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The central dogma of molecular biology has told that DNA sequences encode proteins through
RNAs, which function as an information intermediary [1]. For decades, these protein-coding genes in
the human genome have attracted considerable attentions from researchers. However, studies have
shown that these genes merely account for about 1.5% to 3% of the whole human genome, while
most of which consists of non-coding RNA (ncRNA) [2,3]. The first two ncRNAs were discovered in
Caenorhabditis elegans in 1993 and 2000, respectively, which are lineage defective 4 (lin-4) [4] and lethal
7 (let-7) [5]. Since then, thousands of ncRNAs have been identified in various species due to the
development of sequencing technology [6]. Based on the transcript length and structure, ncRNAs can
be divided into different classes, including microRNA (miRNA), long non-coding RNA (lncRNA),
transcribed ultraconserved regions (T-UCRs), small nucleolar RNAs (snoRNAs), PIWI-interacting
RNAs (piRNAs) and circular RNA (circRNA) [7], etc.

Although the functions of many identified ncRNAs have not been well-studied, increasing
experimental evidences have suggested that these ncRNAs are involved in multiple fundamental
and important biological functions. It was shown that ncRNAs could regulate cellular processes and
pathways associated with cell development and pathology [8]. For example, miRNAs regulate gene
expression through binding of the seed sequence to the target messenger RNA (mRNA) [9], leading to
translational repression or mRNA degradation [10], also increasing the mRNA translation and protein
output in some cases [11–13]. Moreover, lncRNAs have been found to be implicated in almost every
process of the cellular life cycle [14] and perform diverse critical biological functions [15]. LncRNAs
can regulate transcriptional and posttranscriptional processes, participate in epigenetic regulation,
and therefore play an important role in organ or tissue development, cell differentiation and apoptosis,
cell cycle control, cellular transport, metabolic processes, chromosome dynamics, and so on [16–19].

Since ncRNAs are so important in various biological processes, more and more evidences have been
found to reveal the associations between ncRNAs and human diseases [7,8,20,21]. Many ncRNAs have
been reported as both oncogenes and tumor suppressors in the tumorigenesis of diverse cancers [22–25].
Therefore, ncRNAs were regarded as important biomarkers in the diagnosis, treatment and prognosis
of complex diseases, and furthermore as potential drug targets [26–29]. The work on predicting
ncRNA–disease associations is significant for human disease diagnostics and prognostics, and will
improve the development of drug discovery. Several effective computational models have been
developed for the prediction of potential ncRNA–disease associations and small molecule–ncRNA
interactions [30–34].

This Special Issue is composed of twelve papers, including ten original researches [35–44] and
two review articles [45,46]. The topics of these manuscripts involve diverse ncRNAs, such as miRNA,
lncRNA and circRNA, related to specific disease or different diseases. Besides computational studies,
some experimental works were included to enrich the content of this issue.
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Pan et al. [35] applied machine learning algorithms to analyze the expression patterns of snoRNA
in eight tumors. They used the Monte Carlo Feature Selection (MCFS) to analyze the expression
level of snoRNAs and select the informative features. Then, based on the optimized features by
incremental feature selection (IFS), the support vector machines (SVMs) were employed to classify
different cancer types.

Peng et al. [36] developed a novel computational model named RPITER to predict potential
ncRNA–protein interactions in a hierarchical deep learning framework. In this model, they first
processed the sequence data via improving the conjoint triad feature (CTF) coding method. Then,
the convolution neural network (CNN) and stacked auto-encoder (SAE) were adopted to construct the
predicting framework. The validation results showed the good performance of RPITER.

In the work of Zhao et al. [37], an effective model was presented for the prediction of miRNA-disease
association. They first built a weighted interactive network using disease similarity, miRNA similarity
and known miRNA–disease associations. Then, the weighted interactive network-based model for
miRNA–disease association inference (WINMDA) was developed by considering both the T nearest
neighbors and the shortest path algorithm.

Wang et al. [38] incorporated several datasets, including circRNA, mRNA, miRNA and pathway
data to design a non-negative matrix factorization-based model for identifying breast cancer-related
circRNA modules. As a result, they discovered 13 circRNA modules associated with breast cancer.

Chen et al. [39] studied the tissue specificity of lncRNA and investigated the difference from
mRNA. Several feature selection approaches were implemented to choose important genes for both
lncRNA and mRNA. The random forest (RF) and the repeated incremental pruning to produce error
reduction (RIPPER) algorithm were subsequently employed as two classifiers. The analysis results
indicated that lncRNAs were distinguished from mRNAs on expression pattern.

Pewarchuk et al. [40] screened new miRNAs associated with gastric adenocarcinoma (GA). Based
on small RNA sequencing data, they used the miRMaster platform to analyze and identify 170 novel
miRNAs that were expressed specifically in GA. Moreover, the combined expression of two novel and
one annotated miRNAs was found to be related to patient outcome.

In the manuscript of Pan et al. [41], a novel lncRNA named interferon-stimulated lncRNA (ISR) was
reported to be implicated in influenza A virus (IAV) infection. They revealed that silent or ectopic
expression of ISR could increase or reduce the replication of IAV in infected cells.

In order to answer the question whether the miRNAs regulate genes in a random pattern or
the genes are regulated referring to their functions, Mustafa et al. [42] investigated this problem in
cardiometabolic disorders by performing an enrichment analysis. The result of their research provided
support to the non-random regulation of miRNAs to genes.

Xu et al. [43] analyzed gene expression and co-expression to construct a gene network module
for thyroid cancer, based on which a novel drug selection method was proposed for reversing the
perturbations of thyroid cancer.

Chi et al. [44] focused on the function of lncRNA in bladder cancer (BC). They utilized the
microarray assay to compare the expression profiles of lncRNA and mRNA in BC. As a result,
the lncRNA RP11-79H23.3 was discovered, which could sponge hsa-miR-107 to regulate the expression
of phosphatase and tensin homolog (PTEN) in BC.

In the review paper of Zhang et al. [45], some important results about the lncRNA–protein
interactions, including relevant databases, experimental approaches and computational models,
especially those based on networks, were combed clearly. In addition, Zhao et al. [46] summarized the
kinetic modeling methods that investigated the association of miRNA-mediated signaling networks
and diseases.

In conclusion, papers contained in this Special Issue will benefit people to deeply understand the
relations between ncRNAs and human diseases. It will also improve the development of computational
models on the hot topics of related fields. We want to thank the contributions from all authors, the hard
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work of all editorial staff members as well as the dedication of all the anonymous reviewers. We hope
this issue will be helpful and interesting to readers.
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