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Effective medium theory aims to describe a complex
inhomogeneous material in terms of a few important
macroscopic parameters. To characterize wave
propagation through an inhomogeneous material, the
most crucial parameter is the effective wavenumber.
For this reason, there are many published studies on
how to calculate a single effective wavenumber. Here,
we present a proof that there does not exist a unique
effective wavenumber; instead, there are an infinite
number of such (complex) wavenumbers. We show
that in most parameter regimes only a small number
of these effective wavenumbers make a significant
contribution to the wave field. However, to accurately
calculate the reflection and transmission coefficients,
a large number of the (highly attenuating) effective
waves is required. For clarity, we present results for
scalar (acoustic) waves for a two-dimensional material
filled (over a half-space) with randomly distributed
circular cylindrical inclusions. We calculate the
effective medium by ensemble averaging over all
possible inhomogeneities. The proof is based on
the application of the Wiener–Hopf technique and
makes no assumption on the wavelength, particle
boundary conditions/size or volume fraction.
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This technique provides a simple formula for the reflection coefficient, which can be
explicitly evaluated for monopole scatterers. We compare results with an alternative numerical
matching method.

1. Introduction
Materials comprising particles or inclusions that are randomly distributed inside a uniform host
medium occur frequently in the world around us. They occur as synthetically fabricated media
and also in nature. Common examples include composites, emulsions, suspensions, complex
gases and polymers. Understanding how electromagnetic, elastic or acoustic waves propagate
through these materials is necessary in order to characterize the properties of these materials, and
also to design new materials that can control wave propagation.

The wave scattered from a particulate material will be influenced by the positions and
properties of all particles, which are usually unknown. However, this scattered field, averaged
over space or over time, depends only on the average particle properties. Many measurement
systems perform averaging over space, if the receivers or incident wavelength are large
enough [1], or over time [2]. In most cases, this averaging process is the same as averaging over
all possible particle configurations. Such systems are sometimes called ergodic [2,3]. In this paper,
we focus on ensemble-averaged waves, satisfying the scalar wave equation in two dimensions,
reflecting from, and propagating in, a half-space particulate material. In certain scenarios, such as
light scattering, it is easier to measure the average intensity of the wave. However, even in these
cases, the ensemble-averaged field is often needed as a first step [4,5].

One driving principle, often used in the literature, is that the ensemble-averaged wave itself
satisfies a wave equation with a single effective wavenumber [6–8]. Reducing an inhomogeneous
material, with many unknowns, down to one effective wavenumber is attractive as it greatly
reduces the complexity of the problem. For this reason, many papers have attempted to
deduce this unique effective wavenumber from first principles in electromagnetism [3,9,10],
acoustics [11–15] and elasticity [16,17]. See [18] for a short overview of the history of this topic,
including typical statistical assumptions employed within the methods, such as hole-correction
and the quasi-crystalline approximation, which we also adopt here.

The assumption that the ensemble-averaged wave field satisfies a wave equation, with an
effective wavenumber, has never been fully justified. Here we prove that there does not exist
a unique effective wavenumber but instead there are an infinite number of them. Gower et al.
[18] first showed that there exist many effective wavenumbers, and provided a technique, the
Matching Method, to efficiently calculate the effective wave field. In the present paper and [18],
we show that for some parameter regimes, at least two effective wavenumbers are needed to
obtain accurate results, when compared with numerical simulations. We also provide examples
of how a single effective wave approximation leads to inaccurate results for both transmission
and reflection for a half-space filled with particles (figure 1).

Although the Matching Method developed in [18] gave accurate results, when compared
to numerical methods and known asymptotic limits, the limitations of the method were not
immediately clear. Here, however, we illustrate that the Matching Method is robust, because
combining many effective wavenumbers is not just a good approximation, it is an analytical
solution to the integral equation governing the ensemble-averaged wave field. We prove this by
employing the Wiener–Hopf technique and then, for clarity, illustrate the solution for particles
that scatter only in their monopole mode. The Wiener–Hopf technique also gives a simple and
elegant expression for the reflection coefficient.

The Wiener–Hopf technique is a powerful tool to solve a diverse range of wave scattering
problems, see [19, (ch. 5. Wiener–Hopf Technique)] and [20,21] for an introduction. It is especially
useful for semi-infinite domains [22–27] and boundary value problems of mixed type. In this
work, the Wiener–Hopf technique clearly reveals the form of the analytic solution, but to compute
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Figure 1. When an incident plane wave eik·(x,y), with k= k(cos θinc, sin θinc), encounters an (ensemble-averaged) particulate
material, it excites many transmitted plane waves and one reflected plane wave. The transmitted waves are of the form eisp·(x,y)

with wavenumbers sp = Sp(cos θp, sin θp), where both Sp and θp are complex numbers. The larger Im sp, the more quickly the
wave attenuates as it propagates into the half-space and the smaller the drawn vector for that wave above. The results shown
here represent the effective wavenumbers for parameters (5.2), which are shown in figure 3. (Online version in colour.)

the solution would require an analytic factorization of a matrix function. To explicitly perform this
factorization is difficult [28–31]. Indeed, this is often the hardest aspect of employing the Wiener–
Hopf technique, although there exist approximate methods for this purpose [28,32–34]. We do not
focus in this article on these analytic factorizations, as there already exists a method to compute
the required solution [18]. Instead, the present work acts as proof that the Matching Method [18]
faithfully reproduces the form of the analytic solution.

Figure 1 shows the main set-up and result of this paper: an incident plane wave excites the half-
space x> 0 filled with ensemble-averaged particles (the blue region), which generates a reflected
wave and many effective transmitted waves. The sp are the transmitted wavevectors, and the
smaller the length of the vector, the faster that effective wave attenuates as it propagates further
into the material.

The paper begins by summarizing the equations that govern ensemble-averaged waves in two
dimensions in §2. Following this, in §3 we apply the Wiener–Hopf technique to the governing
integral equation and deduce that the solution is a superposition of plane waves, each with a
different effective wavenumber. A simple expression for the reflection coefficient is also derived.
In §4, we specialize the results for particles that scatter only in the monopole mode, which leads
to a closed form analytic solution.

The dispersion relation (3.30), derived in §3, admits an infinite number of solutions, the
effective wavenumbers. In §5, we deduce asymptotic forms for the effective wavenumbers
in both a low- and high-frequency limit. In §6, we compare numerical results for
monopole scatterers, using the Wiener–Hopf technique, with classical methods that assume
only one effective wavenumber [11,13], and the Matching Method introduced in [18]. In
general, when comparing predicted reflection coefficients, the Wiener–Hopf and Matching
Method agree well, whereas the classical single-effective-wavenumber method can disagree
by anywhere up to 20%. These results are discussed in §7 together with anticipated
future steps.

2. Waves in ensemble-averaged particles
Consider a region filled with particles or inclusions that are uniformly distributed. The field u is
governed by the scalar wave equations:

∇2u + k2u = 0, (in the background material) (2.1)
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and

∇2u + k2
ou = 0, (inside a particle), (2.2)

where k and ko are the real wavenumbers of the background and inclusion materials, respectively.
We assume all particles are identical, except for their position and orientation, for simplicity. For
a distribution of particles, or multi-species, see [15].

Our goal is to calculate the ensemble-averaged field 〈u(x, y)〉, that is, the field averaged over
all possible particle positions and orientations. For clarity, and ease of exposition, we consider
that the particles are equally likely to be located anywhere except that they cannot overlap (this is
often called the hole correction assumption). We also assume the quasi-crystalline approximation;
for details on this, and for further details on deducing the results in this section, see [11,15,18].

By splitting the total steady wave field u(x, y) into a sum of the incident wave uinc(x, y) and
waves scattered by each particle, the jth scattered wave being uj(x, y), we can write

u(x, y) = uinc(x, y) +
∑

j

uj(x, y). (2.3)

A simple and useful scenario to consider is when all particles are placed only within the half-
space1 x> 0, which are then excited by a plane wave, with implicit time dependence eiωt, incident
from a homogeneous region:

uinc(x, y) = ei(αx+βy), with (α,β) = (k cos θinc, k sin θinc), (2.4)

where we restrict the incident angle −(π/2)< θinc < (π/2), as shown in figure 1, and consider a
slightly dissipative medium with

Re k> 0 and Im k> 0. (2.5)

This dissipation will facilitate the use of the Wiener–Hopf technique, and after reaching the
solution we can take k to be real.2

To describe the particulate medium, we employ the following notation:

b = the minimum distance between particle centres, (2.6)

n = number of particles per unit area, (2.7)

Tn = the coefficients of the particle’s T-matrix, (2.8)

and φ = πnb2

4
= particle area fraction. (2.9)

Although the area fraction φ, normally called the volume fraction, is a combination of other
parameters, it is useful because it is non-dimensional. If we let ao be the maximum distance from
the particle’s centre to its boundary, then we can set b = γ ao, where γ ≥ 2 so as to avoid two
particles overlapping. The volume fraction that does not include the exclusion zone φ′, as used in
[18, (eqn (4.7))], is then φ′ = 4φ/γ 2.

The Tn are the coefficients of a diagonal T-matrix [35–39]. The T-matrix determines how
the particle scatters waves, and so depends on the particle’s shape and boundary conditions.
A diagonal T-matrix can be used to represent either a radially symmetric particle, or particles
averaged over their orientation, assuming the orientations have a random uniform distribution.

The results of ensemble averaging (2.3) from first principals are deduced in a number of
references[15,18] and so details of this procedure are omitted here for brevity. To represent the

1The case where particles can be placed anywhere in the plane can lead to ill-defined integrals [11].

2Assuming Im k = ε > 0, rather than ε ≥ 0, will facilitate calculating certain integrals that appear below. However, after
reaching a solution, we can take the limit ε→ 0 to recover the physically viable solution for Im k = 0.
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ensemble-averaged scattered wave from a particle, whose centre is fixed at (x1, y1), we use

〈u1(x1 + X, y1 + Y)〉(x1,y1) =
∞∑

n=−∞
An(x1)eiβy1 H(1)

n (kR)einΘ , (2.10)

for R :=
√

X2 + Y2 > b/2, so that (X, Y) is on the outside of this particle, with (R,Θ) being the
polar coordinates of (X, Y), H(1)

n are Hankel functions of the first kind, and An is some field we
want to determine.3

By choosing4 x<−b, which is outside of the region filled with particles, then taking the
ensemble average on both sides of (2.3) results in eqn (6.7) of [18], given by

〈u(x, y)〉 = uinc(x, y) + Re−iαx+iβy for x<−b, (2.11)

which is the incident wave plus an effective reflected wave with reflection coefficient

R = eiαxn

∞∑
n=−∞

ˆ ∞

0
An(x1)ψn(x1 − x) dx1, (2.12)

where we assumed particles are distributed according to a uniform distribution, and the kernel
ψn is given by

ψn(X) =
ˆ

Y2>b2−X2
eiβY(−1)nH(1)

n (kR)einΘ dy. (2.13)

Later we show that, as expected, R is independent of x.
The system governing Am(x) is given by eqn (4.7) of [18]:

nTm

∞∑
n=−∞

ˆ ∞

0
An(x2)ψn−m(x2 − x1) dx2

= Am(x1) − eiαx1 Tmeim(π/2−θinc), for x1 ≥ 0, (2.14)

for all integers m. Kristensson [40, (eqn (15))] presents an equivalent integral equation for
electromagnetism and particles in a slab.

Our main aim is to reach an exact solution for An(x) by employing the Wiener–Hopf technique
to (2.14). We show how this also leads to simple solutions for the reflection coefficient by
using (2.11). We acknowledge the authors of [11], as they noticed that (2.14) is a Wiener–Hopf
integral equation, but apparently did not follow the steps indicated in the following sections.5

3. Applying the Wiener–Hopf technique
Equation (2.14) is convolution integral equation with a difference kernel. This means applying
a Fourier transform can lead to elegant and simple solutions. To facilitate, we must analytically
extend (2.14) for all x1 ∈ R by defining

nTm

∞∑
n=−∞

ˆ ∞

0
An(x2)ψn−m(x2 − x1) dx2

=
{

Am(x1) − eiαx1 Tmeim(π/2−θinc), x1 ≥ 0,

Dm(x1), x1 < 0,
(3.1)

3The factor eiβy1 appears due to the translational invariance of 〈u1(x1, y1)〉 in y1, which is a result of the material being
statistically homogeneous, see [15] for details.
4We define the reflection coefficient only for x<−b, instead of x<−b/2, so that we can use ψn in the formula for R, which
will in turn facilitate calculating R.
5However, they were unable to solve it because, it seems, of a mistake in the integrand of eqn (37) of [11]; they used eiβY

where they should have used cos(βY).
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for integers m, where if the An(x) were known for x> 0, then the Dn(x) would be given from the
left-hand side. Note that the kernel ψn defined in (2.13) is already analytic in the domain R.

The field D0(x) is not just an abstract construct, it is closely related to the reflected wave: by
directly comparing (3.1) with the reflection coefficient (2.12), for x<−b, we find that

D0(x) = T0Re−iαx. (3.2)

To solve (3.1), we employ the Fourier transform and its inverse, which we define as

f̂ (s) =
ˆ ∞

−∞
f (x)eisx dx with f (x) = 1

2π

ˆ ∞

−∞
f̂ (s)e−isx dx, (3.3)

for any smooth function f . We then define

Â+
n (s) =

ˆ ∞

0
An(x)eisx dx and D̂−

n (s) =
ˆ 0

−∞
Dn(x)eisx dx. (3.4)

We can determine where Â+
n and D̂−

n are analytic by assuming6 that

|An(x)|< e−xc for x → ∞ (3.5)

and
|Dn(x)|< exc for x → −∞, (3.6)

for some (possibly small) positive constant c. This leads to Â+
n (s) being analytic for Im s>−c,

while D̂−
n (s) is analytic for Im s< c. In other words, both Â+

n (s) and D̂−
n (s) are analytic in the

overlapping strip
|Im s|< c. (3.7)

To apply the Wiener–Hopf technique, we also need to specify the large s behaviour for both
Â+

n (s) and D̂+
n (s). To achieve this, we assume, on physical grounds, that An(x) is bounded when

x → 0+, and Dn(x) is bounded when x → 0−. Then, it can be shown [21,41] that

Â+
n (s) =O(|s|−1) and D̂−

n (s) =O(|s|−1) for |s| → ∞, (3.8)

in their respective half-planes of analyticity.
Applying a Fourier transform to both sides of equation (3.1), the left-hand side becomes

ˆ ∞

0
An(x2)

ˆ ∞

−∞
ψn−m(x1 − x2)eisx1 dx1 dx2 = Â+

n (s)ψ̂n−m(s), (3.9)

in which ψ̂n(s) is well defined (i.e. analytic) for s in the strip:

|Im s|< (1 − | sin θinc|)Im k, (3.10)

see appendix A for details. The right-hand side of (3.1) becomes
ˆ 0

−∞
Dm(x1)eisx1 dx1 +

ˆ ∞

0
Am(x1)eisx1 dx1

− eim(π/2−θinc)Tm

ˆ ∞

0
eix1(s+α) dx1 = D̂−

m(s) + Â+
m(s) − Tm

ieim(π/2−θinc)

(s + α)+
, (3.11)

where for the last step we assumed Im (s + α)> 0, which is why we use the superscript + on
(s + α)+. This assumption, together with (3.7) and (3.10), is satisfied if

|Im s|< ε, where ε = min{c, (1 − | sin θinc|)Im k, Imα}. (3.12)

If (3.12) is satisfied, then we can combine (3.9), (3.11) and (A 6), to obtain the Fourier transform
of (3.1) in matrix form:

Ψ (s)Â
+

(s)
s2 − α2 = −D̂

−
(s) + B

s + α
, (3.13)

6The solutions for An(x) and Dn(x), in the next section, show that these assumptions do hold.
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where Â
+

(s) and D̂
−

(s) are vectors with components Â+
n (s) and D̂−

n (s), respectively, and

Bm = iTmeim(π/2−θinc), (3.14)

Ψmn(s) = Gmn(S)(−i)n−mei(n−m)θS , (3.15)

Gmn(S) = (s2 − α2)δmn + 2πnTmNn−m(bS) (3.16)

and Nm(bS) = bkJm(bS)H(1)′
m (bk) − bSJ′m(bS)H(1)

m (bk) (3.17)

where, for reference,

Ψmn(s) = (s2 − α2)
[
δmn − nTmψ̂n−m(s)

]
, (3.18)

and ψ̂n−m(s) is given by (A 6). In the above, θS and S are chosen to satisfy

s = S cos θS with S sin θS = k sin θinc. (3.19)

Later we identify S and θS as the effective wavenumber and transmission angle. The above
does not determine the sign of S for any given complex s. To fully determine S and θS, we take
sgn(Re s) = sgn(Re S) which together with (3.19) leads to

θS = arctan
(

k sin θinc

s

)
and S =

√
s2 + (k sin θinc)2, (3.20)

where both S and θS, when considered as functions7 of s, contain branch-points at s = ±ik sin θinc
with finite branch-cut running between −ik sin θinc and ik sin θinc. However, Ψ (s) is an entire
matrix function having only zeros in s and no branch-points; see the end of appendix A for details.

Determining the roots of det Ψ (s) = 0 will be a key step in solving (3.13), and so the following
identities will be useful:

Ψmn(−s)Tn =Ψmn(s)Tn(−1)m−ne2i(m−n)θs =Ψnm(s)Tm (3.21)

and

det Ψ (−s) = det Ψ (s) and det Ψ (s) = det G(S). (3.22)

where (3.21) results from (3.18) and (A 10). Equation (3.22) then follows from using (3.21)1, (3.15)
and appendix C.

(a) Multiple waves solution
To solve (3.13), we use a matrix product factorization [42] of the form:

Ψ (s) = Ψ −(s)Ψ +(s), (3.23)

where Ψ −(s), and its inverse, are analytic in Im s< ε, and Ψ +(s), and its inverse, are analytic for
Im s>−ε. See (3.12) for the definition of ε.

For our purposes, it is enough to know that such a factorization exists [42], as this will lead to
a proof that A(x) is a sum of attenuating plane waves.

Multiplying both sides of (3.13) by [Ψ −(s)]−1 and by (s − α)− leads to

Ψ +(s)Â
+

(s)
(s + α)+

= −(s − α)−[Ψ −(s)]−1D̂
−

(s) + [Ψ −(s)]−1B
(s − α)−
(s + α)+

, (3.24)

where (s + α)+ is analytic for Im s>−Imα, while (s − α)− is analytic for Im s< Imα. We need
to rewrite the last term above as a sum of a function which is analytic in the upper half-plane

7With our choice of branch-cut, the simplest way to compute S, with most software packages, is to use S =
sgn(Re s)

√
s2 + (k sin θinc)2 with the default cut location for the square root function, i.e. along the real negative line.
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(Im s>−ε) and another analytic in the lower half-plane. This is achieved below

[Ψ −(s)]−1B
(s − α)−
(s + α)+

= − 2α
(s + α)+

[Ψ −(−α)]−1B︸ ︷︷ ︸
g+(s)

+ [Ψ −(s)]−1B
(s − α)−
(s + α)+

+ [Ψ −(−α)]−1B
2α

(s + α)+︸ ︷︷ ︸
g−(s)

, (3.25)

where we define

lim
s→−α g−(s) =

[
I + 2α[Ψ −(−α)]−1 dΨ −

ds
(−α)

]
[Ψ −(−α)]−1B,

so that g−(s) does not have a pole at s = −α and is therefore analytic for Im s< ε.
Substituting (3.25) into (3.24) leads to

Ψ +(s)Â
+

(s)
(s + α)+

+ g+(s) = −(s − α)−[Ψ −(s)]−1D̂
−

(s) + g−(s). (3.26)

Because both sides are analytic in the strip |Im s|< ε, we can equate each side to E(s), some analytic
function in the strip. Further, as the left-hand side (right-hand side) of (3.26) is analytic for Im s> ε
( Im s<−ε), we can analytically continue E(s) for all s, i.e. E(s) is entire.

To determine E(s), we need to estimate its behaviour as |s| → ∞. From (3.8), we have that
A+(s) = (|s|−1) as |s| → ∞ in the upper half-plane, and from (3.15) to (3.17):

Ψ (s) = (s2 − α2)I + O(|s|) as |s| → ∞, (3.27)

for s in the strip (3.12). From this, we know that the factors Ψ +(s) and Ψ −(s) must be O(|s|) as
|s| → ∞, in their respective half-planes of analyticity [28]. So, the left-hand side of (3.26) behaves
as O(|s|−1) as |s| → ∞ in Im s>−ε. We can therefore use Liouville’s theorem to conclude that
E(s) ≡ 0, which means the Wiener–Hopf equation (3.26) is formally equivalent to

Â
+

(s) = −2α[Ψ +(s)]−1[Ψ −(−α)]−1B (3.28)

and

D̂
−

(s) = Ψ −(s)g−(s)
(s − α)−

. (3.29)

Let C+(s) be the cofactor matrix of Ψ +(s), so that

[Ψ +(s)]−1 = [C+(s)]T

det(Ψ +(s))
.

From the property (3.22)1, we can write det Ψ (s) = f (s2) for some function f . Then, for every root
s = sp of det Ψ (s), with Im sp > 0, we have that −sp is also a root, and vice-versa. From here
onwards, we assume:

det Ψ (sp) = det Ψ (−sp) = 0 with Im sp > 0 and p = 1, 2, . . . , ∞. (3.30)

For any truncated matrix Ψ (s), i.e. evaluating m, n = −M, . . . , M in (3.15), the roots sp are discrete.
In §5, we demonstrate asymptotically that they are indeed discrete for the limits of low and high
wavenumber k. For the numerical results presented in this paper, we numerically solve the above
dispersion relation for the truncating the matrix Ψ (s), and then increase M until the roots converge
(typically no more than M = 4 was required).

Given det Ψ (s) = det Ψ −(s) det Ψ +(s), every root of det Ψ (s) must either be a root of det Ψ −(s)
or a root of det Ψ +(s). For [Ψ +(s)]−1 to be analytic in the upper half-plane, det Ψ +(s) must only
have roots s = −sp. As a consequence, det Ψ −(s) only has roots s = sp.
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CD
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Im s

Re s

−sp

a

Figure 2. An illustration of the contour integral overCD, used to calculate (3.34) for x< 0, and the contour integral overCA,
used to calculate (3.32) for x > 0. The−sp (the red points) are roots of (3.30), and also the poles of (3.28). The single blue point
α is the only pole of (3.29). (Online version in colour.)

To use the residue theorem below, we need to calculate det Ψ +(s) for s close to the root −sp, in
the form

det Ψ +(s) = det Ψ +(−sp) + (s + sp)
d det Ψ +

ds
(−sp) + O((s + sp)2)

= s + sp

det Ψ −(−sp)
d det Ψ

ds
(−sp) + O((s + sp)2), (3.31)

where we use (d det Ψ /ds)(−sp) instead of (d det Ψ +/ds)(−sp) det Ψ −(−sp), because it is more
difficult to numerically evaluate (d det Ψ +/ds)(−sp).

Using the above, and that C+(S) is analytic for Im s>−ε, we can apply an inverse Fourier
transform (3.3)2 to both sides of (3.28) and using residue calculus we find

A(x) = − α
π

ˆ ∞

−∞
[C+(s)]T[Ψ −(−α)]−1B

det Ψ +(s)
e−isx ds =

{∑∞
p=1 Apeispx, x> 0,

0, x< 0,
(3.32)

with Ap = 2αi
det Ψ −(−sp)

(d det Ψ /ds)(−sp)
[C+(−sp)]T[Ψ −(−α)]−1B. (3.33)

For x> 0, the integral over s ∈ [−∞, ∞] in (3.32) is, by Jordan’s lemma, the same as a clockwise
integral over the closed contour CA which surrounds the poles −s1, −s2, . . ., i.e. roots of (3.30),
as shown by figure 2. Note that the cofactor matrix C+(s) contains no poles and so does not
contribute additional residual terms. The yellow striped region in figure 2 is the domain where
Ψ is analytic. On the other hand, for x< 0, the integral (3.32) is the same as an integral over the
counter-clockwise closed contour within the region Im s> 0 (not shown in figure 2). The integrand
has no poles in this domain and hence evaluates to zero.

Likewise, by applying an inverse Fourier transform to (3.29), we obtain

D(x) = 1
2π

ˆ ∞

−∞
Ψ −(s)g−(s)

(s − α)−
e−isxds =

{
iΨ −(α)[Ψ −(−α)]−1Be−iαx, x< 0,

0, x> 0.
(3.34)

For x< 0, the above integral is the same as a counter-clockwise closed integral over CD which
surrounds the pole s = α (recalling that Im α > 0), as shown in figure 2. The result is just the
residue at this pole. That is, the function Ψ −(s)g−(s) contains no other singularities within Im s> 0.



10

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A475:20190344

...........................................................

On the other hand, for x> 0 the integral is the same as a closed clockwise integral around the
region Im s< 0 which evaluates to zero, as there are no singularities in this region (not shown
in figure 2).

Clearly (3.32) shows that A(x) is a sum of plane waves with different effective wavenumbers
sp, each satisfying (3.30). In §5, we discuss these roots in more detail, and in §4, we see that usually
only a few effective wavenumbers are required to obtain accurate results.

(b) Reflection coefficient
Substituting (3.34) in (3.2) leads to

R = iT−1
0

∞∑
n,m=−∞

Ψ−
0n(α)[Ψ −(−α)]−1

nmBm. (3.35)

Alternatively, the reflection coefficient can be calculated from (2.12) by employing the form of
A(x) from (3.32), which is the more common approach. To simplify, we use

ψn(X) = (−1)n
ˆ ∞

−∞
eikY sin θinc H(1)

n (kR)einΘ dY = 2
α

ine−inθinc eiαX for X> 0, (3.36)

which then implies that ψn(x1 − x) = (2/α)ine−inθinc eiα(x1−x) for x1 ≥ x. The above is shown in [43,
(eqn (37))] and [11, (eqn (65))]. This result together with (3.32) substituted into (2.12) leads to
the form

R = 2n

α

∞∑
n=−∞

ine−inθinc

ˆ ∞

0
An(x1)eiαx1 dx1 = 2in

α

∞∑
n=−∞

∞∑
p=1

ine−inθinc
Ap

n

sp + α
, (3.37)

where we used that Im sp > 0. The above agrees with [13, (eqn (39))] and8 [18, (eqn (6.9))].

4. Monopole scatterers
For particles that scatter only in their monopole mode, i.e. the scattered waves are angularly
symmetric about each particle, we can easily calculate the factorization (3.23). This type of
scattered wave tends to dominate in the long wavelength limit for scatterers with Dirichlet
boundary conditions. In acoustics, these correspond to particles with low density or low
sound speed.

Once we know the factorization (3.23), we can then calculate the average scattering
coefficient (3.32) and average reflection coefficient (3.35). We will compare both of these against
predictions from other methods in §6.

(a) Wiener–Hopf factorization
For scalar problems, there are well-known techniques to factorize Ψ00(s) =Ψ−

00(s)Ψ+
00(s), such as

Cauchy’s integral formulation, for details see [19, (Section 5. Wiener–Hopf Technique)] and [21].
For monopole scatterers we use S2 − k2 = s2 − α2 and rewrite

Ψ00(s) = (s2 − α2)q(s), with q(s) = 1 + 2πn
T0N0(bS)
S2 − k2 ,

with N0(bS) given by (3.17). Then, because q(s) → 1 as |s| → ∞, we can factorize q(s) = q−(s)q+(s)
using

q+(s) = exp
(

1
2π i

& ∞

−∞
log q(z)

z − s
dz

)
(4.1)

and

q−(s) = exp
(

− 1
2π i

$ ∞

−∞
log q(z)

z − s
dz

)
, (4.2)

8When taking a zero thickness boundary layer, i.e. J = 0, and appropriate substitutions.
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where the integral path for q+(s) (q−(s)) has to be in the strip where q(s) is analytic, with the path
for q+(s) (q−(s)) passing below (above) z. We then have9 that

Ψ+
00(s) = (s + α)+q+(s), Ψ−

00(s) = (s − α)−q−(s), Ψ−
00(−s) = −Ψ+

00(s), (4.3)

where (4.3)3 holds if −s is below the integration path of (4.2) and s is above the integration
path of (4.1). From (3.32), we see that we need only evaluate Ψ+

00(s), and therefore q+(s), for
s = s1, s2, . . . , sp where as p increases, the sp become more distant from the real line. Then for large
z, by inspection of (3.17), we have that∣∣∣∣ log q(z)

z − s

∣∣∣∣ ∼ 1
z3/2

1
|z − s| ,

and therefore we can accurately approximate the integral (4.1) by truncating the integration
domain for large z.

(b) Explicit solution for monopole scatterers
For monopole scatterers An(x) = Dn(x) = 0 for |n|> 0. Using this in (3.14)–(3.17)) leads to all
vectors and matrices having only one component, given by setting n = m = 0. In this case, A (3.32)
reduces to

A0(x) =
∞∑

p=1

Ap
0eispx with Ap

0 = 2αT0

Ψ+
00(α)

Ψ+
00(sp)

(dΨ00/ds)(sp)
= T0

sp − α

q+(sp)
q+(α)q′(sp)

, (4.4)

for x> 0, where we used (4.3), C+(s) = 1, B = iT0, and (dΨ00)/(ds)(−s) = −(dΨ00)/(ds)(s) for every
s. Likewise for (3.35), we arrive at

R = Ψ00(α)
(Ψ+

00(α))2
= πnT0N0(bα)

2(αq+(s))2 . (4.5)

Alternatively, using (3.37), we can calculate the contribution of P effective waves to the
reflection coefficient

RP = 2in
α

P∑
p=1

Ap
0

sp + α
= 2inT0

αq+(α)

P∑
p=1

1

s2
p − α2

q+(sp)
q′(sp)

with R = lim
P→∞

RP, (4.6)

where the error |RP − R| then indicates how many effective waves are needed to accurately
describe the field near the boundary x = 0.

5. Multiple effective wavenumbers
Equation (3.32) clearly shows that A(x) is a sum of attenuating plane waves, each with a different
effective wavenumber sp. These sp satisfy the dispersion equation (3.30):

det Ψ (sp) = det G(Sp) = 0, (5.1)

with Ψ given by (3.16) and the first identity follows from (3.22).
An important conclusion from det G(Sp) = 0 is that the wavenumbers Sp are independent of

the angle of incidence θinc. We focus on showing the results for Sp, rather than sp, because then
we do not need to specify θinc.

9Note that the factors q+(s) and q−(s) are singularity and pole free in their respective regions of analyticity, and so their
inverses [q+(s)]−1 and [q−(s)]−1 have the same property.
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Figure 3. Examples of effective wavenumbers Sp which satisfy the dispersion equation (5.1) with the properties (5.2). The blue
points represent waves travelling forwards (i.e. deeper into the material), while the red represent waves travelling backwards.
All thesewaves are excited in a reflectionexperiment. Twowavenumbers inparticular standout ashaving the lowest attenuation
S1 and S2, both inside the grey dashed circle. The graph on the right is a magnification of the region close to these two
wavenumbers. Out of these two,most efforts in the literature have focused on calculating S2, as it oftenhas the lowest imaginary
part; however, for this case, because S1 has a smaller attenuation it will have a significant contribution to both transmission and
reflection. (Online version in colour.)

As a specific example, let us consider circular particles with Dirichlet boundary conditions (i.e.
particles with zero density or soundspeed), and the parameters

Tn = − Jn(kao)

H(1)
n (kao)

, kb = 1.001, kao = 0.5, φ = 30%, (5.2)

where ao is the radius of the particle.
With the above parameters, we found that truncating the matrix Ψ (s), with |n| ≤ 3 and |m| ≤ 3

in (3.15)–(3.17), led to accurate results when calculating the effective wavenumbers Sp, i.e. the
roots of (3.30). Numerically calculating the wavenumbers Sp then leads to figure 3.

The effective wavenumbers with the lowest attenuation (smallest imaginary part) contribute
the most to the transmitted wave. In figure 3, we see two wavenumbers have lower attenuation
then the rest, both within the dashed grey circle. The blue point represents the wavenumber that
most of the literature focuses on calculating: it has a positive real part and therefore propagates
forwards along the x-axis (into the material) as is expected for a transmitted wave. However, the
other wavenumber, with negative real part, is equally as important because it actually has lower
attenuation. Figure 1 illustrates several effective wavenumbers, some travelling forward into the
material, while others have negative phase direction (travel backwards).

In figure 3, we see what appears to be an infinite sequence of effective wavenumbers
Sp, where |Sp| → ∞ as p → ∞. To confirm their existence, and to find their locations as
|p| → ∞, we develop asymptotic formulae in appendix B. The results of the asymptotics are
summarized below.

For monopole scatterers, where n = m = 0 in (3.15), equations (B 7) give the effective
wavenumbers So

p at leading order:

bSo±
p = σ±

p + i log

( |σ±
p |3/2
rc

)
,

⎧⎨
⎩
σ+

p = θc + 2πp for p>−
⌈
θc
2π

⌉
,

σ−
p = θc − 3π

2 − 2πp for p>
⌈
θc
2π − 3

4

⌉ (5.3)

and
rceiθc =

√
2πnb2T0H(1)

0 (kb)e− iπ
4 , rc > 0, −π ≤ θc ≤ π , (5.4)

and for any integer p. We use the superscript ‘o’ to distinguish these wavenumbers for monopole
scatterers from others. Even though (5.3) was deduced for large integer p, it gives remarkable
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Figure 4. Comparison of the asymptotic formula (5.3), which predicts an infinite number of effective wavenumbers, with
numerical solutions for the effectivewavenumbers (5.1). The parameters used are given by (5.2),with their definitions explained
in (2.4)–(2.9). Herewe chose b= 1.0, so the non-dimensionalwavenumbers bS are the same as shown. The asymptotic formula
is surprisingly accurate except for the two lowest attenuating wavenumbers. The wavenumber So∗ can be calculated by using
low volume fraction expansions [11]. (Online version in colour.)

agreement with numerically calculated wavenumbers, except for the two lowest attenuating
wavenumbers, as shown in figure 4. In the figure, we denoted So±∗ as the effective wavenumber
that can be calculated by low volume fraction expansions [11,14].

For multipole scatterers, where both n and m could potentially range from −∞ to ∞ in (3.15),
we can also calculate an infinite sequence of effective wavenumbers. To show this explicitly, we
consider the limit of large bk, with |k| ∼ |S|. In the opposite limit bk � 1, the Rayleigh limit, only
one effective wavenumber is required [44,45].

At leading order, the asymptotic solution of (B 11) leads to the effective wavenumbers:

bSk±
p = σ±

p + i log

⎛
⎝ |σ±

p − a|
√

a|σ±
p |

rc

⎞
⎠ , (5.5)

⎧⎪⎨
⎪⎩
σ+

p = θc + a + 2πp for p>
⌈
− θc+a

2π

⌉
,

σ−
p = θc + a − 3π

2 − 2πp for p>
⌈
θc+a
2π − 3

4

⌉
,

(5.6)

rceiθc = −2inb2
∞∑

n=−∞
Tn, rc > 0 and − π ≤ θc ≤ π , (5.7)

for integer p. This confirms that there are an infinite number of effective wavenumbers for
large scatterers, i.e. bk � 1. The distribution of these wavenumbers is similar to the monopole
wavenumbers shown in figure 4.

These asymptotic formulae (5.3) and (5.5) demonstrate the existence of multiple effective
waves in the limit of small (monopole and Dirichlet) scatterers (5.3) and large scatterers (5.5).
However, neither of these formulae, nor the low volume fraction expansions of the
wavenumber [11], are able to accurately estimate the low attenuating backward travelling
effective wavenumber such as S1 shown in figure 3 (in this case not related to the So±

1 and Sk±
1

given above). There is currently no way to analytically estimate these types of wavenumbers, even
though they are necessary to accurately calculate transmission due to their small attenuation. The
only approach it seems is to numerically solve (3.30).
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Figure 5. Compares the absolute value of the average field A0(x) calculated by different methods. The field A0(x) is closely
related to the average transmitted wave [13]. The non-dimensional wavenumber kb= 1.001, the other parameters are given
by (6.1), with their definitions explained by (2.4)–(2.9). Using the Wiener–Hopf solution (4.4), we approximate A0(x) by using
either 352 effective wavenumbers s1, s2, . . . , s352, or just 1 effective wavenumber s1. The Matching Method also accounts for
multiple effective wavenumbers, and is described in [18]. The low volume fraction method assumes a low volume fraction
expansion for just one effective wavenumber [11]. The small graph on the right is a magnification of the region around x = 0.
Close to the boundary x = 0, both A10e

is1x and the low volume fraction method are inaccurate, which would potentially lead to
inaccurate predictions for transmission and reflection. (Online version in colour.)

6. Numerical results
Here we present numerical results for monopole scatterers, as these have explicit expressions
for reflection (4.5) and the transmitted wave (4.4) (or more accurately the average scattering
coefficients). We compare our analytic solution with a classical method that assumes only one
effective wavenumber [11,13], and the Matching Method [18], recently proposed by the authors.
It should be noted that all of these approaches aim to solve the same equation (2.14).

Note that for monopole scatterers, using only one effective wavenumber s1 can, in some
cases, lead to accurate results. However, for multipole scatterers (a more common scenario
practically) this is rarely the case because, as shown by figure 3, there can be at least two effective
wavenumbers with low attenuation, and therefore both are needed to obtain accurate results.

For the numerical examples, we use the parameters

T0 = − J0(kao)

H(1)
0 (kao)

, b = 1.001, ao = 0.5, θinc = π

4
, φ = 30%, (6.1)

which implies that the number fraction n ≈ 0.38 per unit area. When we choose to fix the
wavenumber, as we do for figures 5 and 6, we use bk = 1.001. This leads to a wavelength (2π/k)
which is roughly six times larger than the particle diameter. If the particle was, say, more than 100
times smaller than the wavelength, then only one effective wavenumber in the sum (4.4) would
be necessary to accurately calculate A0(X).

To start we compare the average scattering coefficient A0(x) calculated by the Wiener–Hopf
solution (4.4) with other methods in figure 5. The most accurate of these other methods is
the Matching Method [18,46], and it closely agrees with the Wiener–Hopf solution when using
352 effective wavenumbers. The exception is the region close to the boundary x = 0, where the
Wiener–Hopf solution experiences a rapid transition. The low volume fraction method is the
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Figure 6. Demonstrates, with a log–log graph, how increasing the number of effective waves P leads to a more accurate
reflection coefficientRP , when using (4.6). The non-dimensional wavenumber is kb= 1.001, and the other parameters used
are given by (6.1), with their definitions explained by (2.4)–(2.9). HereR is the reflection coefficient given by (4.5). The error
|RP − R| continuously drops as P increases because of the rapid transition that occurs to A0(x) near the boundary x = 0,
see figure 5. However, methods such as the Matching Method [18] are able to accurately calculate the reflection coefficient
without taking into account this rapid transition. (Online version in colour.)

most commonly used in the literature: it assumes a small particle volume fraction10 and just one
effective wavenumber [11,13]. One significant conclusion we can draw from figure 5 is that both
the low volume fraction method and A1

0eis1x are inaccurate near the boundary x = 0. This means
that both of these methods lead to inaccurate reflection coefficients.

In general, the Wiener–Hopf method does not lead to an explicit formula for the reflection
coefficient (3.35), because we do not have an exact factorization (3.23) for any truncated
square matrices. However, there are methods [13,18,20,29,30,34] to calculate An(x), from which
we can obtain the reflection coefficient (2.12). The method [18] also accounts for multiple
effective wavenumbers. So one important question is: when using (2.12), how many effective
wavenumbers do we need to obtain an accurate reflection coefficient?

In figure 6, we show how increasing the number of effective waves P reduces the error
between RP (4.6) and R (4.5). To calculate a highly accurate reflection coefficient R, we could
use either (4.5) or the Matching Method [18,46], as both give approximately the same R.

Now we ask: how does the reflection coefficient (4.6), deduced via the Wiener–Hopf technique,
compare with other methods across a broader range of wavenumbers? The result is shown in
figure 7, where RO is a low volume fraction expansion11 of just one effective wavenumber [13].
The reflection coefficient RM is calculated from the Matching Method [18,46]. The general trend is
clear: RO becomes more inaccurate as we increase the background wavenumber kb. On the other
hand, both RM and R agree closely over all k.

One result to note is the ‘instability’ exhibited by the Wiener–Hopf solution near the boundary
x = 0, see figure 5. This instability occurs because we represented A0(x) as a superposition of
truncated waves, which is only accurate as long as the discarded terms are small. So, for a
truncation number P, we can expect the instability to occur when eisPx is not small, i.e. x ≈ 1/Im sp.
However, this instability does not affect the accuracy of the reflection coefficient (4.5) deduced
by the Wiener–Hopf technique, as demonstrated by close agreement with the Matching Method
in figure 7.

10For the low volume fraction method, we used a small volume fraction expansion for the wavenumber, but we numerically
evaluated the wave amplitude. This is because the alternative, a small volume fraction expansion of the wave amplitude, led
to poor results.
11We use the reflection coefficient [13, (eqn (39))], rather than the explicit low volume fraction expansion [13, (eqn (40)–(41))].
This is because using equations (40)–(41) led to roughly double the error we show.
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Figure 7. Compares different methods for calculating the reflection coefficient when varying the non-dimensional
wavenumber kb. The other parameters used are given by (6.1), with their definitions explained in (2.4)–(2.9). HereR is given
by the Wiener–Hopf solution (4.5),RO uses a low volume fraction expansion of just one effective wavenumber [13], andRM

is calculated from the Matching Method [18]. (Online version in colour.)

7. Conclusion and next steps
The major result of this paper is to prove that the ensemble-averaged field in random particulate
materials consists of a superposition of waves, with complex effective wavenumbers, for one
fixed incident wavenumber. These effective wavenumbers are governed by the dispersion
equation (5.1) and are independent of the angle of incidence θinc. We showed asymptotically in §5
that this has an infinite number of solutions, and hence there are an infinite number of effective
wavenumbers. The Wiener–Hopf technique also provides a simple and elegant expression for the
reflection coefficient (3.35), whose form can be used to guide and assess methods to characterize
microstructure [47,48].

To numerically implement the Wiener–Hopf technique, we considered particles that scatter
only in their monopole mode in §6. There we saw that when close to the interface of the half-space,
a large number of effective wavenumbers were necessary to reach accurate agreement with an
alternative method from the literature, the Matching Method as introduced by the authors in [18].
To obtain a constructive method via the Wiener–Hopf technique for general scatterers, and not just
monopole scatterers, will require the factorization of a matrix function [31], which is challenging.
For these reasons, the Matching Method [18] is presently more effective than using the Wiener–
Hopf technique. However, there is ongoing work to use approximate methods [33,34,49] which
exploit the symmetry and properties of the matrix (3.15).

Moving forwards, this paper together with [18], establishes accurate and robust solutions to the
governing equation (2.14). These same methods can now be translated to three spatial dimensions
and vectorial waves (e.g. elasticity and electromagnetics), with much of the groundwork already
available [12,16,40]. Some clear challenges, that can now be addressed, are to verify the accuracy of
the statistical assumptions used to deduce (2.14). These include the hole-correction and the quasi-
crystalline approximations. As these are now the only assumptions used, we could compare the
solution of (2.14) with multipole methods [50,51] in order to investigate their accuracy and limits
of validity.
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Appendix A. The Fourier transformed kernel ψ̂n(s)
Here we calculate the Fourier transform (3.3) of ψn(X) (2.13). To do so, it is simpler to use

Fn(X, Y) = (−1)nH(1)
n (kR)einΘ . (A 1)

Note that both Fn(X, Y) and ei(sX+Yk sin θinc) satisfy wave equations, with

∇2Fn(X, Y) = −k2Fn(X, Y) and ∇2ei(sX+Yk sin θinc) = −S2ei(sX+Yk sin θinc),

where we used (2.13)2 for the first equation and (3.19) for the second equation. This means that
we can use Green’s second identity to obtain

(k2 − S2)
ˆ
B

ei(sX+Yk sin θinc)Fn(X, Y) dXdY

=
ˆ
∂B

[
∂ei(sX+YK sin θinc)

∂n
Fn(X, Y) − ei(sX+KY sin θinc) ∂Fn(X, Y)

∂n

]
dz, (A 2)

for any area B in which the integrand is analytic, where n is the outwards pointing unit normal
and dz is a differential length along the boundary ∂B. To calculate ψ̂n(s), we take the region B to
be defined by R ≥ b, with (R,Θ) being the polar coordinates of (X, Y), in which case the integral
over B converges because as R → ∞ we have that

|ei(sX+Yk sin θinc)Fn(X, Y)| ∼ |eisR cosΘeikR(1+sinΘ sin θinc)|√
π |k|R/2

≤ |e−R(Im k(1−| sin θinc|)−|Im (s)|)|√
π |k|R/2 → 0, (A 3)

exponentially fast when |Im (s)|< Im k(1 − | sin θinc|). Under this restriction, and by assuming
S �= ±k, (A 2) then leads to

ψ̂n(s) =
ˆ

R≥b
eisX+ikY sin θinc Fn(X, Y)dXdY = In(b)

k2 − S2 , (A 4)

by using sX + Yk sin θinc = RS cos(θ − θS) from (3.19) and

In(R) =
ˆ 2π

0
−∂eiSR cos(Θ−θS)

∂R
Fn(kX) + eiSR cos(Θ−θS) ∂Fn(kX)

∂R
R dΘ

= (−1)n
ˆ 2π

0
eiSR cos(Θ−θS)einΘ[

kH(1)′
n (kR) − iS cos(Θ − θS)H(1)

n (kR)
]
Rdθ

= (−1)n
ˆ 2π

0

∞∑
m=−∞

imJm(SR)eim(Θ−θS)
[
keinΘH(1)′

n (kR)

− iS
2

(ei(n+1)Θ−iθS + ei(n−1)Θ+iθS )H(1)
n (kR)

]
RdΘ

= 2π (−i)nReinθS
[
kJn(SR)H(1)′

n (kR) − SJ′n(SR)H(1)
n (kR)

]
, (A 5)

where Jn is the Bessel function of the first kind, and we used the Jacobi–Anger expansion on
eiSR cos(Θ−θS), integrated over Θ and used the identity Jn−1(SR) − Jn+1(SR) = 2J′n(SR). In summary

ψ̂n(s) = 2π
(−i)neinθS

α2 − s2 Nn(bS), (A 6)

when the condition (3.10) is satisfied, with Nn given by (3.17).
Below we establish some useful properties for ψ̂n(s). In particular, we show that ψ̂n(s) has no

branch-points.
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The function Nn(bS), for integer values of n, can be expanded around S = 0 as

Nn(bS) = S|n|
∞∑

m=0

cm|n|S2m, (A 7)

where the cm|n| are some constants that depend on m and |n|, and the radius of convergence of the
series above is infinite. Using (3.19), we can write

einθS = eisgn(n)|n|θS = (cos θS + sgn(n)i sin θS)|n| = (s + sgn(n)ik sin θinc)|n|S−|n|. (A 8)

Substituting (A 7) and (A 8) in (A 6) results in

ψ̂n(s) = 2π (−i)n

α2 − s2 (s + sgn(n)ik sin θinc)|n|
∞∑

m=0

cm|n|S2m. (A 9)

Because S2 = s2 + k2 sin2 θinc, we can immediately see from the above that ψ̂n(s) has no branch-
points. Additionally, we can establish the properties:

ψ̂n(s) = ψ̂−n(−s) = ψ̂n(−s)e2inθS (−1)n. (A 10)

Appendix B. Asymptotic location of the wavenumbers
Here we explicitly calculate a sequence of effective wavenumbers Sp, assuming |Sp| large and
increasing with p, and Im Sp > 0, that asymptotically satisfy (5.1). A key step is to approximate
the terms appearing in (3.16), such as

Jn(bS) ∼ e(iπ/4)+(inπ/2)−ibS
√

2πbS
and J′n(bS) ∼ e−(iπ/4)+(inπ/2)−ibS

√
2πbS

, (B 1)

for large |bS|, where the terms eibS are discarded as Im bS → ∞.
Monopole scatterers. The simplest case is for monopole scatterers, where n = m = 0 in (3.16), and

the effective wavenumber S satisfies

b2 det G = (bS)2 − (bk)2 + 2πnb2T0N0(bS) ∼ (bS)2 − c
√

bSe−ibS = 0, (B 2)

where c = √
2πnb2T0H(1)

0 (kb)e−(iπ/4). Here we used (B 1), and ignored terms which are
algebraically smaller than bS. To find the root of the above, we substitute

bS = x + i log y, (B 3)

where x and y are real, and |x| and y are large with y> 1. This leads to

(x + i log y)3/2 − ce−ixy = 0. (B 4)

For the logarithm and square root, we use the typical branch cut (−∞, 0) and take positive values
of the functions for positive arguments. For the above to be satisfied to leading order then x3/2 ∼ y,
which reduces the above equation to

x3/2 ∼ rcei(θc−x)y, (B 5)

where we substituted c = rceiθc , for real scalars rc and θc. Equating the real and imaginary parts of
the above leads to

x ∼ θc + 2πp and y ∼ 1
rc

(θc + 2πp)3/2 for p>− θc

2π
(B 6)

and

x ∼ θc − 3π
2

+ 2πp and y ∼ 1
rc

(−θc + 3π
2

− 2πp)3/2 for p<
3
4

− θc

2π
, (B 7)

for integers p. From this, we can identify that, at leading order, the effective wavenumbers are
given by (5.3).
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Multipole scatterers. With the same method used above, we can also demonstrate the existence
of multiple effective wavenumbers for n, m = −M, −M + 1, . . . , M in (3.16). To show this explicitly,
we consider bk to be the same order as bS, that is |k| ∼ |S|.

By considering bk large, we can approximate

H(1)
n (bk) ∼ ei(bk−(π/4)−(nπ/2))

√
2
πbk

and H(1)′
n (bk) ∼ ei(bk+(π/4)−(nπ/2))

√
2
πbk

, (B 8)

combining this with (B 1) and considering |k| ∼ |S|, the term (3.16) at leading order becomes

b2Gmn = d0δmn + c0Tm, (B 9)

where

d0 = (bS)2 − (bk)2 and c0 = 2nb2 i(k + S)√
kS

eib(k−S).

By simple rearrangement of the determinant, we find that12

det(b2G) = d2M
0

⎛
⎝d0 + c0

M∑
m=−M

Tm

⎞
⎠ . (B 10)

Note that d0 �= 0, i.e. S �= ±k, was necessary to reach the condition (3.10), which was used to
calculate the Fourier transforms (3.13). Taking this into consideration, and taking the limit
M → ∞, the effective wavenumbers S must satisfy

d0 + c0

M∑
m=−M

Tm = 0 �⇒ bS − bk = −2nib2
∞∑

m=−∞
Tm

eib(k−S)

b
√

kS
. (B 11)

Using an asymptotic expansion analogous to (B 3), the above leads to the effective
wavenumbers (5.5).

Appendix C. Equivalent determinants
For any square matrices A and B, and scalar c, if Anm = Bnmcn−m (not employing the summation
convention), then

det A = det B. (C 1)

This follows simply by defining the diagonal matrix Cnm = δnmcn, which leads to A = CBC−1, and
det(CBC−1) = det C det B det C−1 = det B.
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