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Abstract 

Background:  For liver cancer patients, the occurrence of postoperative complications increases the difficulty of 
perioperative nursing, prolongs the hospitalization time of patients, and leads to large increases in hospitalization 
costs. The ability to identify influencing factors and to predict the risk of complications in patients with liver cancer 
after surgery could assist doctors to make better clinical decisions.

Objective:  The aim of the study was to develop a postoperative complication risk prediction model based on 
machine learning algorithms, which utilizes variables obtained before or during the liver cancer surgery, to predict 
when complications present with clinical symptoms and the ways of reducing the risk of complications.

Methods:  The study subjects were liver cancer patients who had undergone liver resection. There were 175 individu-
als, and 13 variables were recorded. 70% of the data were used for the training set, and 30% for the test set. The per-
formance of five machine learning models, logistic regression, decision trees-C5.0, decision trees-CART, support vector 
machines, and random forests, for predicting postoperative complication risk in liver resection patients were com-
pared. The significant influencing factors were selected by combining results of multiple methods, based on which 
the prediction model of postoperative complications risk was created. The results were analyzed to give suggestions 
of how to reduce the risk of complications.

Results:  Random Forest gave the best performance from the decision curves analysis. The decision tree-C5.0 algo-
rithm had the best performance of the five machine learning algorithms if ACC and AUC were used as evaluation 
indicators, producing an area under the receiver operating characteristic curve value of 0.91 (95% CI 0.77–1), with an 
accuracy of 92.45% (95% CI 85–100%), the sensitivity of 87.5%, and specificity of 94.59%. The duration of operation, 
patient’s BMI, and length of incision were significant influencing factors of postoperative complication risk in liver 
resection patients.

Conclusions:  To reduce the risk of complications, it appears to be important that the patient’s BMI should be above 
22.96 before the operation, and the duration of the operation should be minimized.
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Background
Liver cancer is the third leading cause of cancer death in 
the world [1]. Hepatocellular carcinoma (HCC) is mainly 
composed of liver cancer cells and is the fifth most com-
mon cancer worldwide. Surgical resection and liver trans-
plantation are the main methods of radical treatment 
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of liver cancer, and liver resection has been shown to 
be the most effective approach [2]. Mortality after liver 
resection has been reduced to 3%, but the incidence of 
complications after liver resection has remained high 
[3], occurring in 20–50% of cases [4]. The occurrence 
of postoperative complications increases the difficulty 
of perioperative nursing, prolongs the hospitalization 
time of patients, and leads to large increases in hospi-
talization costs, and is therefore a serious problem for 
hepatobiliary surgeons. The incidence of complications 
is one of the most often-used markers of surgical qual-
ity [5]. To improve the quality of liver resection, doctors 
have put considerable effort into reducing postoperative 
complications.

Complications of surgical care are a cause of death 
and disability worldwide. Avoidable surgical complica-
tions account for a large proportion of preventable medi-
cal injuries and deaths globally [6]. If we can effectively 
predict the risk of complications, we can take measures 
in advance to reduce their incidence. The international 
Study Group for Liver Surgery (ISGLS) has defined the 
complications after liver surgery, which mainly consist of 
postoperative hemorrhage [7], liver failure, and bile leak-
age [7]. The analysis of liver cancer patients prior to liver 
resection can facilitate the analysis of the causes of com-
plications. This analysis can be used to develop predic-
tive models is established, the identification of to identify 
high-risk patients [8]. The analysis of complications after 
surgery can help clinicians in preoperative intervention 
related indicators, reduce the risk of complications, and 
indirectly reduce medical costs [9], helping clinicians to 
provide patients with accurate prognoses and plan for 
anticipated complications [10]. Liver resection in patients 
with personalized auxiliary diagnosis and treatment can 
provide reference data [11].

There has been some research into this issue. Yamanka 
et.al (1994) did a refinement of a safe limit for hepatec-
tomy prediction scoring system[12].Bo et.al (2015) used 
nutritional risk index to predict the survival time of liver 
cancer patient based on cox-regression [13]. Tranchart 
et al. (2015) using a logistic regression model to identify 
risk factors for postoperative complications after liver 
resection [14]. Giustiniano et al. (2020) used a backward 
multivariable logistic regression analysis to investigate 
whether a renal resistive index (RRI) could predict com-
plications after hepatic resection [4]. However, those 
studies used regression analysis, which involves many 
complex parameters and formulas, as well as the use of 
a large number of postoperative variables, and the mul-
ticollinearity of the variables was not considered. Such 
predictive methods lack convenience and simplicity, 
and cannot easily be used for clinical guidance. Also, 
most doctors can identify characteristics that will lead 

to complications post-surgery, but it is difficult to know 
how to prioritize these characteristics.

Machine learning (ML) methods such as deep con-
volutional neural networks have been used to predict 
complications and develop predictive models that can 
capture the occurrence of complications. Kristen et  al. 
[15] created a predictive model for complications at the 
time of laparoscopic hysterectomy for benign conditions. 
Bronsert et al. [16] built a ML model that could be used 
for electronic postoperative complication surveillance. 
Moghadam et al. [17] used machine learning to produce 
evidence that there is a correlation between the occur-
rence of intraoperative or postoperative hypotensive 
events and various later complications. Ming et  al. [18] 
compared eight different ML methods and found that 
ML-adaptive boosting had the best performance. Abd 
El-Salam et al. [19] compared six ML methods to predict 
complications of liver cirrhosis and found Bayesian Nets 
to have the best performance.

Such studies have shown that machine learning can sig-
nificantly improve the accuracy of prediction of disease 
occurrence and postoperative prognosis. However, few 
studies have used machine learning to predict the risk 
of postoperative complications in patients undergoing 
liver resection. There are literally thousands of machine 
learning algorithms available, and hundreds more are 
published each year. The decision as to which algorithm 
is most suitable for a given problem is daunting [20, 21]. 
In this study we aimed to identify a machine learning 
method appropriate for the prediction of liver complica-
tions, which was clinically feasible to use.

In this study, we aimed to utilize variables obtained 
before or during the surgery, to predict when complica-
tions present with clinical symptoms. From the 1st of 
March, 2019 to the 31st of December 2019, we monitored 
patients undergoing liver resection and strictly controlled 
the surgical approach. We collected 28 variables, include 
age, gender, length of stay after surgery and so on. We 
implemented five machine learning models and identi-
fied the most suitable algorithm for predicting the risk of 
postoperative complications in patients undergoing liver 
resection. Our second contribution was that, instead of 
using a large number of variables in the model, we con-
ducted secondary screening of the variables, an approach 
which reduced the over-fitting of the model, and made 
the results more clinically informative.

The rest of this paper is organized as follows. In Sect. 2 
we introduce our data sources and the five machine 
learning algorithms we used. In Sect.  3 we present our 
results, including sample characteristics, compare the 
prediction performance of the five algorithms, taking into 
account the importance of the variables and the result-
ing clinical implications. In Sect. 4 we discuss the results. 
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Section 5 includes concluding remarks and a description 
of directions for future research.

Methods
Data sources
We collected data from 175 patients from West China 
hospital, Sichuan University. Of these patients, 144 were 
male and 31 female. We removed information such 
as name, home address and time of admission. Each 
instance contains 13 attributes in addition to the output 
class. According to previous studies of feature selection 
algorithms used for practical reasons and wide accept-
ance search, we considered parameters preoperatively 
and intro-operatively, including demographic param-
eters, pathological features, and laboratory results to 
improve the applicability and accuracy of the model in 
clinical practice [22].

Post-operative complications were experienced by 33% 
(n = 58) of the patients. Details of the liver resection vari-
able dataset in this experiment are presented in Table 1.

Logistic regression (LR): Logistic regression is used 
when the dependent variable is binary, nominal or 
sequential, and there are no restrictions for explana-
tory or independent variables [23]. In non-large-sample 
epidemiological studies, this approach is widely used as 
a simple predictor of chronic disease risk [23, 24]. It is 
possible to predict the probability of belonging to each 

level of the dependent variable, and also the possibility of 
directly calculating the odds ratio using the coefficients of 
the model [23]. To solve the problems of overfitting and 
multiple contribution lines, we used stepwise regression 
(TR) to improve the result. The explained variables are 
used to produce a simple regression for each explanatory 
variable under consideration, and then the regression 
equation corresponding to the explanatory variable con-
tributing the most to the explained variable is produced, 
and the remaining explanatory variables are gradually 
introduced. After stepwise regression, the explanatory 
variables retained in the model are both important and 
not seriously multicollinearity. This approach has been 
used to study the risk of complications in patients with 
cirrhosis [25]. As part of the LR algorithm, the perfor-
mance of TR was also given in the results of Table 4.

Decision trees: Decision tree classifiers have been 
used in a range of clinical studies [26, 27], An important 
advantage of decision trees is that they do not necessar-
ily require selection of the explanatory variables prior to 
model building. Moreover, their non-parametric nature 
allows them to deal with missing values, and they are 
robust to the presence of outliers [28]. In this paper, two 
of the decision tree algorithms, C5.0 and Classification 
and Regression Tree (CART), were implemented.

C5.0 works by recursively splitting a sample, using the 
feature that provides the maximum information gain 

Table 1  Attributes of the dataset

NO Attributes Type Description

1 L_complication Discrete Occurrence of complications
 0: No
 1:Yes

2 Resection range Discrete Hepatic segments included in liver cancer surgery
 1:hepatic segment 1
 2: hepatic segment 2
 3: hepatic segment 3
 4: hepatic segment 4

3 Type of incision Discrete Surgical incision shape
 1: Surgical incision along the costal margin
 2: Surgical incision along the midline of abdomen

4 Length of incision Continuous The length of the incision during the surgery

5 BMI Continuous Body Mass Index: the ratio of weight in kg to height in meters 
squared, a standard measure

6 CA Continuous Abdominal cavity depth: The distance from umbilicus to vertebral lip

7 Diameter of tumor Continuous The diameter of the biggest tumor

8 Number of tumors Discrete Count of tumors in the liver

9 Duration Continuous Time from the skin incision to definitive abdominal closure

10 Bleeding Continuous Volume of bleeding (ml): The amount of bleeding during the surgery

11 Transfusion Discrete Whether transfusion was needed
 0: No
 1: Yes

12 Plasma infusion Continuous Volume of plasma infusion (ml) input during surgery

13 Erythrocyte suspension Continuous Volume of erythrocyte suspension (ml) during operation
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[29]. For each record in the dataset, C5.0 generates pre-
dictions and confidence levels.

CART​ is an effective nonparametric classification and 
regression method. This algorithm constructs a predic-
tion algorithm by building a binary tree.

Support vector machines (SVMs): SVMs are based 
on the principle of structural risk minimization, in which 
the training set is mapped into a high-dimensional fea-
ture space, using a nonlinear transformation, referred to 
as the kernel [30]. The SVM is a computational algorithm 
that can learn from experience and examples to allocate 
labels to objects [31]. The algorithm has good accuracy 
even with a limited number of examples [32]. Due to its 
advantages, SVM is widely used.

Random forest (RF): A random forest is a classifier 
that combines multiple decision trees, and its output 
categories are determined by the mode of the categories 
output by an individual tree. It is a kind of integrated 
algorithm, and is often used to improve the prediction 
accuracy and stability of a model [33].

The functions “glm()”, “step()”, “C5.0” in the package of 
C50, “rpart()” and “prune.part()” in the package of rpart, 
“svm()” in the package of e1071, “randomForest()” in the 
package of randomForest were used to implement the 
above algorithms by R.

Performance evaluation
The performance of the ML models was evaluated using 
the Area Under the ROC Curve (AUC). Meanwhile, the 
accuracy of the prediction was considered too.

Filter, wrapper and embedded methods are the com-
monly used methods for feature analysis in machine 
learning. The methods used to rank the importance of 
factors include variance, correlation coefficient, maxi-
mum information gain and so on. For example, LR uses 
the correlation coefficient to rank the feature impor-
tance, while SVM uses information gain to rank the 
importance. For each algorithm, the five most significant 
characteristic variables were identified. Then, based on 
the occurrence frequency and experts’ opinion of early 
preoperative intervention, three characteristic vari-
ables were selected. Using logistic regression, the risk of 

postoperative complications in patients undergoing liver 
resection was analyzed and discussed.

Results
Sample characteristics
The proportion of patients with post-surgery complica-
tions was 33% (n = 58), The proportions of the training 
set and the test set were 70% (n = 122) and 30% (n = 53) 
respectively. All of the patients were under 65 years old, 
with an average age of 49.8. Of them, 144 (82.29%) were 
male, and 31 (17.71%) were female. Table 2 presents the 
characteristics of the datasets. To better understand the 
baseline characteristics of patients, we divided them into 
two groups, with complication and without complication, 
as shown in Table 3.

Figure 1 gives the distribution histogram of the contin-
uous variables. Due to anorexia in patients with liver can-
cer [34], it is apparent from the BMI figures that most of 
the patients were underweight. The mean of CA is close 
to the clinical threshold (0.35). The amount of bleeding 
during surgery was clinically negligible in most patients.

Prediction accuracy of different models
Figure 2 and Table 4 show the prediction ability for the 
models. All six machine learning algorithms showed 
high accuracy in predicting the risk of complications. 
The accuracy of LR, TR, C5.0, CART, SVM, RF were 
0.83 (95% CI 0.77–0.89), 0.79 (95% CI 0.73–0.84), 0.92 
(95% CI 0.83–1), 0.87 (95% CI 0.80–0.94), 0.81 (95% CI 
0.75–0.87), and 0.77(95% CI 0.71–0.84), respectively. 
The AUC of the six algorithms was 0.82 (95% CI 0.66–
0.98), 0.79 (95% CI 0.66–0.92), 0.91 (95% CI 0.77–1), 
0.82 (95% CI 0.70–0.94), 0.72 (95% CI 0.59–0.85), and 
0.71 (95% CI 0.60–0.81), respectively. Table  4 shows 
the sensitivity and specificity of the algorithms. In two 
sets of regression models, the AIC of the LR model was 
196. The TR model was based on the LR. There are only 
three significant variables left in the TR model after 
backward and forward improvement based on the LR 
model. Only two of the 12 variables in LR were signifi-
cant. Kappa was 19073, which means there is serious 
multicollinearity in the variables of the LR model, and 

Table 2  Patient characteristics (n = 175)

Risk factor Mean SD Min P25 P50 P75 Max

BMI (kg/m2) 22.52 2.96 16.41 20.25 22.49 24.27 32.85

Length of incision (cm) 23.30 4.61 13 19 24 27 35

CA 0.34 0.04 0.2 0.31 0.34 0.37 0.46

Diameter of tumor (cm) 5.69 3.39 1.0 3.0 5.0 6.9 18.0

Duration (min) 201.04 58.89 70 160 195 235 375

Bleeding (ml) 380 307.82 50 200 300 500 1600
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there may therefore be overfitting of variables in the LR 
model. The performance of the random forest model 
was weaker than that of the other models with an AUC 
value of 0.71(95% CI 0.60–0.81), an accuracy of 77.36% 
(95% CI 71%-84%), the sensitivity of 56.25%, and speci-
ficity of 86.48%. The C5.0 decision tree model had an 
AUC value of 0.91 (95% CI 0.77–1), with an accuracy 
of 92.45% (95% CI 83%–1), the sensitivity of 87.5%, and 
specificity of 94.59% on independent test data (Table 4). 
This approach significantly outperformed the other 
models. To provide more accurate clinical advice to 
doctors, key risk factors were analyzed using C5.0 in 
the subsequent analysis. We compared our results with 
those from the literature (Table 5).

Decision curves analysis of the different models
Decision curve analysis is a method to evaluate predic-
tion models and diagnostic tests. It was introduced by 
Vickers and Elkin in 2006, to overcome the limitations 
of traditional measures and techniques for evaluating 
alternative diagnostic and prognostic strategies [36, 37]. 
Figure 3 shows the decision curve analysis of the models, 
and random forest shows the best performance.

Ranking of importance of the variables by different models
Table 5 shows the most influential variables in each of 
the ML algorithms, and the relative ranks of the top five 
variables in decreasing order. The importance of each 
variable was different for each model. Surgical dura-
tion was of primary importance in each algorithm. In 
addition, BMI was an important indicator, and was 

Table 3  Baseline patient characteristics in the complications group and non-complications group (N = 175)

Variables Variable category (assignment) Sample size (N %) Complications 
group (N=58)

Non-
complications 
group (N=116)

Kruskal-Wallis 
chi-squared

P-Value

Demographic information

Age 18–45:1 50 (28.57%) 14 (24.14%) 36 (30.77%) 0.83 0.3621

45–65:2 125 (71.42%) 44 (75.86%) 81 (69.23%)

Gender Male (1) 144 (82.29%) 48 (82.76%) 96 (82.05%) 0.01 0.9084

Female (2) 31 (19.61%) 10 (17.24%) 21(17.95%)

BMI (kg/m2) Continuous variable
(mean± SD)

22.52±2.96 21.93±2.44 22.81±3.16 3.16 0.0750

Tumor diameter Continuous variable ( mean± SD) 5.69±3.40 6.58±3.49 5.26±3.28 70.94 0.1577

Tumor number 1 (1) 145 (82.86%) 46 (79.31%) 99 (84.61%) 5.19 0.3935

2 (2) 16 (9.14%) 4 (6.90%) 12 (10.23%)

3 (3) 7 (4.00%) 4 (6.90%) 3 (2.56%)

4 (4) 4 (2.29%) 2 (3.45%) 2 (1.70%)

5 (5) 2 (1.14%) 1 (1.72%) 1 (0.85%)

6 (6) 1 (0.57%) 1 (1.72%) 0 (0%)

CA Continuous variable ( mean± SD) 0.34±0.04 0.34±0.046 0.35±0.044 0.33 0.5661

Surgical information

Incision type Kocher’s incision (1) 129 (73.71%) 51 (87.93%) 78 (66.67%) 9.00 0.0027

Abdominal incision (2) 46 (26.28%) 7 (12.07%) 39 (33.33%)

Incision length Continuous variable ( mean± SD) 23.31±4.61 24.78±3.67 22.58±4.87 37.70 0.0494

Duration Continuous variable ( mean± SD) 201.04±58 234.1±59.47 184.64±51.44 64.60 0.0401

Incision range One liver segment (1) 37 (21.14%) 5 (8.62%) 32 (27.35%) 16.29 0.0009

Two liver segments (2) 55 (31.42%) 16 (27.59%) 39 (33.33%)

Three liver segments (3) 44 (25.14%) 15 (25.86%) 29 (24.78%)

Four liver segments (4) 39 (22.28%) 22 (37.93%) 17 (14.53%)

Bleeding Continuous variable ( mean± SD) 380±307.82 516.72±382.87 312.22±236.90 34.27 0.0243

Transfusion Yes (1) 10(5.71%) 6(3.43%) 4(2.28%) 3.43 0.0630

No (2) 165(94.28%) 52(29.71) 113(64.67%)

Erythrocyte suspension Continuous variable ( mean± SD) 0.12+0.54 0.28±0.85 0.042±0.26 5.05 0.0240

Outcome variables

Complications No (0) 117 (66.48%)

Yes (1) 58 (33.52%)
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included in the top five variables of each algorithm. All 
of the algorithms can be used to provide a threshold for 
reducing the risk of complications through the control 
of key risk factors. For example, according to CART, to 
reduce the risk of complications we need to take into 
account the following variables: in the low-risk group 
the diameter of tumor < 6.25  cm, CA < 0.3285, dura-
tion < 227.5  min, BMI < 21.755  kg/m2, and length of 
incision < 23.5 cm.

We ranked the risk factors for each algorithm, top 
five important factors for each algorithm are shown in 
Table  6, a total of seven important variables, consisting 
of preoperative variables (BMI, diameter of tumor, length 
of incision) and intraoperative variables (duration, CA, 
plasma transfusion, bleeding). Some of these variables, 
such as tumor size, are hard to control, while others are 
easy to control to reduce the risk of complications. In this 
work, we selected three risk factors which can be con-
trolled through reasonable clinical and surgical options. 
The three variables are duration, BMI, and length of 
incision.

Clinical guidance for important controllable variables
The three most significant factors—duration, BMI, 
and length of incision, have been identified by the ML 
algorithms in the previous sections. Logistic regres-
sion, which is the most widely used method in clinical 
practice [38, 39], can learn and quantify the relations 
between features and target value. As shown in Table 7, 
for every unit increase in BMI, the odd ratios of com-
plications decreased by 24 percent; for each additional 
ten minutes of surgery, the odd ratios of complications 
increased by 17.49%; and an increase in the length of 
the surgical opening by one unit increased the odd 
ratios by 10.54%. The model had values as follows: logit 
(pi) = −  1.39 + 0.1054 (length of incision) + 0.0174 
(duration) − 0.2429 (BMI). To reduce the risk of post-
operative complications in liver resection patients, 
preoperative BMI should be at least 22.96, and the 
duration of the operation should be limited to 290 min.

Fig. 1  a The distribution of length of incision. b The distribution of BMI. c The distribution of CA. d The distribution of duration. e The distribution 
of duration. f The distribution of Volume of bleeding during operation. g The distribution of Volume of plasma infusion during operation. h The 
distribution of patient Volume of erythrocyte suspension during operation
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Fig. 2  ROC analysis of the different ML algorithms. The AUC for each algorithm is indicated on the diagram. The C5.0 decision tree algorithm is had 
the best AUC​

Table 4  Performance of the different algorithms

Type of ML Accuracy
(95% CI)

Sensitivity Specificity AUC​
(95% CI)

Logistic Regression (LR) 0.83 [0.77,0.89] 0.72 0.60 0.82 [0.66,0.98]

T-wise Regression (TR) 0.79 [0.73,0.84] 0.70 0.59 0.79 [0.66,0.92]

Decision Tree: C5.0 (C5.0) 0.92 [0.83,1] 0.87 0.94 0.91 [0.77,1]

Decision Tree: CART (CART) 0.87 [0.80,0.94] 0.69 0.91 0.82 [0.70,0.94]

Support Vector Machine (SVM) 0.81 [0.75,0.87] 0.50 0.94 0.72 [0.59,0.85]

Random Forest (RF) 0.77 [0.71,0.84] 0.56 0.86 0.7 [0.60,0.81]

Table 5  Comparison of different models

No Authors Techniques Diagnosis Accuracy

1 Our best method C5.0 decision tree Liver cancer 0.9245

2 Ming et al. (2019) [18] ML-adaptive Breast cancer 0.9017

3 Bronsert et al. (2019) [16] Binomial generalized linear model Various diagnosis from electronic 
health record

0.88

4 Feng et al. (2019) [35] Logistic regression and Twenty-two machine 
learning (ML) models

Traumatic brain injuries 0.88

5 Abd El-Salam et al. (2019) [19] Bayesian Nets Liver cirrhosis 0.689
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Discussion
Various risk factors for complications after operation 
have been described in the literature. In this study, we 
computed the predictive accuracy of five machine learn-
ing models, compared their performance, and ranked the 
importance of the variables according to the different ML 
algorithms. C5.0, a decision tree algorithm, had the best 
performance in predicting the risk of complications after 
liver resection, with an AUC of 0.91 (95% CI 0.77–1), an 
accuracy of 92.45% (95% CI 83%-1), a sensitivity of 87.5%, 
and specificity of 94.59%. The biggest contribution of 
this paper is that after we conducted a study of the most 
important risk factors found by the different algorithms, 
we developed concise and practical clinical suggestions.

Recent literature has reported early complication rates 
after resection ranging from 20 to 50%. Of our patients, 
33% experienced complications. Previous studies tended 
to focus on only one variable, such as duration of surgery, 
bleeding, requirement for blood transfusion, and BMI. 
However, no recent literature has provided clinical guid-
ance based upon these findings.

Machine learning techniques have shown great poten-
tial in the field of healthcare management [40], but every 
model has its limitations. For example, LR uses a large 
number of variables of low significance to produce accu-
racy, resulting in over-fitting. Support vector machines 
are not robust when using large datasets. Due to the dif-
ferences between algorithms, the ordering of importance 
of variables is different in different machine learning 
methods, and the variables selected by a single method 
may lead to a loss of information. Our study also found 
that the important variables identified by different meth-
ods were different (Table 3).

Most clinicians lack sufficient expertise in machine 
learning to build a model [40]. Experts in machine learn-
ing algorithms, however, generally cannot use models to 
give clinical advice. We compared the performance of 
six machine learning algorithms in predicting the risk 
of postoperative complications in patients undergoing 
liver resection, and selected the best method based on 
its prediction accuracy. We then established a secondary 
learning model, and developed suggestions for issues to 
be considered before surgery, which has not been done 
in previous studies. We controlled some risk factors 
within a certain range, predicted which patients would be 
at high risk after surgery, and increased nursing care for 
these patients, to reduce the risk of complications.

The accuracy of the C5.0 model selected in this study 
was higher than those of previous studies (Table 4). We 
screened the variables selected as important by various 
algorithms, and selected three variables for secondary 
learning using C5.0, producing conclusions with strong 
clinical significance.

Most studies define overweight individuals as those 
having a BMI ≥ 25 kg/m2, and obesity as BMI ≥ 30 kg/m2 

Fig. 3  Decision curve analysis of different models for the prediction 
of postoperative complication risk in liver resection patients

Table 6  Top five risk factors in descending order of importance for the five ML algorithms

Type of ML First factor Second factor Third factor Fourth factor Fifth factor

Decision Tree: C5.0 Duration BMI CA Plasma infusion Length of incision

Decision Tree: CART​ Duration Diameter of tumor BMI CA Length of incision

Support Vector Machine (SVM) Duration BMI CA Erythrocyte suspension Length of incision

Random Forest (RF) Duration BMI CA Diameter of tumor bleeding

Table 7  Probability of belonging to each level of the dependent 
variable

* P < 0.05; **P < 0.01

Risk factor Estimate Std. Error z value Pr ( >|z|)

Length of incision 0.105457 0.047442 2.223 0.026227*

BMI − 0.242907 0.070834 − 3.429 0.000605**

Duration 0.017495 0.003912 4.472 7.73e−06**
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[40]. A BMI ≥ 25 has been established as an independent 
risk factor for complications at the time of liver resec-
tion. Most patients (74.36%) with liver cancer suffer from 
malnutrition, because of digestive symptoms such as loss 
of appetite and increased energy expenditure and meta-
bolic rate [34]. However, previous studies have focused 
only on overweight or obesity, which is an independent 
contributor to postoperative liver failure [41]. Of our 
study subjects, only 35 had a BMI of more than 25  kg/
m2, accounting for 20% of the total sample. In the second 
study of the important variables, we found that when the 
BMI was lower than 22.96 (58% of the total sample), the 
risk of complications was higher. This observation sug-
gests that clinicians should attempt to increase patients’ 
BMI to 22.96 before surgery, to reduce the risk of com-
plications after surgery. Weight loss is common among 
patients with intraabdominal diseases, and is recognized 
as a risk factor for postoperative complications. However, 
the definition of thinness is inconsistent. In this paper 
we provide a quantitative analysis of patients with liver 
resection.

Surgical duration is an independent predictor of short-
term adverse outcomes, but the association between 
surgical duration and postoperative complications is 
unclear [42], especially for liver resection, since there 
have been no previous studies. We found that for each 
additional ten minutes of surgery, the risk of complica-
tions increased by 17.49%. Using the C5.0 algorithm, we 
established a division of the duration into three ranges: 
low risk less than 175  min; moderate risk from 175 to 
290  min; and high risk greater than 290  min. Keeping 
the operation time below 290 min could reduce the risk 
of complications. For patients with a high risk of compli-
cations, more attention should be paid to postoperative 
care.

There are a few limitations with this study. We only 
collected data from one hospital, so data collection from 
more hospitals should be considered. We also need data 
from patients aged over 65. Data on smoking, drink-
ing and other behaviors of patients with liver cancer 
are missing. In subsequent experiments, we will collect 
behavioral data from patients. This study only considered 
the presence or absence of complications, and we will 
also consider the grade of complications in future studies.

Conclusions
We compared five different machine learning algo-
rithms, and showed that C5.0, a decision tree algo-
rithm, had the best accuracy when predicting 
postoperative complications in patients undergoing 
liver resection. We also conducted secondary investiga-
tion of the important variables identified by the differ-
ent machine algorithms, and developed suggestions for 

clinical guidance. We should continue to improve the 
accuracy of the algorithm, to achieve early prediction 
of the risk of postoperative complications in liver resec-
tion patients.
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