor 2 (NRF2) encoded by the NFE2L2 gene is a key

transcription factor important in cellular responses to oxidative stress and xenobiotics. Under

normal conditions, NRF2 is bound in the cytoplasm by Kelch-like ECH-associated protein 1

(Keap1), which results in ubiquitination and targeting of NRF2 for proteasomal degradation.

When activated, NRF2 dissociates from Keap1, translocates to the nucleus and binds to geno-

mic antioxidant response elements (AREs) as a heterodimer with Maf proteins, MafF, MafG,

or MafK [27]. NRF2 binding to AREs promotes the transcription of a diverse battery of genes

involved in the antioxidant response and detoxification, including many genes related to the

cytoprotective processes of phase 2 metabolism [28]. NRF2 is intricately linked with carcino-

genesis, as NRF2-nullizygous mice are more susceptible to many chemical carcinogens, yet

paradoxically NRF2 and its target genes are also upregulated in many cancers [29, 30]. The

activation status of NRF2 is also linked to hepatocyte steatosis [31], a condition in which there

is an accumulation of triglycerides. The ability to readily identify chemicals that modulate

NRF2 in microarray studies could help to build predictive models for cancer or steatosis.

In the present study, we developed computational methods for using a gene expression bio-

marker to predict NRF2 activation or suppression in human cells. We used this biomarker,

coupled with an annotated database of gene expression profiling experiments, to perform an

in silico screen for chemical perturbations that lead to NRF2 modulation. We validate our find-

ings using an ARE-linked reporter system in HepG2 cells.

Methods

Construction and characterization of the NRF2 biomarker

The overall strategy used to computationally construct and characterize the NRF2 gene expres-

sion biomarker is depicted in Fig 1. The biomarker consists of a list of differentially regulated

genes whose expression is consistently altered after exposure to chemicals that activate NRF2.

Gene expression data were sourced from the commercially available database, called BaseSpace

Correlation Engine (BSCE) (https://www.illumina.com/products/by-type/informatics-

products/basespace-correlation-engine.html; formally NextBio). Differential gene expression

analysis protocols employed in BSCE are described in detail in Kupershmidt et al. [32]. Briefly,

raw (or preprocessed data if raw is not available) gene expression data is collected from GEO,

ArrayExpress and other public repositories. Expression data are log transformed and normal-

ized as appropriate (RMA, per-chip median or Lowess), and differential expression is calcu-

lated using a Welch’s or standard t-test, with a p value cut-off of 0.05 without multiple test

correction, and a fold change cut-off of +/- 1.2 fold. Genes with expression values in the lower

20th percentile in both groups are removed. Lists of statistically filtered differentially expressed

genes resulting from these comparisons are referred to as biosets.

Right, Biomarker Testing and Screening for Modulators. The biomarkers were imported

into the BSCE environment and compared to all other human biosets via the Running Fisher

algorithm for rank-ordered pairwise comparisons [32]. The p-values and correlation direc-

tions were exported and used to populate a master database of experimental details for all bio-

sets. The biomarkers were tested for accuracy by comparing predictions with those from the

ToxCast and Tox21 HTS NRF2 activation assays. The biomarker with the best predictive accu-

racy was used to identify chemicals in the database that activated or suppressed NRF2. Post-

hoc analysis of the biomarker gene list included canonical pathway enrichment and ChIP-Seq

analysis.

The NRF2 biomarker was constructed from lists of differentially expressed genes derived

from chemical and genetic perturbations known to affect the activity of NRF2. The list of bio-

sets used to construct the biomarker are listed in Table 1. Because our goal was to use the
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biomarker to identify conditions that activate NRF2 in many cell types, we used biosets derived

from a variety of different cell lines to find a common set of genes. The biosets were from pri-

mary human hepatocytes and human cancer cell lines derived from liver (HepG2), breast

(MCF7, MCF10A), and lung (A549). These gene sets were compared to identify those with

consistent expression in a series of steps. First, genes were identified that exhibited consistent

expression upon exposure to known NRF2-activating chemicals (e.g., sulforaphane, oltipraz,

sulindac, quercetin) across the 6 chemical-treated biosets as well as a bioset derived from

genetic knockdown of the NRF2 repressor Keap1. To pass this filter genes had to be either up-

regulated or down-regulated in all of the biosets in which the gene exhibited differential

expression and in the majority of the biosets (4 or more out of 7 biosets). Second, the gene lists

were further filtered for those genes that also were regulated in an opposite manner by NRF2

knockdown to filter for direct dependence on NRF2. Any gene that did not meet this criteria

was removed. Finally, the genes were filtered for those with robust expression changes. The

average fold-change across the 7 biosets in which NRF2 was activated had to be� |+/-

1.5-fold| (not Log2(fold-change). The final biomarker consisted of 143 genes. The list of bio-

marker genes and associated fold-change values is found in S1 File.

Fig 1. Biomarker construction and screening strategy. Left, NRF2 biomarker development. Differentially expressed genes (DEGs) from exposures to known NRF2

activators (sulforafan, oltipraz, sulindac, quercetin) and KEAP1 and NFE2L2 siRNA knockdown were assessed in the BSCE environment. Biomarker genes were

identified as those consistently up- or down-regulated by the chemical exposures or KEAP1 knockdown and opposing regulation inNFE2L2 knockdown (further details

in Results section). Ten biomarkers were initially created from biosets that varied based on chemical, time and dose of exposure, and tissue context.

https://doi.org/10.1371/journal.pone.0239367.g001
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Building the experimental database

An annotated master database of gene expression profiles was created using BSCE, as previ-

ously described [11, 13, 22]. Briefly, BSCE contains over ~22,900 highly curated, publicly avail-

able, omic-scale studies from 15 species including ~140,000 lists of statistically filtered genes

(as of June 2019). All available information for each human bioset (45,163 total) was down-

loaded and assembled into a database of experimental parameters. Each entry in the database

contained the bioset name, GEO accession number (where applicable), analysis platform, and

tissue (when available), and was then annotated for category of perturbant (i.e. chemical, gene,

etc.), specific perturbant studied, and for chemicals, dose and time of exposure. This database

was then populated with–log(p-values) from the Running Fisher algorithm (performed in the

BSCE environment) to assess the correlation in gene expression changes between each bioset

and the NRF2 biomarker. The Running Fisher test is a platform-independent, rank-based

comparison that is otherwise similar to Gene Set Enrichment Analysis [32]. P-values were

exported, converted to–log(p-values), and biosets with negative correlations were assigned

negative values. Based on our past studies [11, 12], we considered–log(p-values)� 4 to indicate

NRF2 activation and� -4 to indicate NRF2 suppression. In these past studies, a p-value cutoff

<0.001 with a Benjamini-Hochberg multiple correction consistently resulted in a p-value cut-

off of 1E-4 which gave balanced accuracies > 90% for biomarkers derived from human, mouse

and rat transcript profiles. Only biosets examining the effects of individual chemicals (as

opposed to more than one chemical) were evaluated in this study.

Table 1. Biosets used to build the NRF2 biomarker.

Bioset Name Factor

Examined

Cell type Time of

treatment (hr)

Concentration

(uM)

Number of

Differentially Expressed

Genes

Study NRF2

biomarker

[-Log(p-

value)]

Primary human hepatocytes + 50uM

sulforaphane for 48hr _vs_ vehicle

Sulforafan PHH 48 50 2619 GSE20479 37.444

MCF10A breast cell line + 15uM

sulforaphane 24hr _vs_ vehicle control

Sulforafan MCF10A 24 15 2714 GSE28813 21.824

Primary human hepatocytes + 30uM

oltipraz for 48hr _vs_ vehicle

Oltipraz PHH 48 30 2851 GSE20479 29.187

Hepatocytes of female donors treated

24hr with 600uM sulindac _vs_ 0uM

Sulindac PHH 24 600 1478 TG-GATES 11.854

HepG2 hepatocellular carcinoma cell line

50uM Que treated for 24hr _vs_ DMSO

control

Quercetin HepG2 24 50 1849 GSE28878 19.155

HepG2 hepatocellular carcinoma cell line

50uM Que treated for 48hr _vs_ DMSO

control

Quercetin HepG2 48 50 3729 GSE28878 26.481

MCF10A breast cell line + Keap1 siRNA

24hr _vs_ control siRNA

KEAP1 gene

knockdown

MCF10A NA NA 2267 GSE28813 23.155

A549 lung adenocarcinoma cells

expressing NRF2 siRNA _vs_ non-

targeting (NS) siRNA

NFE2L2 gene

knockdown

A549 NA NA 3497 GSE38332 -40.398

PHH, primary human hepatocytes.
1It should be noted that A549 cells possess a homozygous mutation in Keap1 that results in increased NRF2 activity [33], explaining the dramatic effect on

NRF2-regulated genes by knocking down NFE2L2.

https://doi.org/10.1371/journal.pone.0239367.t001
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Testing biomarker accuracy

To test for predictive accuracy, the biomarker was compared to gene expression biosets from

chemically-treated HepG2 cells or primary human hepatocytes curated in the BSCE database.

The biosets spanned exposures to 137 chemicals with known NRF2 activity based on ToxCast

and Tox21 high-throughput NRF2 assay results. The comparisons were limited to HepG2 cells

because this was the cell line in which the ToxCast and Tox21 assays were carried out, as well

as primary hepatocytes to increase the number of chemicals with available biosets. True posi-

tive NRF2-activating chemicals were defined as those chemicals classified as NRF2 activators

in both the ToxCast NRF2 (ATG_NRF2_ARE_CIS, Attagene Inc, Durham, NC) and the

Tox21 NRF2 (Tox21_ARE_BLA_Agonist) assays (US. EPA, ToxCast & Tox21 Summary Files

Released Dec. 2014, http://www.epa.gov/chemical-research/toxicity-forecaster-toxcasttm-

data). True negatives were defined as those chemicals that were inactive in both assays. The

biosets were filtered for exposure conditions that would be more likely for NRF2 activation,

i.e., times between 8 and 48 h, and doses no lower than the HTS-determined AC50 values (for

positive chemicals) or between 10 and 400 uM (for negative chemicals). Thirty-five chemicals

in 59 unique comparisons remained after using these filters. Comparisons were carried out

using the Running Fisher algorithm. The biosets used to create the biomarker (essentially the

training set) were excluded from the test. The values for predictive accuracy were calculated as

follows: sensitivity (true positive rate) = TP/(TP+FN); specificity (true negative rate) = TN/(FP

+TN); positive predictive value (PPV) = TP/(TP+FP); negative predictive value (NPV) = TN/

(TN+FN); balanced accuracy = (sensitivity+specificity)/2. It should be noted that our true pos-

itive and true negative chemicals are based on HTS assay results carried out in HepG2 cells.

There is evidence that the responses to perturbations will differ between cell types [34]. Thus,

our true positive and true negative chemicals may be less applicable to cell types other than

liver cells. However, as the biomarker was designed using multiple cell types, we carried out

this and other analyses on both the HepG2/hepatocyte-filtered database and the entire human

database.

Ingenuity pathway analysis

The NRF2 biomarker genes were analyzed using the canonical pathway and upstream analysis

functions of Ingenuity Pathway Analysis (IPA, Qiagen Bioinformatics, Redwood City, Califor-

nia). IPA calculates significance using a right-tailed Fisher’s Exact test. The p-value is the prob-

ability of the overlap between the NRF2 biomarker gene list and the IPA pathway gene list.

Significant reported pathways have q-values< 1E-3. Upstream analysis uses the number of dif-

ferentially expressed genes to predict upstream regulators of the biomarker genes. A Z-score is

applied in the predictions of upstream analysis. A Z-score of> |2| is considered significant.

Multiple test correction on p-values was carried out using the Benjamini-Hochberg method.

Identification of interactions between NRF2 and NRF2 biomarker genes

using ChIP-Seq data

Analysis using human-based chromatin immunoprecipitation sequencing (ChIP-Seq) data

was carried out to identify genes directly regulated by NRF2. Briefly, ChIP-seq data from

experiments with activated NRF2 in human cells were obtained from Gene Expression Omni-

bus (3 biological replicates from a sulforaphane (SFN) treated human lymphoid cell line

[GSM922966, GSM922967; GSM922968]; 2 biological replicates from SFN-treated human

bronchial epithelial cell line BEAS-2B [GSM1968263; GSM1968264]; and 2 biological repli-

cates from a human adenocarcinomic alveolar basal epithelial cell line A549 [GSM2423705;
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GSM2423706]). Raw sequencing reads downloaded from NCBI Sequence Read Archive (SRA)

were mapped to the human genome (hg19) using the BWA (Burrows-Wheeler Aligner) [35].

Replicates were combined and NRF2 binding peaks were determined by MACS version 2.0

[36]. Genomic coordinates derived from these datasets were updated to human genome build

GRCh38/hg38 using LiftOver [https://genome.ucsc.edu/cgi-bin/hgLiftOver]. Coordinates

were annotated to bi-directional promoter features with 10 Kb using the “ChIPpeakAnno”

function in the R Bioconductor package (version 3.19.3) [37] based on the current UCSC

TxDb database (2019-10-21). Additionally, we identified antioxidant responsive elements

(AREs) based on a position weight matrix (PWM) defined by ChIP-seq binding data [38].

These regions were evaluated using the “matchPWM” function in the R BioStrings package

(v2.46.0) [https://www.rdocumentation.org/packages/Biostrings/versions/2.40.2/topics/

matchPWM]. Matches were based on a minimum of 80% relatedness. It should be noted that

ARE binding in association with target genes was a post hoc analysis and served to support,

but not develop, the composition of the biomarker (S1 File).

Identifying modulators of the NRF2 pathway

To screen for chemicals that modulate NRF2, the biomarker was compared to each of the

human biosets in the BSCE database. The p-values and directions of correlation were exported,

p-values were converted to–log(p-values), and those with negative correlations were given neg-

ative values. Our master experimental database was then populated with the–log(p-values) for

each bioset, which were classified as NRF2 activating (-log(p-value)� 4), NRF2 suppressing

(-log(p-value)� -4) or having no effect on NRF2 (-log(p-value) between -4 and 4). Using this

database, several strategies were implemented to identify chemicals that consistently activated

NRF2. First, a Fisher’s exact test was used to determine which chemicals were enriched in the

group of NRF2 active biosets (p-value <0.05 after a Benjamini-Hochberg multiple test correc-

tion). For example, there are 239 biosets with “Tobacco Smoke” as the specific perturbant, 83

of which resulted in NRF2 activation and 155 of which did not, whereas only 1429 biosets of

the 45,163 total biosets result in activation. (It should be noted that this analysis included all

biosets in the database, including those examining the effects of chemicals.) Thus, NRF2 active

biosets were significantly enriched for the perturbant “Tobacco Smoke.” The same approach

was taken with NRF2-suppressive biosets. This approach works well if there are a sufficient

number (� 3) of biosets for each specific chemical; however, it does not take dose or exposure

time into account.

In another approach to characterize chemicals that activate NRF2, the maximum–log(p-

value) for each specific chemical generated in HepG2 cells or primary human hepatocytes was

determined, without accounting for dose or exposure time, and used to make an active or inac-

tive call. The resulting list of active and inactive chemicals was then compared with the active

and inactive chemicals from the ToxCast and Tox21 HTS assays described above. Perturbants

that suppressed NRF2 could not be compared with the HTS assays because the assays were

designed to measure NRF2 activation and, therefore, were considered inactive for activation in

these comparisons.

Dose-response, time-course, and chemical-induced effects on datasets with listed oncogenic

mutations were examined in a limited set of chemicals as proof of concept. The limited num-

ber and specific choices of chemicals was driven mainly by available data for those chemicals.

Where possible, data from multiple studies were combined to construct a–log(p-value) vs.

dose or time relationship. In these cases, all data for a perturbant were considered, and individ-

ual dose- or time-response curves were constructed from studies carried out in a single cell

type.
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Validation experiments with the SRXN1-GFP reporter cell line

To investigate specific predictions based on the biomarker and differences between biomarker

and HTS predictions, we employed a real-time, SRXN1-GFP fluorescence based NRF2-activa-

tion reporter system [39]. Thirty chemicals were screened in single/concentration-response

format, over time, for their ability to induce expression of an SRXN1-GFP fusion protein in

the human hepatoma HepG2 cell line (ATCC (clone HB8065)). The generation and qualifica-

tion of the HepG2-BAC-GFP-SRXN1 reporter cell line has been previously described [39].

SRXN1-GFP cells were maintained and exposed in DMEM high glucose supplemented with

10% (v/v) Fetal Bovine Serum, 25 U/mL penicillin and 25 μg/mL streptomycin. During cultur-

ing of both the parental and reporter cell lines, mycoplasma was checked every 2 months using

PCR-based testing. Three days prior to imaging, cells were seeded in Greiner black μ-clear 384

wells plates at 20,000 cells per well. Cytoplasmic accumulation of SRXN1-GFP levels and pro-

pidium iodide staining were monitored for 24 h using a Nikon TiE2000 confocal laser micro-

scope (lasers: 408 nm, 488 nm and 561nm), equipped with an automated stage and perfect

focus system. Prior to imaging at 20x magnification, HepG2 cells were loaded for 45 min with

100 ng/mL Hoechst33342 to visualize the nuclei. The time interval was ~40 min for both

SRXN1-GFP and propidium iodide (PI) staining. All chemicals came from the ToxCast chemi-

cal inventory (kindly provided by Dr. Ann Richard).

Single-cell SRXN1-GFP intensity levels were transformed by log(intensity + 0.001) to attain

a more symmetrical distribution. GFP-positive cell counts (GFP_pos) were defined as the frac-

tion of cells per treatment-concentration that were above the 0.75 quantile + 0.25� of the inter

quartile range of the matching vehicle control single-cell population GFP levels. Concentra-

tion-response fits of the GFP positive fraction were modeled with the lm function in R as func-

tion of the concentration using piece wise natural splines with 3 degrees of freedom: lm

(GFP_pos ~ ns(dose_uM, df = 3)). The point-of-departure was calculated as the concentration

where the fit intersects the threshold of 0.1 fraction of GFP positive cells + the upper 90% con-

fidence limit of the regression at each matching concentration to account for replicate variabil-

ity. The PI positive cells (PI_pos) represent the fraction of cells with at least 4 pixels of

propidium iodide segmentation overlapping the cell segmentation. The cell counts (cell_-

count) represent the log fold-change in the number of cells compared to the matched vehicle

controls and was defined by log10(cell count plate i/ vehicle control cell count_plate i).

Results

Building the NRF2 biomarker and assessment of predictive accuracy

The strategy for constructing the NRF2 biomarker, testing predictive accuracy, and screening

for modulators is summarized in Fig 1. Our strategy for constructing the NRF2 biomarker was

similar to our previous efforts at building biomarkers for other transcription factors in which

we utilized archived microarray profiles generated from tissues or cells exposed to known

chemical modulators as well as profiles generated from cells in which the gene encoding the

transcription factor was either knocked out or knocked down (e.g., [11, 22, 23]). The present

strategy utilized diverse profiles from human cells under conditions known to robustly activate

NRF2 and included 24–48 hr exposures to the NRF2 activators sulforaphane (Gene Expression

Omnibus (GEO) accession numbers: GSE20479 and GSE28813), oltipraz (GSE20479), sulin-

dac (TG-GATES), and quercetin (GSE28878) (Table 1). Chemical activation of NRF2 was also

compared to chemical-independent genetic activation by including a profile from siRNA

knockdown of the NRF2 negative regulator Keap1 (GSE28813). Biomarker genes were selected

based on a number of criteria. These included directionally consistent changes in expression
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in most or all of the biosets in which NRF2 was chemically- or genetically-activated with no

expression changes in the opposite direction. A genetic filter was implemented resulting in

only genes that exhibit opposite directional changes after NRF2 was knocked down by siRNA

(GSE38332). Finally, genes were filtered for those with relatively robust average expression

changes (fold change� |1.5|) across the activating conditions.

The ability of the biomarker to accurately predict NRF2 activation was assessed by compar-

ing the results of the biomarker predictions with those from two high-throughput screening

(HTS) assays carried out as part of ToxCast and Tox21 screening programs. These assays mea-

sured the activity at antioxidant response element (ARE)-linked reporters in HepG2 cells. In

order to increase the confidence of these classifications, only chemicals that were called posi-

tives or negatives in both assays were used. There were 36 chemicals screened in these assays

that overlapped with microarray studies in HepG2 or human primary hepatocytes in our com-

pendium. The biosets used to create the biomarker (essentially the training set) were excluded

from the test. The biomarker was compared to the microarray profiles using the Running

Fisher test. Each pair-wise correlation resulted in a p-value which was converted to–Log(p-

value), and those with negative correlation were converted to negative numbers. The balanced

accuracy for the biomarker was calculated based on the 59 unique comparisons of biosets with

corresponding HTS data (Fig 2A). Information about the biosets used in the test are provided

in S1 File. The biomarker correctly classified thirteen true positive and 42 true negative biosets,

with 3 biosets as false positives (allyl alcohol, carbamazepine, coumarin) and one false negative

(mefenamic acid), resulting in a sensitivity and specificity of 93%. The positive predictive value

was 81%, and the negative predictive value was 98%. The expression of the biomarker genes

after exposure to the incorrectly classified chemicals is shown in Fig 2B. In general, the expres-

sion patterns of the false positive chemicals were consistent with that of the biomarker itself

(i.e., the positive biomarker genes were generally increased in expression whereas the negative

biomarker genes were generally decreased in expression). The false negative chemical mefe-

namic acid approached significance (-Log(p-value) = 3.7) and exhibited a pattern in which all

but one of the 11 altered genes were directionally consistent with the biomarker.

Attempts were made to evaluate shorter lists of NRF2-regulated genes for prediction. A six

gene biomarker based on some of the most frequently cited NRF2 targets HMOX1, NQO1,

TXNRD1, SXRN1, GPX2, and AKR1B10 had a balanced accuracy of only 66% and a sensitivity

of 36%. This analysis indicates that a biomarker with a more comprehensive set of NRF2-de-

pendent genes is more predictive than shorter lists of hand-picked genes.

3

Characterization of the NRF2 biomarker genes

The 143 NRF2 biomarker genes exhibited consistent expression across the chemical and

KEAP1 knockdown perturbations (Fig 3A). As expected, the biosets from chemical activator

treated cells or cells in which KEAP1 was knocked down exhibited statistically significant posi-

tive correlation to the biomarker (p-values� 10−10). The bioset in which NFE2L2 was knocked

down exhibited significant negative correlation to the biomarker (p-value� 10−40).

The 68 upregulated and 75 downregulated genes in the biomarker included many well-

known NRF2 targets (e.g., AKR1B10, AKR1C1, NQO1, TXNRD1, SRXN1, GCLC and GCLM)

[28, 38]. Similar to our mouse NRF2 biomarker [20], HMOX1 did not pass the genetic filter.

Many of these genes were annotated near genomic regions bound by human NRF2 in human

cell lines. Of the 143 NRF2 biomarker genes, 38 (26.6%) of these were associated with the

NRF2-bound ChIP-Seq loci near gene promoter regions (within 10 Kb) in at least one dataset

derived from cell lines treated with NRF2-activating isothiocyanate, SFN, or have
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constitutively active NRF2 [33, 38, 40]. This is in comparison to the background rate of 13.7%,

where a total of 3553 genes contained NRF2-ChIP bound regions within 10 Kb of the TSS of

the approximately 26,000 identified transcribed genes in the human genome (hg38). There-

fore, the NRF2 biomarker genes are more significantly represented with NRF2-bound regions

(Fisher’s Exact test, p<0.05). Although these reference ChIP-seq loci were not derived from

liver cells and could potentially miss regions that are liver-specific, we utilized these existing

data from lung and lymphoblastoid cells to identify common NRF2-bound regions. Addition-

ally, we identified 19 genes with evidence of NRF2-bound regions containing sequences that

matched the ARE binding motif, supporting that some of these biomarker genes are directly

regulated by NRF2 in a cis-acting manner (S1 File). Most of these genes (17 of 19) were acti-

vated in the biomarker, indicating that these genes are being transcriptionally upregulated by

NRF2.

The NRF2 biomarker was evaluated for functional class enrichment via Ingenuity Pathway

Analysis (IPA) (Fig 3B). The top canonical pathway identified as enriched with the biomarker

genes was “NRF2-mediated oxidative stress”. Other significantly enriched NRF2- linked path-

ways included “Glutathione biosynthesis” and “Thioredoxin pathway”. NRF2 was identified as

the top upstream regulating transcription factor that regulated the biomarker genes (Fig 3C).

Fig 2. Predictive accuracy of the NRF2 biomarker. A. Predictions using the NRF2 biomarker were compared to those from the HTS NRF2 activation assays. The

dashed line represents the cutoff value of four for significant biomarker activation. Those chemicals that were active (red) or inactive (black) in the HTS assays are shown.

Three false positives (blue) and one false negative (yellow) are indicated. Inset, binary classifier calculations based on NRF2 HTS assay results. B. Expression changes of

the biomarker genes for the three false positives and one false negative. (Top) The bar graph shows the -Log(p-values) of the comparisons between the biomarker and the

indicated chemical. (Bottom) The heatmap shows the expression of the biomarker genes.

https://doi.org/10.1371/journal.pone.0239367.g002
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AKT and AhR were also significant upstream activators, both of which are upstream regulators

of NRF2 [30, 41]. RARA, ESR1 and PDX1 were classified as upstream regulators that inhibit

expression of the NRF2 biomarker genes. RARA (retinoic acid receptor alpha) and ESR1

(estrogen receptor alpha) signaling have previously been identified as inhibitory to NRF2 acti-

vation [42, 43]. PDX1 (pancreatic and duodenal homeobox 1) is a diabetes susceptibility gene

involved in pancreas development and regulates mitochondrial DNA transcription in pancre-

atic β-cells [44]. No direct interaction with NRF2 signaling has yet been identified for PDX1,

however, indirect links between insulin signaling, PI3K, and NRF2 do exist [45].

Screening for chemicals that modulate NRF2 in a gene expression

compendium

The NRF2 biomarker was used to query the entire BSCE chemical database of ~9840 biosets,

which examined the effects of ~2260 chemicals. Fig 4A shows the expression of the genes in

the NRF2 biomarker across the biosets ranked by Running Fisher test significance. On the far

left are those chemical comparisons that exhibited the greatest significant positive correlations

to the biomarker. Some of the most significant chemicals included those used to create the bio-

marker as well as those that are well known to activate NRF2 (discussed below). These chemi-

cals induced a pattern of expression of the biomarker genes markedly similar to that of the

Fig 3. Characterization of the human NRF2 biomarker. A. Identification of NRF2 biomarker genes was based on consistent directional changes in gene

expression resulting from exposure to NRF2 activators sulforaphane (GSE20479 and GSE28813), oltipraz (GSE20479), sulindac (TG-GATES), and

quercetin (GSE28878), and knockdown of the NRF2 negative regulator Keap1 (GSE28813). Changes in gene expression were required to be in the opposing

direction in cells in whichNFE2L2 (NRF2) expression was knocked down (GSE38332). The bars on the left represent the–Log (p-values) for the Running

Fisher comparison test between the biomarker and the individual biosets used to construct it. The heatmap on the right depicts gene expression changes for

the 143 genes in the biomarker across the individual biosets. B. Canonical pathway analysis of the biomarker genes. Multiple test correction on p-values

derived from the right-tailed Fisher’s exact tests was carried out using the Benjamini-Hochberg method. The -Log(q-value)s are shown. C. Potential

upstream regulators of NRF2 biomarker genes (activation z-scores> |2|). Only upstream regulators with q-values< 0.05 are shown. Both analyses were

conducted using Ingenuity Pathway Analysis software.

https://doi.org/10.1371/journal.pone.0239367.g003
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Fig 4. NRF2 activity across biosets from chemically treated human cells. A. (Top) Biosets derived from microarray

comparisons of human cells exposed to chemicals were rank ordered based on their correlation to the biomarker using

the -Log(p-value) of the Running Fisher test. Biosets with positive correlation (red) to the biomarker are on the left and

biosets with negative correlation (green) to the biomarker are on the right. The dashed lines denote the cutoff p-

value = 10−4. (Bottom) The heat map shows the expression of genes in the biomarker across the biosets. B, biomarker
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biomarker itself. On Fig 4A, far right, a much smaller number of chemicals exhibited signifi-

cant negative correlations to the biomarker. These chemicals induced a pattern of gene expres-

sion that was opposite to that of the biomarker genes, similar to that found when the NFE2L2
gene was knocked down by RNAi (see above). These exposure conditions are thus thought to

suppress the activity of NRF2.

There were 260 unique chemicals that exhibited NRF2 activation. The top 20 chemical bio-

sets with the greatest correlation to the biomarker excluding the chemical comparisons used to

construct the biomarker, included well-known NRF2 activators (benzo[a]pyrene, sodium arse-

nite, indole-3-carbinol, menadione, and sulforafan) (Fig 4B). Far fewer chemicals suppressed

than activated NRF2 signaling. There were 43 chemicals that exhibited suppression of NRF2.

The top 20 chemical biosets with the most significant negative correlation to the biomarker are

shown in Fig 4C. The chemicals included carbon tetrachloride, curcumin, and dexamethasone.

Approximately half of all the activating chemicals were from experiments in cell types other

than HepG2 cells or primary hepatocytes, providing evidence that the biomarker has predic-

tive ability outside the context of liver cells (S1 File).

The microarray compendium includes multiple comparisons assessing the same chemical

but in different cell lines at different doses and times of exposure carried out by different labs.

To help organize the predictions, a Fisher’s Exact test was used to determine which chemicals

were overrepresented in biosets with active NRF2 scores. Of the chemicals examined and

which had a minimum of 3 bioset comparisons, 38 were significantly enriched (p< 0.05, with

Benjamini-Hochberg correction) for NRF2 activation (Table 2). The most highly enriched

chemicals included tobacco smoke, benzo[a]pyrene, sulforafan, quercetin, mitomycin C, and

sodium arsenite, all of which are known NRF2 activators or generate reactive oxygen species

[46]. Also included in the enriched chemicals were indole-3-carbinol, dithiothreitol (DTT)

and a naturally occurring steroid compound, withaferin A.

There are several factors to consider when interpreting these results. First, experimental

conditions other than the specific chemical (i.e. dose, time, cell line/type, etc.) are not included

in this analysis, all of which can play a significant role in determining transcriptional

responses. Second, the number of biosets a specific chemical is associated with can impact its

significance in this test. For example, if a chemical is associated with only three biosets, all

three must be positive for NRF2 activity for the chemical to be significantly enriched. There-

fore, this strategy is helpful in identifying chemicals with numerous biosets that activate NRF2

or chemicals that consistently activate NRF2 in smaller numbers of comparisons.

Dose-, time-, and mutation-dependent NRF2 modulation

Dose- and time-dependent NRF2 activation relationships were examined in a few select cases

as proof of concept that the biomarker could be used to uncover characteristics of NRF2 acti-

vation. Biosets from HepG2 cells exposed to the polycyclic aromatic hydrocarbon benzo[a]

pyrene, a prototypical AhR agonist and NRF2 activator, at 2 μM from four separate studies

genes. The numbers refer to rank-ordered bioset number. B. Top 20 chemical biosets that activate NRF2. Right,

heatmap depicting the gene expression changes for the 143 genes in the NRF2 biomarker in each bioset. The

biomarker gene expression changes are represented across the bottom of the heatmap. Each bioset is represented by

the chemical, time and concentration of exposure, cell line used, and annotated study. One study did not have all

information available (GSE13818). Abbreviations: BaP, benzo[a]pyrene; 2CMP, 2-(Chloromethyl) pyridine

hydrochloride; NPD, 4-Nitro-o-phenylenediamine; CLEFMA, 4-[3,5-bis(2-chlorobenzylidene-4-oxo-piperidine-1-yl)-

4-oxo-2-butenoic acid]; SFN, sulforafan; I3C, indole-3-carbinol. C. Top 20 chemical biosets that suppress NRF2.

Abbreviations: 4AAF, 4-acetylaminofluorene; 17DMAG, 17-(dimethylaminoethylamino) 17-demethoxygeldanamycin;

CCl4, carbon tetrachloride; Mixture, a mixture of liver toxicants; DMBA, 7,12-Dimethylbenz[a]anthracene.

https://doi.org/10.1371/journal.pone.0239367.g004
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(GSE28878, GSE36242, GSE36243, GSE40117) were examined in a time-course design (Fig

5A). Surprisingly, there was a strong negative, linear correlation between time of exposure (12

to 72 h) and–log(p-value) (R2 = 0.904), indicating that NRF2 activation is decreasing with time

of exposure beyond 12 hours, likely due to sequestration of reactive metabolites of BaP over

time. Consistent with this, DNA adduct formation in HepG2 cells by BaP peaks at 12 hours

Table 2. Chemicals enriched in NRF2 active biosets.

Perturbant Total

Biosets

Active

Biosets

Inactive

Biosets

Fisher’s Exact Test P-value

(Benjamini-Hochberg Corrected)

Tobacco smoke 239 84 155 1.39E-05

Benzo(A)Pyrene 27 15 12 2.78E-05

Sulforafan 10 10 0 4.17E-05

Quercetin 20 12 8 5.56E-05

Mitomycin 10 9 1 6.95E-05

Smoke 29 11 18 9.72E-05

Sodium Arsenite 11 7 4 1.11E-04

Indole-3-Carbinol 6 5 1 1.39E-04

Dithiothreitol 7 5 2 1.53E-04

Withaferin A 4 4 0 1.67E-04

Mln4924 8 5 3 1.81E-04

Azathioprine 20 7 13 1.94E-04

((1S,2S,4R)-4-(4-((1S)-2,3-Dihydro-1H-Inden-1-Ylamino)-7H-Pyrrolo(2,3-D)

Pyrimidin-7-Yl)-2-Hydroxycyclopentyl)Methyl Sulphamate

5 4 1 2.08E-04

Arsenic Trioxide 5 4 1 2.22E-04

Siomycin A 5 4 1 2.36E-04

Phenobarbital 16 6 10 2.64E-04

Nitric Oxide 11 5 6 2.78E-04

Oxyquinoline 6 4 2 2.92E-04

Decitabine 146 16 130 3.06E-04

Tetrachlorodibenzodioxin 19 6 13 3.20E-04

4-(Acetoxymethylnitrosamino)-1-(3-Pyridyl)-1-Butanone 3 3 0 3.33E-04

Cresidine 3 3 0 3.47E-04

Menadione 3 3 0 3.61E-04

Phenylenediamines 3 3 0 3.75E-04

Pyridine Hydrochloride 3 3 0 3.89E-04

Rosemary Oil 3 3 0 4.03E-04

Tert-Butylhydroperoxide 7 4 3 4.45E-04

Azacitidine 24 6 18 4.58E-04

Oxidized-L-Alpha-1-Palmitoyl-2-Arachidonoyl-Sn-Glycero-3-Phosphorylcholine 4 3 1 4.86E-04

Vitamin K 3 10 4 6 5.14E-04

Risperidone 5 3 2 5.28E-04

Atorvastatin 12 4 8 5.42E-04

Propylthiouracil 12 4 8 5.56E-04

17b-estradiol 174 15 159 5.70E-04

Cisplatin 157 14 143 5.83E-04

Aflatoxin B1 13 4 9 5.97E-04

WY 14,643 6 3 3 6.25E-04

The number of total biosets for each chemical were counted, as were the number of biosets in which NRF2 was activated or suppressed. A Fisher’s exact test was used to

determine which chemicals were significantly enriched in the group of biosets classified as NRF2 active.

https://doi.org/10.1371/journal.pone.0239367.t002
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compared to exposures of 6 and 18h [47]. In contrast, exposure to both 0.01 μM and 50 μM

quercetin for 12–48 h in HepG2 cells from two studies (E-MEXP-2574, GSE28878) demon-

strated strong positive, linear correlations (R2 = 0.957 and 0.846, respectively) (Fig 5B). Diaze-

pam exposure at 10, 50, and 250 μM for 2, 8 and 24 h in primary human hepatocytes (from the

TG-GATES study) displayed strong positive, linear correlations (R2 = 0.930, 0.964, and 0.999,

respectively) (Fig 5C), demonstrating that prolonged diazepam exposures are required to acti-

vate NRF2. The time-dependent activation of NRF2 in lung fibroblasts by the known NRF2

activator, dithiothreitol, from GSE4301 was examined (Fig 5D). NRF2 was maximally activated

by DTT at 16 hours.

Two chemicals were found to suppress NRF2 under conditions in which NRF2 exhibited

constitutively higher background than wild-type cells. Two activating mutations in the phos-

phatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha gene (PI3K3CA) (E545K

and H1047R) (GSE33403) and overexpression of the epidermal growth factor receptor (EGFR)

in the presence of EGF (caEGFR) (GSE3542) led to NRF2 activation compared to wild-type

cells (Fig 5E). Treatment of cells carrying the activating mutations in PI3KCA by the PI3K

inhibitor LY294002 led to suppression of NRF2. HCC827 cells possessing an amplified EGFR
allele with an activating in-frame deletion of 15 nucleotides in exon 19 were treated with the

EGFR inhibitor erlotinib, resulted in suppression of the background NRF2 activation.

Comparison between biomarker predictions and HTS studies: Validation

of predictions with a real-time NRF2 activation assay

Ninety chemicals screened in the ToxCast and/or Tox21 NRF2-activation assays were found

in the microarray compendium. Prediction of NRF2 activity agreed for 65 (72%) of the chemi-

cals, including seventeen actives and 48 inactives between the two HTS assays and using the

biomarker (Fig 6). The biomarker identified thirteen actives that the HTS assays did not, and

the HTS assays identified twelve actives that the biomarker did not.

Thirty chemicals were selected for follow-up screening in the SRXN1-GFP assay. The

SRXN1-GFP assay identifies chemicals that activate NRF2 detected by increased expression of

the GFP reporter under control of the human SRXN1 promoter in HepG2 cells [39]. The

chemicals were selected in part from the lists of NRF2 activators that differed between HTS

assays and biomarker predictions (Table 3). Cells were treated at multiple concentrations and

examined for GFP accumulation over a 24-h period. Thirteen chemicals (2-nitrofluorene, acet-

aminophen, allyl alcohol, atorvastatin, benzoin, carbamazepine, coumarin, diethylstilbestrol,

disulfiram, mefenamic acid, resorcinol, tetracycline, tolbutamide) were selected that had a pos-

itive response based on the biomarker approach. Of these, 7 (2-nitrofluorene, allyl alcohol, car-

bamazepine, diethylstilbestrol, mefenamic acid, resorcinol, tetracycline) induced NRF2

activity at least at one concentration (Fig 7). The two positive controls quercetin and sulindac

that were used to build the biomarker were positive in the assay. Of the remaining six inactive

compounds, four (acetaminophen, benzoin, coumarin, tolbutamide) were tested in the micro-

array studies at concentrations exceeding what could be achieved in the GFP reporter assay.

Fig 5. Examples of dose-, time-, and mutation-dependent modulation of NRF2. A. Response to 2 μM benzo[a]pyrene from 12 to 72 hours in HepG2 cells. Red circles

indicate NRF2 activation, blue circles indicate inactivity. Data from GSE28878, GSE36242, GSE36243, GSE40117. B. Exposure of HepG2 cells to 0.01 μM and 50 μM

quercetin from 12 to 48 hours. Data from E-MEXP-2574, GSE28878. C. Exposure of human primary hepatocytes to 10, 50, and 250 μM diazepam from 2 to 24 hours.

Data from the TG-GATES study. D. Exposure of lung fibroblasts to dithiothreitol (2.5 mM) at different time points. Data from GSE4301. E. Examples of chemicals

suppressing the activation of NRF2 in cancer cells expressing activated PI3K and EGFR. The activating mutations in PI3K3CA (E545K and H1047R) and overexpression

of EGFR in the presence of EGF (caEGFR) lead to activation of NRF2 compared to wild-type cells. HCC827 with EGFR Del15 cells possess an amplified EGFR allele with

an activating in frame deletion of 15 nucleotides in exon 19. Treatment of the cells with inhibitors for PI3K (LY294002) or EGFR (erlotinib) in the indicated cells

suppresses background NRF2 activation.

https://doi.org/10.1371/journal.pone.0239367.g005
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Thus, it is likely that NRF2 was not activated by these chemicals because of insufficient concen-

tration (Table 3). Of the fourteen chemicals predicted to be inactive using the biomarker

approach, nine (fenofibrate, progesterone, propiconazole, simazine, simvastatin, sulfisoxazole,

tamoxifen, triclosan, valproic acid) were not active in the reporter assay. Four (danazol, hydro-

quinone, indomethacin, pentachlorophenol) of the remaining five chemicals predicted to be

inactive using the biomarker were active in the reporter assay but were tested in the microarray

studies at concentrations under most of the concentrations used in the reporter assay. Thus,

these chemicals appear to be active at the concentrations tested in the reporter assays but not

at the lower concentrations used in the microarray studies. Using the designations in Table 3

for the compounds studied, we determined predictive accuracy. The sensitivity, specificity,

positive predictive value, and negative predictive value were 0.75, 0.82, 0.75 and 0.82, respec-

tively. The balanced accuracy was 0.78.

In addition, one of the test chemicals, the PI3K inhibitor LY294002, acted as a NRF2 sup-

pressor in the context of a constitutively active PIK3CA in the human breast cancer cell line

MCF10A when tested at 20 μM (see above). We predicted that this compound would suppress

background levels of NRF2 activation, but instead discovered it to be an activator in the

reporter assay, albeit at concentrations that concurrently caused cytotoxicity.

Discussion

High-throughput transcriptomic (HTTr) technologies have the potential to identify molecular

targets in in vitro screens of environmental chemicals. In the present study, we used a compu-

tational approach to identify modulators of NRF2, the major regulator of cellular responses to

oxidative stress. Using microarray data from chemical exposure and genetic modulation

Fig 6. Biomarker prediction agreement with HTS NRF2 assay results. Maximum biomarker scores for each chemical were extracted from the database of HepG2 and

hepatocyte experiments, and activity calls based on these scores were compared with activity determinations from ToxCast and Tox21 NRF2 HTS assays. Chemicals

examined at a concentration above the HTS-determined cytotoxicity threshold for that chemical were excluded from the analysis. Lists represent those chemicals

classified as NRF2-active by the biomarker only (left) or by HTS only (right). Biomarker score values shaded in red indicate results that are� -Log(p-value) = 4 for

activation of NRF2 signaling.

https://doi.org/10.1371/journal.pone.0239367.g006
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Table 3. Comparison of chemical effects using the biomarker and the SRXN1-GFP assay.

Chemical CAS

Number

Biomarker

maximum

(-log(p-

value))

Highest no-effect

concentration for

NRF2 activation in

microarray

experiments

Range of

NRF2-active

concentrations in

microarray studies

Maximum Tested Minimum Tested Summary of

SRXN1-GFP

assay

Prediction of

SRXN1-GFP

results by

microarray

Concentration in

SRXN1-GFP

Assay (uM)

Concentration

SRXN1-GFP in

Assay (uM)

2-Nitrofluorene 607-57-8 6 32–18 uM 200 0.1 Active TP

Acetaminophen 103-90-2 6.522879 10–1 mM 200 0.1 Inactive 2

Allyl alcohol 107-18-6 7.022276 70uM 200 0.1 Active TP

Atorvastatin 134523-

00-5

11.40894 40uM 190 0.1 Inactive FP

Benzoin 119-53-9 9.091515 345uM 200 0.1 Inactive 2

Carbamazepine 298-46-4 7.065502 300uM 200 0.1 Active TP

Coumaphos 56-72-4 1.793174 250uM 200 0.1 Active FN

Coumarin 91-64-5 6.69897 300uM 200 0.1 Inactive 2

Danazol 17230-

88-5

3.39794 35uM 200 0.1 Active 1

Diethylstilbestrol 56-53-1 8.585027 5uM 200 0.1 Active TP

Disulfiram 97-77-8 5.823909 60uM 200 0.1 Inactive FP

Fenofibrate 49562-

28-9

0.556737 30uM 200 0.1 Inactive TN

Hydroquinone 123-31-9 1.549751 150uM 200 0.1 Active 1

Indomethacin 53-86-1 3.69897 200uM 200 0.1 Active FN

LY294002 154447-

36-6

-5.638 20uM 200 0.1 Active NU

Mefenamic acid 61-68-7 4 150uM 200 0.1 Active 1

Pentachlorophenol 87-86-5 1.752027 10uM 100 0.05 Active 1

Progesterone 57-83-0 0 6uM 200 0.1 Inactive TN

Propiconazole 60207-

90-1

1.847712 10uM 200 0.1 Inactive TN

Quercetin 117-39-5 26.48149 10nM, 50uM 200 0.1 Active PC

Resorcinol 108-46-3 10.40894 2mM 200 0.1 Active TP

Simazine 122-34-9 -0.96981 50uM 200 0.1 Inactive TN

Simvastatin 79902-

63-9

0.407601 30uM 200 0.1 Inactive TN

Sulfisoxazole 127-69-5 -2.92082 5uM 200 0.1 Inactive TN

Sulindac 38194-

50-2

11.85387 0.6, 3mM 200 0.1 Active PC

Tamoxifen 10540-

29-1

0 25uM 100 0.05 Inactive TN

Tetracycline 60-54-8 10.88606 2mM 200 0.1 Active TP

Tolbutamide 64-77-7 9.744727 2.1mM 200 0.1 Inactive 2

Triclosan 3380-34-

5

-0.61834 22uM 200 0.1 Inactive TN

Valproic acid 99-66-1 1.171985 5mM 200 0.1 Inactive TN

Biomarker maximum (-log(p-value)): for any chemical represented by more than one bioset in the compendium, the top -Log(p-value) was selected. The range of

concentrations assessed using the biomarker were from experiments in hepatocytes or hepatocyte-derived cell lines. In the column “Prediction of SRXN1-GFP results by

microarray”: PC, positive control; 1 = concentration tested in the microarray studies was under that tested in the GFP assay; 2 = concentration tested in the microarray

study exceeded that tested in the GFP assay; NU = not used in prediction. LY294002 was tested to determine if this compound suppresses NRF2 activity (described in

Fig 5E).

https://doi.org/10.1371/journal.pone.0239367.t003
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conditions known to either activate or suppress NRF2 activity, we identified 143 biomarker

genes with an expression pattern consistent with NRF2 activation. When used in conjunction

with a pattern-matching approach, our methods could readily identify, in a large gene expres-

sion human cell line compendium, chemical exposure experiments known to modulate NRF2.

Using classifications from two HTS assays of NRF2 activation carried out in HepG2 cells, we

found that the approach was highly predictive in identifying NRF2 activators (balanced

Fig 7. NRF2 activity of selected chemicals in HepG2 cells. Thirty chemicals tested for confirmation in the SRXN1-GFP assay.

Cells were treated at multiple concentrations and examined for GFP accumulation over a 24-h period (GFP_pos_1–10) for

concentrations 1 to 10. The last two columns, PI_pos_10 and cell_count_10, are the Propidium Iodide positive fraction of cells

(marker for necrosis/ dead cells) and cell count compared to the negative control, respectively.

https://doi.org/10.1371/journal.pone.0239367.g007
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accuracy of 93%). In an independent study of 29 chemicals, the predictions based on the NRF2

biomarker were independently validated for most of the chemicals in HepG2 cells encoding a

NRF2-responsive GFP reporter (78% balanced accuracy). Our methods were used to perform

a virtual screen of chemicals in a human gene expression compendium of ~2380 chemicals.

We found that 288 chemicals activated NRF2 including several chemicals that were not also

identified in the NRF2 HTS assays. We identified 53 chemicals that appeared to suppress

NRF2, because exposure led to an expression pattern opposite that of the biomarker itself. The

results indicate that our approach can be reliably used as a Tier 1 screen in the context of a

larger HTTr profiling effort, similar to those ongoing in the ToxCast screening program [48].

Determination of predictive accuracy required identification of a set of chemicals with

known (positive or negative) activity for NRF2. In our microarray compendium there were

relatively few chemicals that could be considered “true” positive or negative NRF2 activators,

because many chemical activators reported in the literature have been investigated only at the

level of transcriptional induction of one or a few NRF2 target genes, far less than the full-

genome analysis in the present study. Microarray studies of dose-response and time-course

relationships are likewise relatively rare. Thus, the number of chemicals that can be confidently

classified as true activators within the human compendium were too few to perform meaning-

ful balanced accuracy calculations. We therefore chose to leverage the ToxCast and Tox21

HTS assay data to classify chemicals as NRF2 activators. Only chemicals consistently active or

inactive in both assays were used to determine accuracy. These selection criteria yielded 35

chemicals with consensus NRF2 HTS activity. Using these designations as the truth, the bal-

anced accuracy of the biomarker was 93%. There were three false positives (allyl alcohol, carba-

mazepine, coumarin) and one false negative (mefenamic acid). The microarray profiles of

these compounds exhibited expression of biomarker genes that were consistent in direction

and magnitude to the changes of the biomarker genes. Remarkably, carbamazepine was weakly

active at 100 μM, and coumarin was active at 50 μM in earlier studies carried out in HepG2

cells [49, 50], indicating that despite the lack of activity in both HTS assays, these chemicals are

likely NRF2 activators. Reclassification of these two chemicals as true positives, improves bal-

anced accuracy to 96%. The excellent predictive accuracy is similar to those of other biomark-

ers that we have characterized, including those that identify chemical modulators of

xenobiotic-activated transcription factors in the mouse and rat liver [11–13, 16, 17, 19] and

those that identify modulators of ER and AR in human cell lines [22, 23].

In addition to the chemicals discussed above, which had consistent NRF2-activating behav-

ior in both HTS assays, we expanded our comparison to the larger set of chemicals in which

there were differences between the two HTS assays. In general, our predictions of NRF2 activa-

tion compare favorably with those made from ToxCast and Tox21 in vitro HTS assays. After

filtering for biosets exposed at concentrations higher than the HTS-derived cytotoxicity

threshold, predictions for 65 chemicals agreed between the biomarker and HTS approaches

(Fig 6). There were thirteen chemicals that the biomarker identified as activating NRF2 that

were not called hits in the HTS assays. This may be the result of cell type differences, because

primary hepatocyte data was included in the biomarker-based approach. HTS assays identified

twelve active chemicals classified as inactive by the biomarker. However, these microarray

studies were not optimal for comparison to the more standard HTS data. The chemicals

included five in which exposures were below the HTS-determined AC50 (i.e., test concentra-

tions insufficient to activate NRF2), four chemicals were tested using exposure durations that

may not be optimal for NRF2 activation, including three that were exposed for 8 h or less, and

one for 72 h. Two chemicals had no dose information available. Thus, the microarray data

available for these chemicals was suboptimal. One notable difference in the chemicals identi-

fied by HTS assays but not the biomarker was curcumin. Curcumin is a diarylheptanoid found
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in turmeric and is well known to increase NRF2 signaling [51, 52]. HTS assays correctly identi-

fied curcumin as a hit, whereas the biomarker did not. Surprisingly, gene expression changes

in HepG2 cells exposed to 1 μM for 12, 24, or 48 hours (GSE28878) resulted in significant

NRF2 suppression at 48 hours, exactly opposite of that expected. Regarding the chemicals that

were classified as activating NRF2 by the biomarker approach but not in the HTS assays, it is

possible that the conditions used to assay NRF2 in the HTS assays was not optimal. Most of

the chemicals were either examined at doses above 100 μM (eight chemicals) or at time points

greater than 24 hours (three chemicals), or both in the microarray studies. Only allyl alcohol

was examined under conditions comparable to the HTS assays (70 μM and at 24 hours). Dif-

ferences in chemical metabolism may also contribute to differences between assays. Thus, the

differences in the classifications between the HTS assays and the biomarker could be explained

in part by differences in the concentrations and times of exposure. These considerations are

important given that there are differences between chemicals in the exposure times that pro-

duce maximal activation of NRF2 (Fig 5).

Given some inconsistencies between our biomarker approach and the HTS assays, we

examined 29 chemicals in HepG2 cells that possess a NRF2-reponsive reporter in which GFP

is under control of the promoter from the SXRN1 gene. We found that when dose is consid-

ered, most of the predictions based on the biomarker approach could be confirmed using the

reporter system. In any toxicity assay, false negatives are a concern. Out of the thirteen chemi-

cals that were positive using the biomarker approach, six chemicals tested inactive in the

reporter assay. However, all but two of the chemicals (atorvastatin, benzoin) were active only

at concentrations that could not be achieved using the reporter assay due to DMSO tolerance

of the HepG2 cells coupled to stock solution concentrations. Excluding those chemicals in

which sufficient test concentrations could not be achieved, the reporter assay was able to con-

firm 7 of the 9 chemicals that were identified as positive using the biomarker (Table 3). In sum-

mary, the SXRN1-GFP assay was able to predict the NRF2 activation status of most of the

chemicals selected for rescreening (78% balanced accuracy).

We performed a virtual screen of the chemicals in the human microarray compendium and

found many chemical-dose-time conditions that result in NRF2 activation. The biomarker

correctly identified many known chemical NRF2 activators (e.g., sodium arsenite, phenylene-

diamines, azathioprine, dithiothreitol), as well as known environmental stressors that increase

oxidative stress (tobacco smoke, nitric oxide). Furthermore, the procedures identified chemi-

cals that interact with the aryl hydrocarbon receptor (benzo[a]pyrene, smoke) and whose

CYP-mediated metabolism results in increased oxidative stress, activating NRF2 [41]. Impor-

tantly, the biomarker identified NRF2-activating chemicals in cell lines other than HepG2 or

primary hepatocytes. This finding was not unexpected because the biomarker was built from

data derived from multiple cell types. Although there are likely cell type-specific effects of

NRF2 activation (e.g., [34, 53]), there are also core changes in gene expression that can be used

as a marker for activation in a larger number of cell lines.

In addition to NRF2 activators, our method identified chemicals that suppress NRF2 activ-

ity. Forty-three chemicals elicited a pattern of gene expression with significant negative corre-

lation to the biomarker, similar to the pattern observed with NRF2 knockdown. Although it is

possible that fewer chemicals suppress than activate NRF2, it is likely that the experimental

conditions across the compendium were not optimized to identify NRF2 suppressors. To

effectively identify suppressors, an attempt to first stimulate NRF2 activity is needed, similar to

running the “antagonist mode” in hormone receptor assays in which cells are pre-treated with

a test compound before the addition of a known agonist. In fact, two compounds identified by

the biomarker as NRF2 suppressors, the PI3K inhibitor LY294002 and the EGFR erlotinib, did

so in the context of cells harboring oncogenic mutations that led to constitutive activation of
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PI3K in MCF10A cells [54] or lung cancer cells expressing a constitutively active EGFR [55].

Examination of two constitutively active mutants in PI3KCA vs. wild-type cells or overexpres-

sion and activation of EGFR vs wild-type cells showed that NRF2 was activated supporting ear-

lier work [30]. We tested the ability of the LY294002 compound to suppress NRF2 in our

SRXN1-GFP assay, but instead we were surprised that NRF2 was activated. The activation may

be an off-target effect since the NRF2-activating concentration of the chemical was much

higher than that used to inhibit PI3K. Overall, while screening for NRF2 suppressors appears

to be feasible using our approach, the microarray data in the compendium was not generated

under conditions optimized to allow suppression of constitutively activated NRF2. In sum-

mary, the present study is to our knowledge the first to utilize gene expression data to identify

potential human NRF2 modulators in a large screening study. Using a similar approach, our

group has recently identified chemicals that activate NRF2 in the mouse liver and compared

the activation to conditions in which a number of xenobiotic-activated transcription factors

are chemically activated [20, 21, 56].

One focus of the ToxCast high-throughput screening program at EPA is to prioritize for

further testing the vast number of chemicals used in industry with little toxicity information.

Gene expression profiling represents a more global screening approach and an important

complementary system to the current in vitro HTS assays that are at the forefront of the field.

The historical challenge of low throughput of gene expression analysis, has been partially

addressed through advances in technology. Another major challenge since the beginning of

toxicogenomics is linking changes in gene expression to specific molecular events and toxico-

logical outcomes. Our work here in the case of NRF2 and by extrapolation increases in oxida-

tive stress, and in other publications examining endpoints important in endocrine disruption

[22, 23] and DNA damage [24, 57], directly addresses this issue. Moving forward, biomarkers

for activation of transcription factors can, to some extent, be developed using existing microar-

ray data. However, there are many important targets of environmental chemicals that lack the

chemical activator data required to construct predictive biomarkers. Cell-based experiments

utilizing siRNA knockdown or Crispr-Cas9 mediated knockout of transcription factors of

interest combined with exposure to chemical activators and gene expression profiling via cur-

rent, high-throughput approaches have the potential to quickly fill these data gaps.

Supporting information

S1 File. Supporting information. Contains 1) list of genes that comprise the NRF2 biomarker,

2) evidence from ChIP-Seq studies for direct interactions between biomarker genes and

NRF2, and 3) biosets examined in this study.
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