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A B S T R A C T

Background and purpose: In radiotherapy, automatic organ-at-risk segmentation algorithms allow faster deli-
neation times, but clinically relevant contour evaluation remains challenging. Commonly used measures to
assess automatic contours, such as volumetric Dice Similarity Coefficient (DSC) or Hausdorff distance, have
shown to be good measures for geometric similarity, but do not always correlate with clinical applicability of the
contours, or time needed to adjust them. This study aimed to evaluate the correlation of new and commonly used
evaluation measures with time-saving during contouring.
Materials and methods: Twenty lung cancer patients were used to compare user-adjustments after atlas-based and
deep-learning contouring with manual contouring. The absolute time needed (s) of adjusting the auto-contour
compared to manual contouring was recorded, from this relative time-saving (%) was calculated. New eva-
luation measures (surface DSC and added path length, APL) and conventional evaluation measures (volumetric
DSC and Hausdorff distance) were correlated with time-recordings and time-savings, quantified with the Pearson
correlation coefficient, R.
Results: The highest correlation (R = 0.87) was found between APL and absolute adaption time. Lower corre-
lations were found for APL with relative time-saving (R = −0.38), for surface DSC with absolute adaption time
(R = −0.69) and relative time-saving (R = 0.57). Volumetric DSC and Hausdorff distance also showed lower
correlation coefficients for absolute adaptation time (R = −0.32 and 0.64, respectively) and relative time-
saving (R = 0.44 and −0.64, respectively).
Conclusion: Surface DSC and APL are better indicators for contour adaptation time and time-saving when using
auto-segmentation and provide more clinically relevant and better quantitative measures for automatically-
generated contour quality, compared to commonly-used geometry-based measures.

1. Introduction

Contouring of organs-at-risk (OARs) and target volumes is an im-
portant step in radiation treatment planning [1,2]. However, the deli-
neation quality and time spent on contouring strongly depend on the
experience of the radiation oncologist or radiotherapy technician (RTT)
[3,4]. In the last decades, auto-segmentation algorithms have been
developed, including atlas-based methods and deep-learning algorithms
based on convolutional neural networks [5,6]. These methods have the
potential to reduce inter- and intra-observer variability and speed-up
the contouring process. However, the majority of the automatically
generated contours still require manual corrections to make them

clinically acceptable, although many studies show time-savings com-
pared to full manual contouring [7–11].

Multiple studies have been performed to evaluate auto-segmenta-
tion of OARs for different treatment sites [10–16]. Despite the pro-
mising results in terms of efficiency and consistency, it remains a
challenge to objectively assess the automatically generated contours in
terms of changes that still remain to be made. Often, the automatically
generated contours are compared to manual contours. A large range of
metrics can be used for this, as shown by Taha and Hanbury [17]. The
most common measures are the volumetric Dice Similarity Coefficient
(DSC) and the Hausdorff distance, which are good measures for the
geometric quantification of contour similarities [9,10,15,18–21]. The
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volumetric DSC evaluates the intersection of two contour volumes re-
lative to the union, and the Hausdorff distance represents the maximum
nearest neighbor Euclidean distance between contours.

However, these measures have a low correlation to clinical contour
quality or time needed to adjust the contours [9]. As auto-segmentation
techniques are nowadays frequently introduced in clinical practice to
reduce contouring time, it is desirable to estimate this time-saving.
However, direct evaluation of the reduction in contouring time is, of
itself, time-consuming. Thus, there is a need for quantitative evaluation
measures that correlate with clinical practice (e.g. predict time-saving
using automatically generated contours).

In this study, we evaluated existing standard quantitative geometric
measures and propose a new evaluation measure: the path length of a
contour that has to be added. In addition to the standard DSC and
Hausdorff distance, the correlation with time-saving was also in-
vestigated for the surface DSC, a measure introduced by Nikolov et al.
[22]. Compared to the volumetric DSC, the surface DSC compares two
contours (i.e. surfaces) instead of volumes. Therefore, the surface DSC
and added path length (APL) measures are hypothesized to be more
clinically meaningful performance measures of segmentation, espe-
cially in terms of time-saving, compared to the Hausdorff distance and
volumetric DSC. We evaluated these measures using atlas-based and
deep-learning auto-segmentation methods for OARs in the thorax.

2. Materials and methods

2.1. Patient cohort and contouring

Patient CT imaging data, delineated contours, and time recordings
were taken from the study by Lustberg et al. [7]. In short, the mid-
ventilation phase of a 4D CT scan (resolution = 0.977 × 0.977 mm,
slice spacing = 3 mm) of twenty consecutively treated stage I-III non-
small cell lung cancer (NSCLC) patients was used to contour various
OARs: the left lung, right lung, heart, spinal cord, esophagus, and
mediastinum. The OARs were fully manually contoured using the
clinically available treatment planning system ([TPS], Eclipse, version
11.0, Varian, Palo Alto, United States of America), except for the lungs
which were segmented using auto-threshold options available in the
TPS, followed by manual corrections. A commercial atlas-based and a
prototype deep-learning contouring method (EmbraceCT and DLCex-
pert, respectively, from Mirada Medical Ltd., Oxford, United Kingdom)
were used for auto-segmentation, followed by manual adjustments for
fine-tuning to make them clinically acceptable. By using both atlas and
deep-learning based contouring methods, variation in contouring
quality is ensured [7]. For each method, the time required for manual
contouring and contour adjustment was recorded for each patient and
OAR individually. All contouring tasks were performed by one experi-
enced RTT, aware of the time being recorded, to reduce inter-observer
variability. This retrospective study was approved by the Institutional
Review Board.

2.2. Clinical contour accuracy and quality measures

All contours were imported in Matlab R2018b (The MathWorks Inc.,
Natick, MA, USA) for further analysis. For each OAR, the similarity
between automatically generated and user-adjusted contours was
quantitatively assessed in terms of contour quality and time-saving. The
volumetric DSC, the mean slice-wise Hausdorff distance (MSHD), the
surface DSC and the new APL measure were used (Fig. 1). Although the
surface DSC was previously introduced by Nikolov et al. [22], it has not
been correlated to time-saving yet. The volumetric DSC is defined as the
intersection of two contour volumes relative to the union in 3D. The
MSHD is defined as the maximum nearest neighbor Euclidean distance
between the surfaces of the two contours in one slice, calculated from
the auto-contour towards the user-adjusted contour, and averaged over
all slices. The surface DSC is defined as the intersection surface of the

two contours normalized by the union of the two contours, in 3D. The
path length of a contour that had to be added to meet the institutional
guidelines for contouring was calculated by considering all manual
adjustments in terms of pixels added, both expansion and shrinkage of
the automatically generated contour.

The absolute time needed (s) for adjusting the auto-contours and the
relative time-saving (%) compared to manual contouring were mea-
sured per OAR. Pearson correlation coefficients (R) between these time
measures and the evaluation measures were calculated using linear
regression.

To evaluate whether the measures correlate to actual editing time,
the similarity between each automatically generated and user-adjusted
OAR contour was calculated, as this represents the actual amount of
editing performed. Consequently, the tolerance parameter introduced
by Nikolov et al. [22], representing inter-observer variation in seg-
mentations, was set to 0 mm for both surface DSC and APL, because all
edits should be analyzed.

In addition, this analysis was repeated for the automatically gen-
erated contours compared to the manual contours, as a manual “ground
truth” would be used to evaluate auto-contouring in the absence of
user-editing. Because both the automatic and manual contour might be
considered clinically acceptable when considering a small difference,
which would result in no adjustment of the automatic contour, a tol-
erance of 1 voxel (1 mm) was considered for this analysis. This toler-
ance was taken into account to avoid penalizing contours within
clinically acceptable tolerance.

3. Results

In total 235 automatically generated contours were evaluated. The
median time required to contour all OARs manually was 20 min per
patient [range 16–25 min]. The total median relative time-saving when
using auto-contouring compared to manual contouring was 40% [range
−321% (i.e., more time was needed) to 93% (i.e., time was saved)] for
the atlas-based method and 71% [range −50 to 94%] for DLC, de-
monstrating the contour quality difference between the two methods.

An example of automatically generated and user-adjusted contours
of the heart for two patients is shown in Fig. 2. The volumetric DSC of
the automatically generated and user-adjusted contour was similar, but
the MSHD, surface DSC, APL, and contouring time saved were de-
viating.

When comparing the manual contouring time with the path length
of the manual contour, a correlation coefficient of 0.90 was found
(excluding the lungs, see Fig. S1, Supplementary Material). Correlation
coefficients for all measures with respect to the absolute time needed
for adjustment are shown in Fig. 3. A correlation coefficient of −0.32
was found for the volumetric DSC, 0.64 for the Hausdorff distance,
−0.69 for the surface DSC, and 0.87 for the APL. Table S1 and S2 in the
Supplementary Material show for each measure the correlation coeffi-
cients and linear fit parameters for all OARs separately. For the APL, the
newly introduced measure, the correlation coefficients ranged between
0.44 and 0.88, with the right lung showing the lowest correlation. Al-
most all organs showed similar slopes for the APL, except for one outlier
for the spinal cord, and the esophagus. The mediastinum had the
highest APL (826 cm [range 290–2441 cm], compared to a median
range of 24–413 cm for the other OARs).

Fig. 4 shows correlation coefficients for all measures with respect to
the relative contouring time saved when using auto-segmentation. A
correlation coefficient of 0.44 was found for the volumetric DSC, −0.64
for the Hausdorff distance, 0.57 for the surface DSC, and −0.38 for the
APL. Supplementary Material Tables S3 and S4 show for each measure
the correlation coefficients and linear fit parameters for all OARs se-
parately. For the surface DSC, the correlation coefficients ranged be-
tween 0.50 and 0.92, with the right lung showing the lowest correla-
tion. The esophagus had the lowest surface DSC with the most spread
(63% [range 7–94%], compared to a median range of 66–97% for the
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other OARs). For the atlas-based method, the lungs show a different
distribution of points compared to the other OARs. The slope of the
linear fit is less steep, i.e. for a certain surface DSC, less contouring time
is saved compared to the other OARs. If the atlas-based contoured lungs
are removed from the total comparison, a correlation coefficient be-
tween the surface DSC and relative time saved of 0.76 was found.

The results of the comparison of the automatic and manual con-
tours, which represent expected edits, are shown in Fig. 5. For the
absolute time needed for adjustment, a correlation coefficient of −0.24
was found for the volumetric DSC, 0.60 for the Hausdorff distance,
−0.77 for the surface DSC, and 0.81 for the estimated APL. For the
relative contouring time saved, a correlation coefficient of 0.37 was
found for the volumetric DSC, −0.63 for the Hausdorff distance, 0.55
for the surface DSC, and −0.35 for the estimated APL (Fig. S2,
Supplementary Material).

4. Discussion

In this study, the surface DSC and APL measures were found to be
better indicators of time-saving, and thus clinical applicability and
quality of automatically-generated contours, compared to the standard
geometry measures volumetric DSC and MSHD. Even though the MSHD
shows the highest correlation for relative time-saving when including
all OARs, MSHD gives no information about the amount of contour that
is adjusted, only how far the adjusted contour is from the original one.

A number of studies evaluated auto-segmentation of OARs [10–16].
The most commonly-used measures, the volumetric DSC and the
Hausdorff distance, were found to be good measures for the geometric
quantification of contour similarities [9,10,15,18–20]. Next to these
measures, the average surface distance (ASD) is also frequently used,
leading to similar correlation coefficients as the Hausdorff distance as
used in this study (see Fig. S3–S4, Supplementary Material). Van der
Veen et al. found a 33% shorter delineation time using automated de-
lineation compared to manual contouring [10]. Gooding et al. show

time-savings for atlas-based auto-contouring of the same OARs as in this
study ranging from 12% (esophagus) to 77% (right lung), and obtained
scores for the volumetric DSC ranging from 0.46 (esophagus) to 0.98
(lungs) [9]. Yang et al. also show volumetric DSC ranging from 0.55
(esophagus) to 0.98 (lungs) [23]. These values are comparable to the
values in our study, indicating that the auto-contouring algorithms used
in our study perform equally well to those in literature. However, it
remains challenging to relate the quality of the automatically generated
contour in terms of changes that still need to be made with a measure
showing clinical applicability. In this study, two clinically useful mea-
sures were found to correlate well with time-recordings and time-sav-
ings, showing these can be used to estimate the quality of automatically
generated contours in terms of applicability and usefulness.

When comparing automatically generated and user-adjusted con-
tours, the surface DSC and APL calculations are based on adaptations of
the auto-contours. However, in a typical investigation, the auto-contour
would normally be compared with a “ground truth” manual contour.
Comparable results were found (Figs. 3 and 5), indicating that both
surface DSC and APL can be used in this way to estimate editing time.
The higher correlation observed with APL may suggest that this mea-
sure is a more effective tool in such an assessment. However, a fixed
tolerance of 1 mm was used in this study and the clinical relevance of
this tolerance will most likely differ per OAR, which may slightly
change the results observed here.

The use of the evaluation measures surface DSC and APL in clinical
commissioning allows for time-saving estimations without elaborate
manual timing by experts. A correlation between path length adjust-
ments and time-saving only needs to be determined in a small group
(e.g. 5–10 patients) from which then an estimation on a larger popu-
lation can be made. Further evaluation could include more treatment
sites. However, we investigated multiple OARs in the thorax and found
that especially for APL the correlation and time-saving did not depend
on OAR size or location in the thorax (see Fig. 3 and Supplementary
Material). Although individual OAR analysis showed that an OAR may

Fig. 1. Illustration of evaluation measures
used in this study. The solid line represents
the automatically generated contour, the
dashed line the user-adjusted contour. A
Volumetric DSC, defined as the union of two
volumes (green volume region) normalized
by the mean of the two volumes. B
Hausdorff distance, defined as the maximum
nearest neighbor Euclidean distance (green
arrow). C Surface DSC, defined as the union
of two contours (yellow contour region)

normalized by the mean surface of the two contours. D Added path length (APL) (yellow contour region). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 2. Example of transverse CT images of
two patients showing the automatically
generated (solid line) and user-adjusted
(dashed line) contours of the heart. For both
patients, the volumetric DSC of the auto-
matically generated and user-adjusted con-
tour is similar (94%), but the MSHD, surface
DSC, and APL differ between these patients
(0.92 cm vs. 1.34 cm, 44% vs. 68%, 678 cm
vs. 409 cm, respectively). The contouring
time needed to make both contours clini-
cally acceptable for these patients also dif-
fered (3.6 min vs. 3.1 min and 6% vs. 20%,
respectively). Manual contouring time for
both contours was approximately 4 min.
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have a slightly higher correlation for one of the traditional measures,
the APL shows the highest correlation when combining all OARs, which
ensures that the whole range of contours and adaptations is included.
This indicates that the correlation for APL is robust and does not depend
as much on the specific OAR as for the other measures.

Generally, time-saving depends on three main aspects; whether the
boundary of an OAR is visible, the volume of the OAR, and the deli-
neation tool(s) used for manual contouring and editing (e.g. pen or

brush, the diameter of the brush, and the ability to interpolate struc-
tures, axial contouring or contouring in 3D). Both for automatic and
manual segmentation, boundary visibility hampers easy delineation.
This is indicated by, for example for the esophagus, a low surface DSC
and longer contouring times, indicating that more was adjusted and
consequently, more time was needed. The low contrast also impairs the
visual identification and precise localization of the esophagus.
However, the esophagus is volumetrically a relatively small organ, and

Fig. 3. All measures against absolute time needed to adjust the automatically generated contour, comparing the automatic to the adjusted contour. Atlas-based
(circles) and deep-learning contouring (triangles) were combined. MSHD = Mean Slice-wise Hausdorff Distance.

Fig. 4. All measures against relative contouring time saved after adjusting the automatically generated contour, comparing the automatic to the adjusted contour.
Atlas-based (circles) and deep-learning contouring (triangles) were combined. MSHD =Mean Slice-wise Hausdorff Distance. One outlier (x =−321%) is not shown
in these graphs.
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the absolute time needed to adjust the contour is low compared to
adjusting a bigger organ by the same percentage. Furthermore, the DSC
measures are normalized by volume or surface, resulting in low values
and outlier results for the esophagus. Similarly, if editing slice-by-slice,
the number of slices that an OAR covers also has to be taken into ac-
count when considering the absolute editing time needed (e.g. the heart
covers fewer slices than the esophagus). The APL measure takes these
issues into account.

The delineation tool used might also affect the similarity measure
that would be most appropriate, e.g. the APL assumes drawing lines. If
you would use a brush tool without auto-filling, then the added area
might be more meaningful. The diameter of the brush also influences
the time needed to draw a contour part. When using the surface DSC
as a delineation time measure, it has to be considered that this mea-
sure will give the same result when slices are added or deleted, al-
though it can be assumed that adding contours takes much longer than
deleting a whole slice using a “cut” tool. Deleting a slice can typically
be done in one click with an appropriate tool in most contouring
software. The APL takes this into account implicitly, as only drawn
path pixels are included in the calculation. However, when using the
paintbrush to fully delete a contour, the surface DSC may be more
appropriate.

When analyzing relative time-saving, it is assumed that the manual
contouring is being done fully manually. This is not always the case,
which results in a lower correlation. For example, for the surface DSC,
the lungs show a less steep linear fit compared to the other OARs,
especially for contours of lower quality (i.e. atlas-based contours). This
is because for the lungs the manual contouring is typically done using
auto-threshold options available in the TPS, which is already a time-
efficient procedure. Therefore, small manual adaptations of e.g. blood
vessels or bronchi in the auto-segmented lung contours take relatively a
lot of time compared to the auto-threshold contouring. In a couple of
cases, a collapsed lung was present, which was not correctly contoured
using atlas-based segmentation. The higher correlation of 0.76 that was
found when removing the lungs from the total comparison indicates
that it is better to investigate the semi-automatic contouring of organs
such as the lungs separately.

A study by Gooding et al. showed that it is difficult for a clinical
observer to determine whether a contour was automatically generated
or manually delineated if the automated contour is at a certain quality
level [9]. It was found that the inability to judge the source of a contour
correctly indicates that the quality of the contour is sufficient, which
results in a reduced need for editing and therefore a greater time-
saving. Being able to evaluate the time-saving is an important aspect of
the clinical applicability of auto-segmentation techniques. Ideally, a
technician should be able to score the quality of the auto-segmented
contour before starting the editing process in clinical practice by visual
inspection to determine if they should edit the auto-contour or start
from scratch.

Application of the new path length measure in clinical practice
implicates that a technician should perform this quality assessment
by considering the path length that needs adjustment instead of es-
timating the extent of volume overlap, which is usually the current
way experts score the usefulness of contours. Better visual estimation
of the time required for editing may improve adoption of auto-seg-
mentation techniques in clinical practice, by reducing frustration
with editing auto-contours that do not save time, and fully utilizing
those that do.

In general, when an observer would expect to change an auto-
matically generated contour by more than ~40%, it is expected that no
time would be saved, which follows from the results of the surface DSC.
This also means that if APL is estimated to be more off than a certain
threshold, manual contouring would be recommended. Delineation
should hence be judged this way and not by volumetric overlap (Fig. 2).
Further investigation could include evaluation of the inter-observer
variability for the new measures by including more observers.

To conclude, two recently introduced/new evaluation measures
have been evaluated: the surface DSC and the APL. Compared to the
standard measures Hausdorff distance and volumetric DSC, these
measures are better indicators for the clinical delineation time saved
and absolute time needed using software-generated contours. They may
provide additional objectively quantifiable surrogates for assessing
time-saving and clinical applicability and quality of automatically
generated contours in the delineation process.

Fig. 5. All measures against absolute time needed to adjust the automatically generated contour, comparing the automatic to the manual contour. Atlas-based
(circles) and deep-learning contouring (triangles) were combined. MSHD = Mean Slice-wise Hausdorff Distance.
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