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Abstract

Quantitative systems pharmacology (QSP) models and spatial agent-based models (ABM)

are powerful and efficient approaches for the analysis of biological systems and for clinical

applications. Although QSP models are becoming essential in discovering predictive bio-

markers and developing combination therapies through in silico virtual trials, they are inade-

quate to capture the spatial heterogeneity and randomness that characterize complex

biological systems, and specifically the tumor microenvironment. Here, we extend our

recently developed spatial QSP (spQSP) model to analyze tumor growth dynamics and its

response to immunotherapy at different spatio-temporal scales. In the model, the tumor spa-

tial dynamics is governed by the ABM, coupled to the QSP model, which includes the follow-

ing compartments: central (blood system), tumor, tumor-draining lymph node, and

peripheral (the rest of the organs and tissues). A dynamic recruitment of T cells and mye-

loid-derived suppressor cells (MDSC) from the QSP central compartment has been imple-

mented as a function of the spatial distribution of cancer cells. The proposed QSP-ABM

coupling methodology enables the spQSP model to perform as a coarse-grained model at

the whole-tumor scale and as an agent-based model at the regions of interest (ROIs) scale.

Thus, we exploit the spQSP model potential to characterize tumor growth, identify T cell hot-

spots, and perform qualitative and quantitative descriptions of cell density profiles at the

invasive front of the tumor. Additionally, we analyze the effects of immunotherapy at both

whole-tumor and ROI scales under different tumor growth and immune response conditions.

A digital pathology computational analysis of triple-negative breast cancer specimens is

used as a guide for modeling the immuno-architecture of the invasive front.
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Author summary

Spatial heterogeneity is a hallmark of cancer, thus the ability to quantify the complexity of

the tumor microenvironment is an important goal of computational modeling. We pres-

ent a hybrid computational modeling platform, spQSP, to extend quantitative systems

pharmacology (QSP) models of immuno-oncology into the spatial dimension by combin-

ing them with spatial agent-based models (ABM). We focus on several methodological

and biological aspects of modeling cancer. First, the coupling of deterministic ordinary

differential equation based whole-patient QSP model and stochastic, spatial agent-based

model of tumor. Second, we focus on the region at the edge of the tumor called the Inva-

sive Front (IF). We introduce a quantitative definition of IF consistent with pathologists’

definition and present examples of its geometry. Third, we apply the model to immuno-

therapy of triple-negative breast cancer and compare the simulations of spatial distribu-

tion of immune cells (e.g., CD8+ and FoxP3+ T cells) with our recent digital pathology

quantitative analysis of patients’ specimens. Thus, the computational platform combines

the power of QSP models with spatial ABM thus opening the way to utilizing the immense

information about the tumor microenvironment contained in multiplexed pathology

specimens. This modeling platform enables conducting virtual clinical trials and bio-

marker discovery for cancer immunotherapies.

Introduction

The study of the tumor microenvironment (TME) is essential for understanding the biological

mechanisms involved in the tumor growth, progression, and dissemination processes as well

as the role of the host immune system [1,2]. The TME consists of innate and adaptive immune

cell subpopulations, fibroblasts, adipocytes, immune-inflammatory cells, and blood and lym-

phatic vascular networks [3,4,5]. A variety of processes involve cells that constitute the TME:

recruitment of immune cells from blood vessels, migration, proliferation, differentiation,

expansion, apoptosis, etc. Such level of intra-tumoral complexity and the wide range of

patients with different anti-tumor immune responses hinder the ability to predict cancer pro-

gression [6,7,8]. Thus, understanding the unique profile of T cells in that heterogeneous

microenvironment as well as defining the prognostic role of each cell type are crucial for

understanding of how the immune microenvironment contributes to cancer progression. On

the other hand, agents commonly known as immune checkpoint blockers (ICB) or immune

checkpoint inhibitors (ICI) enhance antitumor response by targeting some specific compo-

nents in the TME [9,10]. Over the last decade, immunotherapies with ICBs have demonstrated

promising clinical outcomes and increase in survival rates in different types of advanced can-

cer [11,12,13].

Quantitative systems pharmacology (QSP) models have become vital in discovering predic-

tive biomarkers and helped develop and test combination therapies through in silico virtual

trials [14,15,16,17]. QSP models have been successfully applied to the study of different cancers

as well as the development of immunotherapies, e.g., breast [18], lung [19], melanoma [20],

colorectal [21]. Yet, although these models can represent the complexity of the biology

involved in the tumor growth, the tumor microenvironment, the immune response, or the

antibody pharmacokinetics and pharmacodynamics, their efficiency is limited. QSP models

are non-spatial and deterministic, and they lack the ability to represent the heterogeneity and

stochasticity of the tumor as well as the spatial distribution of the elements that comprise the

tumor microenvironment [22,23,24]. Recent data from cancer studies prove the importance of
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modeling spatio-temporal features of cancer progression in order to understand the key role

of the immune system and develop more effective combination immunotherapies

[25,26,27,28,29]. Agent-based models, where entities called agents act and interact according

to a set of rules, deterministic or stochastic, are excellent tools to represent the elements and

processes that characterize the TME and the effects of immunotherapies with ICBs

[30,31,32,33,34,35,36,37].

Spatial models have been widely used to study the importance of the heterogeneity of the

tumor microenvironment on solid tumor growth and morphology and the implications for

cancer therapy. For instance, spatial analysis and nonlinear simulations have been performed

to characterize invasiveness and fingering/fragmentation mechanisms of solid tumors [38]. A

three-dimensional multispecies mixture model has also probed that spatial patterning of can-

cer stem cells and externally applied signaling factors play a central role in the development or

suppression of fingering structures in normal and cancer colon organoids [39]. Additionally,

agent-based modeling has been used to identify adaptive dosing strategies that control inva-

siveness of heterogeneous tumors to reduce resistance and recurrence [40]. Regarding cancer

immunotherapy, an extensive variety of modeling approaches have been developed: data-

driven top-down vs mechanistic bottom-up, simplistic vs detailed, continuous vs discrete, and

hybrid [41]. Nevertheless, only stochastic models have the ability to represent the complex spa-

tial dynamics of cancer and immune cells that is key in the optimization of viral dosing and

production of effective treatment outcomes [42,43].

Multiscale hybrid models are powerful tools that combine deterministic and stochastic sce-

narios that handle a wide range of spatio-temporal scales [44,45]. Here, we extend a novel and

recently published spatial QSP model (spQSP) [36,37], where a whole-patient ordinary differ-

ential equations-based QSP model and a spatial ABM, each representing part of a whole

tumor, are combined, to study the dynamics of tumor growth and the response to immuno-

therapy at different spatial and temporal scales. Different types of cancer cells, T cells, and

myeloid-derived suppressor cells (MDSCs) in ABM are represented as agents that move and

react, conforming to a set of probabilistic rules, whereas QSP model defines an average num-

ber of cells that changes over time. Unlike previous studies [36,37], where the state of the spe-

cies in the tumor is defined by combining the outcomes from QSP model and ABM, the

presented approach replaces the spatially homogeneous QSP representation of cells in the

tumor by the spatial ABM representation after applying a scaling factor. The QSP temporal

dynamics of cells in the tumor is redefined in terms of propensity functions and probabilities,

which establishes a simple methodology to transform QSP models into their equivalent spatial

representations and guarantees a consistent coupling between QSP model and ABM. Although

the ABM provides information at a microscopic level, this mesoscopic coupling approach

enables us to use spQSP as a coarse-grained model to represent the entire system at the tumor

scale. Moreover, although this extended version does not yet include tumor vasculature explic-

itly, it introduces a dynamic recruitment of cells from blood based on the local concentration

of cancer cells in order to characterize T cell hotspots at the tumor scale and their density pro-

files at the invasive front. A digital pathology computational analysis of triple-negative breast

cancer specimens is used as a guide for modeling the immuno-architecture in this study [28].

This study is an extension of our recent spQSP platform development [36,37]. Our specific

goals in this study are two-fold: (a) To present the methodology of coupling QSP and ABM

models and demonstrate its application on several examples; (b) to focus on the topic of the

invasive front in triple-negative breast cancer and demonstrate that the model is in agreement

with our previously published analysis of pathology samples [28].
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Material and methods

Our hybrid spQSP model applied to triple-negative breast cancer (TNBC) is composed of two

parts: a QSP model based on ordinary differential equations and a spatial agent-based model.

The former is used to study the anti-tumor immune response by representing the human body

as a four-compartment system: central (blood system), tumor, tumor-draining lymph node,

and peripheral (the rest of the organs and tissues); the latter describes the spatio-temporal evo-

lution of the tumor microenvironment in order to study the level of heterogeneity that charac-

terizes this type of tumors. The QSP model, and more specifically, the tumor compartment

from QSP is combined with the ABM of tumor resulting in the spatial QSP which we refer to

as spQSP.

Quantitative systems pharmacology model

The QSP part of our hybrid model has been recently developed by Wang et al. [46]; the model is

related to other models from our laboratory [18,19,20,21,47,48,49,50]. It is composed of eight

modules that correspond to different types of cell/species: cancer cells, effector T cells, regulatory

T cells, MDSCs, antigen-presenting cells, antigens, immune checkpoint ligands and receptors,

and therapeutic agents. The dynamics of the major species is illustrated in the left side of Fig 1

and the temporal evolution of their concentrations is obtained by solving a system of 120 ODEs

and 39 algebraic equations. Wang et al. [46] implemented the SimBiology toolbox in MATLAB

and generated a Systems Biology Markup Language (SBML) file with the full information about

the reaction fluxes, algebraic equations, and model parameters. We converted this file to C++ pro-

gramming language by using a converter tool developed in Python language to be able to com-

bine it with ABM that is entirely developed in C++ language.

Fig 1. Diagram of the spQSP model. Left: Compartmental representation of the whole patient by QSP model. Right:

Spatial representation of the tumor by ABM. Some deterministic species and reactions from the QSP tumor

compartment are replaced with equivalent agents and stochastic reactions in ABM. The antigen module, however, is

not explicitly represented in ABM. It consists of antigen-presenting cells that mature after taking antigens from the

tumor compartment to transport them through lymphatic vessels to the tumor-draining lymph node compartment.

Once there, they prime naïve cytotoxic T lymphocytes (CTL) and regulatory T cells (Treg) that clonally expand in the

tumor draining lymph nodes, intravasate, circulate through the central compartment (blood system), and extravasate

into the tumor microenvironment as described in [1]. The figure has been created with Biorender.

https://doi.org/10.1371/journal.pcbi.1010254.g001
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Without modifying the differential and algebraic equations from Wang et al. [46] model,

we have recalibrated some parameters to obtain a set of simulations that agree with the clinical

observations; specifically, on the number of responders to anti-PD-1 treatment and T cell den-

sities in the tumor [51]. Section A.1 of the S1 Supplementary Material includes QSP solutions

for 100 cases without and with anti-PD-1 treatment after recalibration. All parameter values,

reactions, and expressions of the QSP model are listed in S1 Table.

Spatial quantitative systems pharmacology model

Description of the agent-based model. The ABM proposed in this study replaces the

tumor compartment of the QSP model by scaling the number of cells and representing either a

small version of the tumor or a sample volume of it (region of interest, ROI). This ABM is a

significant extension of a previous model developed by Gong et al. [31] with additional species

and rules. Also, it is more detailed than the QSP model in terms of species since we include dif-

ferent types of cancer cells (stem-like, progenitor, and senescent) and T cells (effector, cyto-

toxic, exhausted) (Fig 1). A related spQSP model has recently been published and applied to

non-small cell lung cancer (NSCLC) [36]; it was coupled with our previously published QSP

model for NSCLC [19]. The current model also differs from the model developed by Zhang

et al. for triple-negative breast cancer [37] where the emphasis was on incorporating single-cell

RNA sequencing data into the spQSP model. There are important differences between the

models, particularly in how the QSP model and ABM are coupled and also in the representa-

tion of certain species, thus here we present the complete model formulation for clarity and

reproducibility.

The three-dimensional grid is defined as a parallelepiped composed of voxels where the

cells (or agents) are located. For this study we assume voxels of size 20x20x20 microns. Cell

dynamics in the grid takes place according to the following rules:

• Due to their relatively large cellular volumes, only one cancer cell or MDSC is allowed to

occupy one voxel.

• Up to eight T cells can occupy one voxel but only one T cell can coexist with a cancer cell

or a MDSC.

• All cells have a probability of movement assigned so they can randomly migrate to adja-

cent voxels every time step.

• A cell can only interact with cells that surround them in the spatial grid, i.e., cells that

occupy the same voxel and the 26 neighboring voxels.

• No-flux boundary conditions are imposed at the edges of the 3D parallelepiped (which in

this study is assumed to be 150x150x150 voxels to represent the entire tumor and

200x200x20 voxels to study part of the tumor; these dimensions can be readily changed

depending on needs and computer resources).

Fig 2 shows a workflow of the spatial QSP algorithm. The QSP model is initialized before

ABM and starts from a single cancer cell (unless ABM is assumed to start from a single cancer

stem-like cell in order to initialize QSP model and ABM at the same time) or a spatial distribu-

tion of cancer cells, e.g., normal distribution. Then, a specific diameter pre-selected from a ran-

dom distribution is used to calculate the initial tumor volume assuming a spherical tumor.

Once the tumor reaches that predefined volume in the QSP model, the values of the species

divided by a scaling factor are set as the initial conditions in the ABM model. Alternatively, it

is possible to initialize ABM before the predefined tumor volume in the QSP model is reached
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and before a significant number of T cells and MDSCs are recruited into the QSP tumor compart-

ment not to enforce initial spatial distributions of such cells in ABM, e.g. when a normal distribu-

tion of cancer cells is imposed as the initial condition, but the tumor is still so small that T cells

and MDSCs are not present yet. Once initialized, some of the QSP model values at a time t are

used in the reaction rates in ABM, e.g., the recruitment rates of T cells and MDSCs to represent

the ABM scaled version of the real-size tumor or a fraction of it; the scaling equations will be pre-

sented in the section below and Section A.2 of the S1 Supplementary Material as part of the

QSP-ABM coupling description. Then, ABM assumes that cells move to adjacent voxels and react

during the time step dt. After all reactions take place, the values of QSP model variables at time t
are used to advance the QSP part to a time t + dt and the number of cells in ABM is inversely

scaled to update the total number of cells in the QSP tumor compartment at t + dt; the inverse

scaling equations will also be presented as part of the QSP-ABM coupling description and Section

A.2 of the S1 Supplementary Material. Thus, all species in QSP model are updated to their state at

t + dt and the algorithm repeats the calculations for the subsequent time step.

Representation of species in the ABM

Cancer cells. Unlike QSP model, ABM classifies cancer cells into three categories: cancer

stem-like cells (CSCs), progenitor cells (PCs), and senescent cells (SCs). Following the cancer

Fig 2. Workflow and description of the spatial QSP model explaining how the QSP model and ABM are coupled. Left: Workflow of the calculation steps in

the spQSP algorithm. Right: Breakdown of each step and list of the main C++ files used in the step. The figure has been created with Biorender.

https://doi.org/10.1371/journal.pcbi.1010254.g002
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cell rules proposed by Norton et al. [30,52], CSCs division happens either symmetrically or

asymmetrically. By defining a probability of division, k, ABM determines if a CSC divides to

two daughter CSCs or to a CSC and a PC. All CSCs are assumed to divide indefinitely, i.e.,

there is no limit to the number of divisions. On the contrary, a maximum number of divisions,

dmax, is specified for PCs before they transition to the senescent state. Finally, SCs do not have

the ability to divide and end up dying at a predefined death rate, μ.

CD8+ T cells. While QSP model only distinguishes between effector T cells and

exhausted/suppressed T cells, ABM also divides the former into two subcategories: effector

and cytotoxic T cells. Effector T cells are recruited from blood (QSP central compartment) at

random spatial locations in ABM that represent entry points in the tumor microvasculature.

When these cells are in the proximity of cancer cells, they get activated and become cytotoxic,

i.e., they gain the ability to kill cancer cells. Subsequently, T cells either get exhausted or die.

One type of exhaustion occurs when the programmed cell death proteins 1 (PD-1), expressed

on T cells surfaces, bond with the programmed death-ligands 1 (PD-L1) on the surroundings

cancer cells and T cells. The other type of exhaustion takes place when neighboring regulatory

T cells inhibit the cytotoxic function of effector T cells. Once the latter get exhausted, their

cytotoxic capability gets suppressed and become innocuous for cancer cells. Henceforth, we

refer to the sum of effector, cytotoxic, and exhausted/suppressed T cells as CD8+ T cells.

Regulatory T cells. Regulatory T cells (Tregs) are recruited into the tumor from blood

and expand in the presence of Arginase-I (Arg-I). They have the ability of exhausting cytotoxic

T cells when they encounter each other. Like effector T cells, regulatory T cells die at a specific

death rate. Henceforth, we interchangeably use the terms regulatory T cells and FoxP3+ T cells
for the same type of cells.

Myeloid-derived suppressor cells. MDSCs get into the tumor from blood at the entry

points in ABM. In addition to a baseline recruitment, MDSCs also get recruited by the chemo-

kine CCL2 secreted by cancer cells. MDSCs secret the cytokine Arg-I and nitric oxide (NO)

that inhibit the killing of cancer cells by cytotoxic effector T cells. Additionally, Arg-I activates

the regulatory T cell’s expansion mechanism in the tumor.

Other species. Concentrations of CCL2, NO, Arg-I, and PDL1-PD1 are calculated in the

QSP model and are assumed to be constant over the entire ABM domain.

Representation of cell migration in the ABM

The probability of migration of a cell through the three-dimensional grid is dependent on the

migration rate and it is defined in Section A.2 of the S1 Supplementary Material.

Representation of reaction rates in the ABM

Cancer cells growth and death. Following [36], we formulate an ordinary differential

equation (ODE) version of the ABM rules for cancer cell growth dynamics to keep consistency

between the QSP model and ABM. Calculations are summarized in Section A.2 of the S1 Sup-

plementary Material.

Decay reaction rates. Taking the reaction rates from the ODEs in the QSP model, we

define propensities per cell and probabilities for the reactions where the number of cells in the

tumor decays in Section A.2 of the S1 Supplementary Material. This approach is applied to five

processes: death of cancer cells by cytotoxic T cells, death of regulatory T cells, cytotoxic T cell

exhaustion (by regulatory T cells or from PD-L1 interaction), death of effector and cytotoxic T

cells, and death of MDSCs.

Recruitment reaction rates. Recruitment rates describe the number of T cells and

MDSCs that get recruited in the tumor from blood. The dynamics of this process is described
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in terms of probabilities and propensities defined in Section A.2 of the S1 Supplementary

Material. This approach is applied to four processes: recruitment of regulatory T cells, recruit-

ment of effector T cells, base recruitment of MDSCs, and recruitment of MDSCs by CCL2.

Section A.3 of the S1 Supplementary Material includes the characterization of the region

with maximum probability of recruitment based on the analysis of the invasive front of a

tumor.

Expansion reaction rate. The expansion of regulatory T cells by Arg-I is also described in

terms of probabilities in Section A.2 of the S1 Supplementary Material.

QSP-ABM coupling

Scaling: the number of cells in the QSP model is used to update ABM. Defining the

number of cells of a species in the QSP tumor as ST and the number of cells of the same species

in the ABM tumor as ST’, we express the variation of number of cells in time as follows

dST

dt
¼ krST 1

where kr is a generic reaction rate. In our model, we assume that propensities and probabilities

of reaction are defined from reaction rates in the QSP model. Consequently, we can define a

constant scaling factor γ between the number of cells in the tumor compartment in the QSP

model and ABM such that

ST ¼ gST0 2

therefore, ABM still preserves the same dynamics in time than the QSP model,

dST

dt
¼ krST !

dðgST0 Þ

dt
¼ kr gST0ð Þ !

dST0

dt
¼ krST0 : 3

Thus, from Eq (2), if there are no cells of the species ST’ in ABM at a time t, i.e. ST’,t = 0, the

estimated number of cells in ABM after a time step τ, ST’,t+τ, is dependent on the factor γ, such

that

ST0 ;tþt ¼
ST;tþt

g

� �

; 4

where ST,t+τ is the number of cells in the QSP tumor compartment at a time t + τ. This condi-

tion is applied to T cells and MDSCs such that

Teff
0 ¼

T1

g

� �

;Texh
0 ¼

Texh

g

� �

;T0

0 ¼
T0

g

� �

;MDSC0 ¼
MDSC
g

� �

; 5

where T1, Texh, T0, and MDSC, refer to the number of effector T cells, exhausted/suppressed T

cells, regulatory T cells, and MDSCs in the QSP model, respectively, and Teff
0, Texh

0, T0
0, and

MDSC0, refer to the number of effector T cells, exhausted/suppressed T cells, regulatory T cells,

and MDSCs in ABM, respectively,

Eq (2) is also used to estimate the number of cells recruited by ABM from the QSP central

compartment every time step. The probabilities of cell recruitment in the tumor are scaled

when the propensities of recruitment defined in Section A.2 of the S1 Supplementary Material

are divided by the scaling factor γ. Therefore, a generic probability of recruitment can be
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expressed as

ABM probability :

pS
T0
;rec ¼ 1 � exp �

aS
T0
;rec

g
t

� �

6

where aS
T0
;rec denotes the propensity of recruitment of a cell of the species ST’ in the ABM

tumor. Consequently, a T cell or MDSC is recruited if the condition pS
T0
;rec > xU is met, where

ξU is any random number from a uniform distribution on the interval [0,1].

Inverse scaling: The number of cells in ABM is used to update the QSP model. Eq (2) is

also implemented in ABM for inverse scaling such that the number of cells in the tumor com-

partment of the QSP model is estimated from the number of cells in ABM every time step

since ABM gets initialized. This condition is applied to cancer cells, the sum of effector and

cytotoxic T cells, exhausted/suppressed T cells, regulatory T cells, and MDSCs such that

C ¼ gðSt þ
Xdmax

i¼1

Pi þ SeÞ;T1 ¼ gðTeff
0 þ Tcyt

0Þ;

Texh ¼ gTexh
0;T0 ¼ gT0

0;MDSC ¼ gMDSC0: 7

where C is the total number of cancer cells in the QSP model, St, Pi, and Se refer to the number

of cancer stem-like cells, progenitor cells after i divisions, and senescent cells in ABM, respec-

tively, and Tcyt
0 is the number of cytotoxic T cells in ABM.

Section A.4 of the S1 Supplementary Material includes comparisons between results

obtained with the QSP model and with spQSP model for different cases. The outcomes are

qualitatively equivalent but not exactly the same due to the stochastic effects and the explicit

description of cell subtypes of ABM. This comparison shows that the proposed QSP-ABM

coupling guarantees the self-consistency of the hybrid spQSP model. Also, the continuous

feedback between ABM and QSP provides information about the influence of stochasticity

generated in ABM in the species represented in the QSP model.

Results

All QSP model and ABM parameter values used in the simulations performed for this study

are listed in S1 and S2 Tables. Although, the spatial QSP model calculates local cancer cell den-

sities for the specific goal of defining T cell and MDSC recruitment probabilities (Section A.2

of the S1 Supplementary Material), cell densities are not among the outputs of the model.

Thus, for graphical representation purposes, we have used the open-source software environ-

ment R where density calculations, based on the spatial location of cells, are implemented in

the R functions stat_density_2d and scale_fill_gradient. The former performs a 2D kernel den-

sity estimation [53] and displays the results with contours (https://ggplot2.tidyverse.org/

reference/geom_density_2d.html), the latter creates a two color gradient from low to high den-

sity (https://ggplot2.tidyverse.org/reference/scale_gradient.html). 3D representations of the

tumor have been rendered with the open-source software Blender.

Spatio-temporal evolution of the tumor

The tumor growth dynamics is determined by the balance between the migration and prolifer-

ation rates of cancer cells. By defining a set of non-dimensional parameters, we can describe
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different tumor shapes and sizes over time. Although, the tumor growth is driven by the prolif-

eration rates of CSCs and PCs, rst and rp, respectively, we should also take into account the rate

at which they migrate through the tumor microenvironment, represented by their migration

rates, ust and up. Thus, we express the first non-dimensional parameter R as follows

R ¼
rstup

rpust
: 8

The other non-dimensional parameters are the probability of division, k, and the maximum

number of progenitor cell divisions, dmax.

For the study of the spatio-temporal evolution of tumors, we have set the recruitment of T

cells and MDSCs to zero, assume the presence of one stem-like cancer cell in the center of the

ABM grid at the beginning of the simulation, and the scaling factor γ equals to 1 in all simula-

tions. From our analysis in Table 1 we conclude that the combination of high proliferation

rates of CSCs and high migration rates of PCs, i.e., R> 1, a high probability of asymmetric

division, and a large maximum number of progenitor cell divisions lead to large, spherical,

and significantly dense tumors (S4A Fig and first figure of S4C Fig). The absence of CSCs at

the IF of the tumor ensures isotropic growth. When R ~ 1, the isotropic growth still takes

place, although the tumor gets smaller and denser (S4B Fig and second figure of S4C Fig). On

the contrary, when CSC proliferation rates and PC migration rates are low, i.e., R< 1, and the

probability of asymmetric division is high, the tumor becomes anisotropic. We observe that

some groups of cells get detached from the primary tumor or form fingering structures (Fig

3A and first figure of Fig 3D). For cases with R ~ 1 and low probability of asymmetric division

the number of PCs gets reduced, and the tumor cells follow a sparse distribution (Fig 3B and

second panel of Fig 3D). Finally, the maximum number of progenitor cell divisions defines the

density of the tumor and the number of senescent cells (Fig 3C and third figure of Fig 3D).

The higher dmax, the denser the tumor and the lesser the number of senescent cells.

Spatio-temporal characterization of the immune response

In this section we present spatial and temporal comparisons of the immune response under

different tumor growth conditions without and with immunotherapy. For this analysis, ABM

is used as a coarse-grained model to represent the entire tumor. Some examples of coarse-

grained approaches where an agent represents groups of cancer cells can be found in

[54,55,56]. In our model, the representation of large groups of cells as agents introduces ran-

domness at a mesoscale that a macroscopic model would not capture, and the macroscopic

Table 1. Spatio-temporal characterization of tumors in terms of the non-dimensional cancer cell parameters R, k, and dmax. Cases A-C correspond to panels A-C,

respectively, in Fig 3. CSCs refers to cancer stem-like cells.

CASE A B C A (S4 Fig) B (S4 Fig)

R < 1 1 1 > 1 1

k High Low High High High

dmax Large Large Small Large Large

Growth rate Medium Slow Medium Fast Medium

Size Medium Small Medium Big Medium

Shape Non-regular Non-regular Non-regular Regular Regular

Density High Low Medium Medium High

CSCs, location Spread Spread Spread Centered Off-centered

CSCs, number High Medium Medium Very low Low

https://doi.org/10.1371/journal.pcbi.1010254.t001
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temporal dynamics of the tumor is ensured by the consistent coupling between the QSP model

and ABM. Thus, the scaling factor γ that we choose for the following simulations is equivalent

to the number of cells represented by each agent. In this analysis, we assume that γ = 5x104 for

all simulations.

Spatial distribution of cell densities without immunotherapy

In order to study the spatial distribution of cells in the tumor microenvironment, we have

assigned Gaussian kernel density estimates to the agents to plot cell densities instead of

Fig 3. Scaled spatio-temporal evolution of the tumor. The relation between CSC and PC migration and proliferation

rates, R, the asymmetric division probability, k, and the maximum number of progenitor cell divisions, dmax, define the

evolution in time of the tumor shape and size. In panels A-C, the turquoise scale bar represents the normalized cancer

cell density of slices at the center of the tumors with 0.2 mm thickness every 4 months; the dark blue dots are CSCs. In

panel D, dark brown, light brown, and grey dots represent CSCs, PCs, and senescent cells, respectively. Thus, three

scenarios are presented: R< 1, high probability of asymmetric division, k = 0.95, and a large maximum number of

progenitor cell divisions, dmax = 18 (panel A); R ~ 1, low probability of asymmetric division, k = 0.75, and dmax = 18

(panel B); R ~ 1, k = 0.95, and a small maximum number of progenitor cell divisions, dmax = 9 (panel C). The spatial

QSP algorithm calculated the evolution of three-dimensional tumors for 16 months starting from one CSC located at

the center of the grid. Panel D shows the three-dimensional spatial representation of the tumors from panels A-C after

16 months of growth. All simulations were performed in a 3x3x3 mm grid. Cases with spherical shapes are included in

section B.1 of the S1 Supplementary Material. The scaling factor is γ=1 in all cases.

https://doi.org/10.1371/journal.pcbi.1010254.g003
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individual entities. Thus, regions with high cell density represent the locations where it is more

likely to find cells and vice versa. In digital pathology studies these regions are known as cancer

or immune hotspots [57,58,59,60]. The coarse-grained application of the spatial QSP combines

the characteristics of two methods that are used for CD8+ T cell enumeration in prognosticat-

ing TNBC: hotspot versus whole-tumor [61,62]. It provides information at the whole-tumor

scale while estimating the regions where the main hotspots are located. Table 2 summarizes

the main features of cancer cell, CD8+ T cell, and FoxP3+ T cell density spatial distributions

presented in Fig 4, where all contour plots represent cell densities ten months after the initial

diameter condition is met. CD8+ T cells and FoxP3+ T cells are assumed to get recruited

everywhere but with higher probability at the IF of the tumor.

Our analysis shows that the variation of some dimensionless parameters can be associated

with specific spatial patterns in the tumor and, consequently, in the T cell distributions. For

instance, the relation between migration and proliferation rates, R, is critical in the shape of

the tumor and the location of low cancer cell density regions. For R ~ 1, the tumors stay quite

circumscribed and quasi-rounded (Fig 4A and 4C) which is consistent with the observations

from radiological and ultrasound images [63,64,65]. Nevertheless, although CSC densities in

both panels A and C get confined in the tumor region (multicolor lines in cancer cell contour

plots of Fig 4), only the cell density of CSCs in panel C gets completely circumscribed on the

body of the tumor. For R< 1, the tumor shape becomes very irregular, some fingering struc-

tures form at the IF, and there exists a wide diffuse region of low cancer cell density surround-

ing the core of the tumor (Fig 4B and 4D) [63,64,65]. Panel C shows that a small maximum

number of progenitor cell divisions introduces anisotropic growth in the core of the tumor

(dark turquoise region) when compared to panel A. We also see that a larger recruitment vol-

ume does not seem to affect the cancer cell density distribution in the tumor when comparing

panels B and D.

CD8+ T cell density in panels A and C form a uniform region around the core of the

tumor. Densities are practically zero in regions far from the core. CD8+ T cell density plots,

however, show that the widely spread distribution of cancer cells in panel B and D has a strong

influence on generating non-uniform T cell distributions. Low CD8+ T cell density in the core

and a combination of low and high density (hotspots) regions in the surroundings of the core,

as panels B and D show, have been experimentally observed in breast cancer [66]. From a digi-

tal pathology perspective, the relevance of the location of hotspots has been reported since the

amount of co-localized cancer and immune hotspots correlates with a good prognosis in breast

cancer [59,61]. Similar to cancer cells, CD8+ T cells are more spread out as the parameter R
decreases.

Table 2. Spatial characterization of the immune response under different tumor growth conditions. R.V. stands for recruitment volume and refers to the percentage

of spatial domain occupied by voxels with cell recruitment points (where only one recruitment point is assumed per voxel); CSCs denotes cancer stem-like cells.

Parameters Cell spatial distributions

Panel R dmax R.V.

(%)

Tumor CD8+ T cells FoxP3+ T cells

A ~ 1 Large 10 Regular shaped core, narrow region of low density at the IF. CSCs:

present all over the tumor.

Uniform and high density around

tumor, narrow region

Partially defined

circular pattern

B < 1 Large 10 Regular shaped core, wide region of low density at the IF. CSCs:

High and low gradients, widely spread

Non-uniform and low density around

tumor, wide region

No clear pattern

C ~ 1 Small 10 Non-regular core, narrow region of low density at the IF. CSCs:

present all over the tumor.

Uniform and high density around

tumor, narrow region

Partially defined

circular pattern

D < 1 Large 30 Regular shaped core, wide region of low density at the IF. CSCs:

High and low gradients, widely spread

Non-uniform and high density around

tumor, wide region

No clear pattern

https://doi.org/10.1371/journal.pcbi.1010254.t002
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Fig 4. Spatial distributions of cell densities under different tumor growth conditions. Cancer cell, CD8+ T cell, and

FoxP3+ T cell densities are normalized and represented in turquoise, purple, and blue scale bars, respectively. CSC

density distributions are represented in the first column of contour plots as yellow-to-blue lines. ξp,y = y/yref and ξp,x =

x/xref are non-dimensional spatial coordinates with yref = xref = 2up/rp. Four different scenarios are presented: similar

migration and proliferation effects, R ~ 1, 10% of the grid occupied by voxels with cell recruitment sources, and dmax =

9 (panel A); fast migration of CSCs and proliferation of PCs, R< 1, 10% of the grid occupied by voxels with cell

recruitment sources, and dmax = 9 (panel B); R ~ 1, 10% of the grid occupied by voxels with cell recruitment sources,

and dmax = 4 (panel C); R< 1, 30% of the grid occupied by voxels with cell recruitment sources, and dmax = 9 (panel

D). The spatial QSP algorithm calculated the evolution of three-dimensional tumors starting from a normal

distribution of cancer cells located at the center of the grid. QSP model and ABM are coupled before reaching the point

where T cells are recruited and also before the initial tumor diameter condition from the QSP model is met. Thus, no

initial T cell spatial distribution is enforced. The figures show the cancer cell density in a two-dimensional slice at the

center of the tumor 10 months after the initial tumor diameter condition is met. The scaling factor is γ=50000 in all

cases.

https://doi.org/10.1371/journal.pcbi.1010254.g004
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FoxP3+ T cell hotspots are highly dense, but their numbers are low. They are mostly located

at the periphery of the tumor, and only in cases with R ~ 1 (i.e., panels A and C), they form a

quasi-circular pattern around the core of the tumor.

Spatial distribution of cell densities with immunotherapy

The results above illustrated tumor growth without pharmacological interventions. Now we

will present results with anti-PD-1 immunotherapy, assuming 3 mg/kg nivolumab is adminis-

tered as a single agent every two weeks, to partially mimic the previous simulations with the

non-spatial QSP model in [46]. It should be noted that the purpose of the present study is pri-

marily methodological, to formulate spQSP model and provide exemplary simulations, rather

than reproduce conditions of a specific clinical trial.

Table 3 summarizes the main features of cancer cell, CD8+ T cell, and FoxP3+ T cell density

spatial distributions presented in Fig 5, where all contour plots represent cell densities ten

months after the initial diameter condition is met and 3 mg/kg nivolumab is administered

every two weeks.

Regarding cancer cell densities, we observe that the sizes of the cores have decreased after

one year of treatment, although their shapes remain quite similar to the cases without treat-

ment. The boundaries, however, have significantly changed in panels A and C since tumors

are now surrounded by cancer progenitor cell (PC) fingering structures and clusters. Again,

although CSC densities in both panels A and C are mostly confined in the tumor region, only

the cell density of CSCs in panel C still seems completely confined in the body of the tumor.

The boundaries in panels B and D have been partially removed and the result is a combination

of clusters of cancer cells and fingering structures. The gradients of CSC densities are mostly

low in panels B and D when immunotherapy is applied. From a clinical perspective, one of the

most interesting observations is the lack of CSC density regions in the majority of clusters in

panel A and in the fingering structures of panel C, whereas panels B and D have CSC density

presence in the majority of the clusters and fingering structures, an indication of their invasive

behavior and potential transition to a metastatic stage.

Immunotherapy significantly changes CD8+ T cell density distribution in panel A, but it

improves the immune response in panel C even more. CD8+ T cell density gets confined in a

small region around the core of the tumor. In contrast, panels B and D show widely spread

CD8+ T distributions with immunotherapy. The immune cells are more spread out and

located in hotspots at the IF of the tumors after ten months of treatment.

FoxP3+ T cell hotspots are less dense now and their numbers are still low. They are mostly

located at the periphery of the tumor and do not form any spatial pattern.

Table 3. Spatial characterization of the immune response under different tumor growth conditions and immunotherapy. R.V. stands for recruitment volume as

defined in Table 2; CSCs denotes cancer stem-like cells.

Parameters Cell spatial distributions

Panel R dmax R.V.

(%)

Tumor CD8+ T cells FoxP3+ T cells

A ~ 1 Large 10 Regular shaped core, finger structures and clusters at the IF. CSCs:

present all over the tumor.

Uniform and high density around

tumor, narrow region

No pattern, a few

hotspots

B < 1 Large 10 Regular shaped core, finger structures at the IF. CSCs: Low gradients,

widely spread

Non-uniform density around tumor,

wide region

No pattern, several

hotspots

C ~ 1 Small 10 Non-regular shaped core and finger structures at the IF. CSCs:

mostly present in the body of the tumor

Uniform and high density around

tumor, narrow region

No pattern, a few

hotspots

D < 1 Large 30 Regular shaped core, finger structures and clusters at the IF. CSCs:

Low gradients, widely spread

Non-uniform density around tumor,

wide region

No pattern, several

hotspots

https://doi.org/10.1371/journal.pcbi.1010254.t003
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Fig 5. Spatial distributions of cell densities under different tumor growth conditions and immunotherapy. Cancer

cell, CD8+ T cell, and FoxP3+ T cell densities are normalized and represented in turquoise, purple, and blue scale bars,

respectively. CSC density distributions are represented in the first column of contour plots as yellow-to-blue lines. ξp,y

= y/yref and ξp,x = x/xref are non-dimensional spatial coordinates with yref = xref = 2up/rp. Four different scenarios are

presented: similar migration and proliferation effects, R ~ 1, 10% of the grid occupied by voxels with cell recruitment

sources, and dmax = 9 (panel A); fast migration of CSCs and proliferation of PCs, R< 1, 10% of the grid occupied by

voxels with cell recruitment sources, and dmax = 9 (panel B); R ~ 1, 10% of the grid occupied by voxels with cell

recruitment sources, and dmax = 4 (panel C); R< 1, 30% of the grid occupied by voxels with cell recruitment sources,

and dmax = 9 (panel D). The spatial QSP algorithm calculated the evolution of three-dimensional tumors starting from

a normal distribution of cancer cells located at the center of the grid. QSP model and ABM are coupled before reaching

the point where T cells are recruited and also before the initial tumor diameter condition from the QSP model is met.

Thus, no initial T cell spatial distribution is enforced. The figures show the cancer cell density of a two-dimensional

slice at the center of the tumor 10 months after the initial tumor diameter condition is met and 3 mg/kg nivolumab is

administered every two weeks. The scaling factor is γ=50000 in all cases.

https://doi.org/10.1371/journal.pcbi.1010254.g005
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Temporal evolution of cells without and with immunotherapy

Fig 6 shows the evolution in time of different cell types and subtypes for cases presented in Fig

4 (without immunotherapy) and Fig 5 (with immunotherapy). In order to avoid confusion, we

assign cases (a)-(d) to Fig 4A–4D, and cases (a�)-(d�) to the panels Fig 5A–5D. Thick and thin

lines represent cases (a)-(d) and (a�)-(d�) in Fig 6, respectively. We analyze the differences as

follows.

In Fig 6, panel A, the most efficient immune response takes place in case (d) (thick purple

line) when it is compared to the other cases. By looking at the temporal outcome, we would

conclude that case (d) is the tumor that grows smaller, however, our spatial analysis showed a

very invasive tumor with non-regular spatial distribution. Case (b) (thick blue line) is quite

similar, but the percentage of grid occupied by voxels with cell recruitment sources is lower

and the tumor has a larger number of cancer cells. Cases (a) and (c) (thick red and green lines,

respectively) have more cancer cells, but the number of effector and cytotoxic T cells as well as

regulatory T cells in the tumor are higher. Despite of having more cancer cells, these tumors

have regular shape and small size. These are very interesting observations since the QSP model

only provides temporal outcomes and this analysis shows that QSP outcomes could be deceit-

ful in the absence of spatial simulations.

When immunotherapy is applied, we see effective responses in cases (a�) and (c�) (thin red

and green lines, respectively), despite having apparent ineffective responses without treatment.

Both cases have similar number of cancer cells, number of T cells in the blood compartment,

CD8+ T cells to FoxP3+ T cells ratio, and T cells in the tumor at the end of the treatment.

Cases (b�) and (d�) (thin blue and purple lines, respectively) are not that responsive to immu-

notherapy and their evolution in time are quite similar to each other. Case (d�) responds

slightly better than case (b�) in terms of cancer cells in the tumor.

Fig 6B shows again that cases (b) and (d) are apparently the most optimal scenarios since

the number of CSCs, PCs, and effector T cells increase at a much slower rate than in cases (a)

and (c). Again, this does not reflect the fact that tumors in cases (b) and (d) are highly invasive.

Cases (a) and (c) have many more CSCs, but they are confined in the body of the tumor. The

invasiveness of these tumors also gets inhibited by a higher number of effector T cells that

mostly get recruited at the IF.

Cell subtypes analysis confirms that immunotherapy strongly improves the immune

response of cases (a) and (c). The number of CSCs decreases immediately after treatment is

applied. They stay confined in the tumor and do not have much space to proliferate. Thus,

fewer PCs are generated, and the immune response efficiently transforms them into SCs. In

cases (b) and (d) the number of cytotoxic T cells significantly increases, but it is not enough

for an effective response to immunotherapy.

Definition and characterization of the invasive front

We use the spQSP model to describe the characteristics of the IF of the tumor. Since ABM con-

siders discrete cells that do not form a continuum, it is necessary to define IF that is consistent

with pathologist’s definition. Thus, for the sake of accuracy, graphical representations of the IF

at the ROI scale require some additional mathematical analysis. We present below an analytical

approach that defines the smoothness and boundaries of a kernel density function based on

tumor growth properties and the IF pathologist’s definition. Smoothness and boundaries are

introduced as inputs in the R functions stat_density_2d and scale_fill_gradient in the form of

kernel density standard deviation and minimum/maximum normalized cancer cell densities,

respectively.
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Examples of IF regions are shown in pale turquoise color in panel A in Fig 7 (without

immunotherapy) and Fig 8 (with immunotherapy). Here, we explain the definition of the IF.

To create a continuous outer boundary of the IF, it is necessary to introduce an averaging or

Fig 6. Temporal evolution of cells in the tumor microenvironment under different tumor growth conditions

without and with immunotherapy. Panel A: variation in time of number of cancer cells, T cells in central and tumor

compartments, and CD8+/FoxP3+ ratio. Panel B: variation in time of cancer cell and CD8+ T cell subtypes. Thick and

thin red lines represent cases (a) and (a�) without and with immunotherapy, respectively (R ~ 1, 10% of the grid

occupied by voxels with cell recruitment sources, and dmax = 9); thick and thin blue lines represent cases (b) and (b�)

without and with immunotherapy, respectively (R< 1, 10% of the grid occupied by voxels with cell recruitment

sources, and dmax = 9); thick and thin green lines represent cases (c) and (c�) without and with immunotherapy,

respectively (R ~ 1, 10% grid occupied by voxels with cell recruitment sources, and dmax = 4); thick and thin purple

lines represent cases (d) and (d�) without and with immunotherapy, respectively (R< 1, 30% of the grid occupied by

voxels with cell recruitment sources, and dmax = 9).

https://doi.org/10.1371/journal.pcbi.1010254.g006
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Fig 7. Cell distribution and cell density at the IF. Panel A: Spatial representation of cancer cell subtypes (left), CD8

+ T cells subtypes, FoxP3+ T cells, and MDSCs (center), and all cells (right) in a section of a tumor slice. The IF region

is depicted in pale turquoise. Slow tumor growth case (kC1,growth = 0.005 day-1) and R<< 1 (R = 1/50). Panel B: 3D

representation of CD8+ T cell and FoxP3+ T cell densities in the central tumor (CT; yellow), the invasive front (IF;

red), and the normal tissue (N; green). Panel C: CD8+ T cell and FoxP3+ T cell density profiles along the direction

perpendicular to the IF averaged over the circumference of the IF. 95% confidence intervals are calculated (grey areas).

Two definitions of IF are introduced here and are indicated as vertical lines, blue: width wpathol=0.5 mm; red: width

wpathol=1 mm. Panel D: CD8+ T cell and FoxP3+ T cell density profiles along the direction perpendicular to the IF

averaged over the circumference of the IF. In panels C and D every row is a case with a different combination of ratios

kC1,growth/kC,T1, kT1/kTreg, and the parameter Treg,max, where kC1,growth, kC,T1, kT1, kTreg, and Treg,max are the cancer cell

growth rate, the rate of cancer cell death by T cells, the exhaustion rate of cytotoxic T cells by all cells that express

PD-L1, the inhibition rate of cytotoxic T cells by regulatory T cells, and the maximal regulatory T cell density in the

tumor, respectively. The spatial QSP algorithm calculated the evolution of a tumor slice starting from a fraction of a

normal distribution of cancer cells. QSP model and ABM are coupled before reaching the point where T cells are

recruited and also before the initial tumor diameter condition from the QSP model is met. Thus, no initial T cell spatial

distribution is enforced. The figures here show cell distributions and densities 6 months after the initial tumor

diameter condition is met.

https://doi.org/10.1371/journal.pcbi.1010254.g007
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Fig 8. Cell distribution and cell density at the IF under treatment. Panel A: Spatial representation of cancer cell

subtypes (left), CD8+ T cells subtypes, FoxP3+ T cells, and MDSCs (center), and all cells (right) in a section of a tumor

slice. The IF region is depicted in pale turquoise. Slow tumor growth case (kC1,growth = 0.005 day-1) and R<< 1 (R = 1/

50). Panel B: 3D representation of CD8+ T cell and FoxP3+ T cell densities in the central tumor (CT; yellow), the

invasive front (IF; red), and the normal tissue (N; green). Panel C: Average of CD8+ T cell and FoxP3+ T cell density

profiles that are perpendicular to the IF. 95% confidence intervals are calculated upon the profile (grey areas). Two

definitions of IF are introduced here and are indicated as vertical lines, blue: width wpathol=0.5 mm; red: width

wpathol=1 mm. Panel D: Average of CD8+ T cell and FoxP3+ T cell density profiles along the IF. In panels C and D

every row is a case with a different combination of ratios kC1,growth/kC,T1, kT1/kTreg, and the parameter Treg,max, where

kC1,growth, kC,T1, kT1, kTreg, and Treg,max are the cancer cell growth rate, the rate of cancer cell death by T cells, the

exhaustion rate of cytotoxic T cells by all cells that express PD-L1, the inhibition rate of cytotoxic T cells by regulatory

T cells, and the maximal regulatory T cell density in the tumor, respectively. The spatial QSP algorithm calculated the

evolution of a tumor slice starting from a fraction of a normal distribution of cancer cells. QSP model and ABM are

coupled before reaching the point where T cells are recruited and also before the initial tumor diameter condition from

the QSP model is met. Thus, no initial T cell spatial distribution is enforced. The figures here presented show cell

distributions and densities 6 months after the initial tumor diameter condition is met with 3 mg/kg nivolumab

administered every two weeks.

https://doi.org/10.1371/journal.pcbi.1010254.g008
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smoothing procedure to transition from the discrete cells. We choose to use a 2D Gaussian

kernel density [53] in the form

G x!; s
� �

¼
1

2ps2
e�
j x!j2

2s2 ; 9

where j x!j is approximately half of the maximum observable distance between cells that are far

from the core and σ is the standard deviation. It is a 2D kernel because tumor slices are pro-

jected onto 2D planes in panel A in Figs 7 and 8 and S5 and S6. A cutoff cancer cell density is

estimated from the analysis performed in [67] as rmin
cutoff � ε with ε ¼ Cmin=C where Cmin is the

cell number cutoff and C is the total number of cancer cells in the tumor. rmin
cutoff is the value of

the function below which the cell presence is considered zero, therefore, it defines the outer

boundary of the IF. Normalizing the cutoff density, we express a cutoff Gaussian kernel density

as Gcutoff ¼
r

cutoffmin
.

ð
2ps2Þ, and obtain an analytical estimate of the standard deviation σ as

follows

rmin
cutoff ¼ 2ps2Gcutoff ! ε � e�

j x!j2

2s2 s!�
j x!j
ffiffiffiffiffiffiffiffiffiffiffiffi

2ln 1

ε

� �q : 10

A more heuristic way to define the kernel function without estimating j x!j is to try different

values for σ, from large to small, until the pale turquoise areas surrounding the cells are as

small as possible but still forming a continuous region altogether. Note that according to both

analytical and heuristic methods: 1) we need the value of the estimated cutoff density and 2)

we minimize the number of individual cancer cells and cell aggregates that may form islands

outside the outer boundaries.

To define the inner boundary of the IF, we note that, on average, cancer cell density

increases from zero at the outer boundary to values that reach a plateau towards the tumor

core. Normalizing the density such that the dimensionless density ρ varies between 0 and

1, we introduce a cutoff value, rmax
cutoff , which then defines the inner boundary of the IF. In

general, this value could be chosen so that the width of the IF would correspond to that

conventionally used in the field cancer pathology, wpathol, typically 0.5mm or 1mm

[28,68,69,70,71]. In defining rmax
cutoff we have used theoretical analysis of wave front propa-

gation governed by the partial differential equation S48, from Section A.3 of the S1 Sup-

plementary Material, that describes diffusion and proliferation of cancer cells. Section A.3

also describes the definition of the IF based on local cancer cell densities and an analytical

solution of the deterministic Fisher-Kolmogorov-Petrovsky-Piskunov equation, used in

the studies of population growth and wave propagation [56,72]. Then, the value of rmax
cutoff is

equivalent to the normalized cancer cell density at the inner boundary of the 1 mm wide

IF, ρmax,IF, expressed analytically in terms of wpathol by equation S56. Even though the

boundaries of the IF are irregular and stochastic, the width of the IF (the pale turquoise

region) is approximately equal to wpathol.

Cell distribution at the IF and T cell infiltration profiles without

immunotherapy

Fig 7A presents the spatial distribution of all subtypes of cancer cells, CD8+ T cells, FoxP3+ T

cells, and MDSCs in a section of a tumor slice 6 months after the initial diameter condition is

met. PCs (light brown) compose most of the tumor domain, however, there is also a significant

number of CSCs (dark brown) distributed over the tumor. Since the migration rate of CSC is
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dominant, the edge of the tumor is not smooth, and some CSCs and PCs randomly escape

from it. Senescent cells are absent in this particular case. CD8+ T cells, FoxP3+ T cells, and

MDSCs are assumed to get recruited everywhere, but with a higher probability at the IF of the

tumor. CD8+ T effector cells (green) are mostly located outside or around the outer boundary

of the IF; cytotoxic cells (red), and suppressed or exhausted cells (purple), can be mainly found

at the inner boundary of the IF and throughout the tumor. The number of FoxP3+ T cells

(blue) is lower than CD8+ T cells but their spatial distributions are quite similar. Finally, a few

MDSCs (pink) are recruited but their influence is comparatively small.

Following the above definition of the IF, Fig 7A depicts it as a region of approximately 1

mm wide with some fingering structures emerging at the edge (pale turquoise). A significant

number of cancer cells are located at the inner boundary of the IF, whereas low number of dis-

persed CSCs and PCs freely migrate outwards the tumor, creating an irregular outer boundary.

Section B.2 of the S1 Supplementary Material includes other two cases: in panel A, CSCs do

not migrate much faster than PCs; in panel C, CSCs are slower than PCs. Table 4 shows the

parameters that correspond to panel A of Fig 7, and panels A and C of Section B.2 of the S1

Supplementary Material: slow tumor growth (kC1,growth = 0.005 day-1) and R << 1 (R = 1/50),

medium growth (kC1,growth = 0.01 day-1) and R = 1, and fast growth (kC1,growth = 0.015 day-1)

and R>> 1 (R = 50). Besides the CSC and PC migration rates relation, we observe another

factor strongly related to the shape of the IF. CD8+ T cells in cytotoxic state (red dots) are only

located inside the tumor or at the IF. A few can be observed in the normal tissue, but within a

very short distance from the outer boundary of the IF. Since that state only takes place at the

proximity of cancer cells, we posit that their identification in real tumor samples could signifi-

cantly contribute to determination the outer limit of the IF for potential resection. It is impor-

tant to notice that Figs 7A and S5A and S5C, have been generated from thick slices of tumor

(4x4x0.4 mm) projected onto a 2D plane. S6A Fig includes three examples of thinner slices

when the tumor growth is slow (4x4x0.02 mm).

Fig 7B shows the three-dimensional map of cell density distributions of CD8+ T cells and

FoxP3+ T cells where the IF region, the central tumor region (CT), and the normal tissue (N)

are depicted in red, yellow, and green colors, respectively. CT and N regions are inside the IF

inner boundary and outside the IF outer boundary, respectively. Cell density values are gener-

ated by using the R function density.ppp (https://www.rdocumentation.org/packages/spatstat.

core/versions/2.1-2/topics/density.ppp) that computes a kernel smoothed intensity function

from a point pattern. Cancer cell densities have been expressed so far with the dimensionless

parameter ρ, however, we represent T cell density distributions and profiles in terms of spatial

units in order to compare them with the analysis performed in [28]. Thus, we divide the output

from the R function density.ppp by the dimensional factor L2 where L is the length of the edge

of a cubic voxel in the spatial grid. Additionally, due to some model limitations, we multiply

densities by an augmentation factor λ = 6 (see Technical limitations of the QSP-ABM coupling
in Discussion section). Hence, all cell density distributions and profiles are generated by

assuming the same value for λ.

Table 4. Combinations of ratios kC1,growth/kC,T1, kT1/kTreg, and the parameter Treg,max, where kC1,growth, kC,T1, kT1, kTreg, and Treg,max are the cancer cell growth rate,

the rate of cancer cell death by T cells, the exhaustion rate of cytotoxic T cells by all cells that express PD-L1, the inhibition rate of cytotoxic T cells by regulatory T

cells, and the maximal regulatory T cell density in the tumor, respectively. G.R. stands for growth rate.

Slow G.R. Medium G.R. Fast G.R. Definition
R 1/50 1 50 Ratio dependent on proliferation and migration rates of stem-like and progenitor cancer cells.

kC1,growth/kC,T1 7 x 10−3 7 x 10−3 1.1 x 10−2 Ratio cancer cell growth to cancer cell death by T cells.

kT1/kTreg 0.56 1.12 1.12 Ratio cytotoxic T cell exhaustion by PD-L1 to exhaustion by regulatory T cells.

Treg,max (cell/mL) 9 x 105 2 x 106 2 x 106 Maximal regulatory T cell density in the tumor.

https://doi.org/10.1371/journal.pcbi.1010254.t004
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Fig 7C and 7D show CD8+ T cell and FoxP3+ T cell density profiles, similar to the ones pre-

sented in [28], a recent digital pathology study of triple-negative breast cancer. The three rows

of density profiles in panels C and D correspond to the three scenarios from Table 4: slow

tumor growth, medium growth, and fast growth. The procedure to generate T cell density-dis-

tance profiles in panel C assumes that cancer cell density decreases monotonically from core

to normal tissue and it is defined as follows: 1) cancer cell density values are generated from

cancer cell locations by computing gaussian kernel density estimates; 2) wide bandwidths for

the kernels are selected at regions close to the tumor core (high number of cells, no significant

gradients) and narrower bandwidths as we get closer to the IF (decreasing number of cells,

high gradients); 3) cancer cell density values are ordered from highest to lowest and generate a

list of their spatial locations following the same order; 4) T cell density values assigned to spe-

cific locations are reordered following the same order of the list generated in step 3 for cancer

cell density locations. The result is an average T cell density-profile perpendicular to the IF.

For Fig 7D, we only take the T cell density values that correspond to the locations where the IF

is defined. Then, we divide the space along the azimuthal direction and apply a similar proce-

dure to generate average T cell densities for each one of those divisions. The result is a T cell

density-profile along the IF. All density profiles are multiplied by the augmentation factor λ.

In Fig 7C, we represent the IF region as a space of wpathol=1 mm wide between red lines and a

narrower space of wpathol=0.5 mm wide between blue lines, corresponding to the conventional

widths recognized by cancer pathologists. The location of the red line at the left (inner boundary

of the IF) is where the cancer cell density profile reaches a value equal to ρmax,IF, estimated in Sec-

tion A.3 of the S1 Supplementary Material. Now, it is important to recall that to generate Fig 7A

and 7B, we defined the outer boundary of the IF at the locations where the cancer cell density

value rmin
cutoff was reached. Nevertheless, the procedure to generate average T cell density-profiles in

Fig 7C requires to define an average distance from the inner boundary to the outer boundary.

Such average distance is assumed to be equal to the IF width used in cancer pathology, i.e.,

wpathol=1 mm. Thus, the red line at the right (outer boundary of the IF) is defined 1 mm far from

the other one. The region between blue lines is defined at the center of the one between red lines.

The densities at the left and right of the red lines are the densities at the CT and the N regions,

respectively. Thus, we can see that the immune cell density profiles follow a spatial distribution

similar to the profiles analyzed in [28]: density increasing in the CT region from the center of the

tumor to the inner boundary of the IF, where it reaches a maximum value; density decreasing

from the inner boundary to the outer boundary of the IF (the 1 mm space between red lines);

density keeps decreasing to the minimum value that corresponds to the N region. This decrease

outside the IF is also observed in some tumor samples [28]. Interestingly, we see that it is signifi-

cant in the first two cases (first and second row of panel C), but not in the third one (third row of

panel C). Consequently, we posit that some T cells get recruited beyond the 1 mm region when

the CSCs migration rate is larger than the PCs migration rate because a low number of CSCs

migrate fast enough to create invasive low-density fingering structures (cancer cell distributions

in Figs 7A and S5A). The stochastic effects are larger in FoxP3+ T cell density profiles than in

CD8+ T cell profiles because the density of the former is lower in the presented cases. Addition-

ally, we observe that, although the second case does not have the slowest tumor growth rate, the

IF region advances a shorter distance than the other two cases.

Cell distribution at the IF and T cell infiltration profiles with

immunotherapy

Fig 8A presents the spatial distribution of all subtypes of cancer cells, CD8+ T cells, FoxP3+ T

cells, and MDSCs in a section of a tumor slice 6 months after the initial diameter condition is
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met, with 3 mg/kg nivolumab administered every two weeks. The tumor size gets reduced, the

IF becomes a wider region occupied by both CSCs and PCs, and a significant number of cyto-

toxic and suppressed CD8+ T cells are present at the IF. Low-density fingering structures are

still present after immunotherapy is applied. Table 4 shows the parameters that correspond to

panel Fig 8A, and panels B and D of Section B.2 of the S1 Supplementary Material: slow tumor

growth (kC1,growth = 0.005 day-1) and R << 1 (R = 1/50), medium growth (kC1,growth = 0.01

day-1) and R = 1, and fast growth (kC1,growth = 0.015 day-1) and R>> 1 (R = 50). Interestingly,

for the first two cases, the IF gets wider and the locations of CD8+ T cell in cytotoxic state do

not correspond to the IF spatial profile after treatment. However, immunotherapy does not

affect neither the IF width nor the spatial distribution of cytotoxic CD8+ T cells in the third

case. Figs 8A and S5B and S5D have been generated from thick slices of tumor (4x4x0.4 mm)

projected onto a 2D plane. S6B Fig includes three examples of thinner slices (4x4x0.02 mm)

when the tumor growth is slow.

Fig 8B includes the three-dimensional cell density distributions of CD8+ T cells and FoxP3

+ T cells. CT and N regions are inside the IF inner boundary and outside the IF outer, respec-

tively. Cell density values are generated from cell locations by computing gaussian kernel den-

sity estimates [53] and multiplied by the augmentation factor λ.

Finally, Fig 8C shows that immunotherapy introduces the following effects in the T cell

density profiles: 1) higher CD8+ T cell densities and lower FoxP3+ T cells densities, i.e., CD8

+ T cells to FoxP3+ T cells ratio increases with treatment; 2) high stochasticity in FoxP3+ T

cells density profiles and disappearance of the characteristic maximum density at the inner

boundary of the IF; 3) higher displacement of the IF region to the left in the first two cases

than in the third one; 4) wider region of significant T cell density outside the red lines in the

first two cases but negligible in the third case (see also cancer cell distributions in Figs 8A and

S5A and S5B). Panel D shows that immunotherapy increases the cell density heterogeneity

along the IF in all cases since oscillations happen with more frequency than without treatment.

All density profiles are multiplied by the augmentation factor λ.

Discussion

Modeling methodology

One of the goals of this study is to introduce a methodology to combine a deterministic ODE-

based QSP model with a stochastic ABM ensuring both simplicity and self-consistency. The

QSP model describes the continuous temporal evolution of the average number and/or con-

centration of species, whereas the ABM provides information about the random spatial

dynamics of individual entities over time. Besides their different nature, the species and reac-

tion mechanisms are not the same in QSP model and ABM since some cell subtypes are only

explicitly represented in the latter. Nevertheless, by formulating ODE versions of ABM rules

and using propensity and probability functions based on QSP parameters and equations, we

assure a simple coupling methodology for future extensions or applications of this model (e.g.,

developing an ABM version of the QSP lymph node compartment, adding new cells, building

spQSP versions of existing QSP models of other type of cancers). Additionally, this approach

minimizes the calibration of new parameters in ABM and guarantees consistency between

QSP model and ABM.

Technical limitations of the QSP-ABM coupling

The presented spatial QSP model is the combination of a whole-patient ordinary differential

equations-based QSP model and a spatial ABM that represents either part of a tumor or a

coarse-grained approximation of the entire tumor. We can choose one approach or the other

PLOS COMPUTATIONAL BIOLOGY Simulations of tumor growth and response to immunotherapy by using a spatial QSP model

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010254 July 22, 2022 23 / 32

https://doi.org/10.1371/journal.pcbi.1010254


depending on the spatial scale and level of accuracy that we are interested in as well as the

applications of the model.

ABM representation of part of a tumor. When ABM is used to depict part of the tumor,

the scaling factor γ represents how many times such part is smaller than the entire tumor (in

number of cells). The number of cells in ABM multiplied by γ provides the number of cells in

QSP at every time step. Similarly, the scaling factor γ is used to define the proportion of cells

(1/γ) that get recruited from blood (central QSP compartment) into ABM. Since the QSP

model calculates the total average number of cells in the tumor for each species, the QSP-ABM

coupling implies that ABM represents a region where the number of cells is 1/γ times the total

average. Thus, this coupling has a significant limitation. If, for instance, we want to simulate

ROIs where the number of T cells is much larger than the average, i.e., hotspots, ABM would

underestimate the number of cells in those ROIs. Examples of such limitation are the density

profiles from Fig 7C and 7D that have been obtained from thick slices of tumor (4x4x0.4 mm)

projected onto a 2D plane, and multiplied by an augmentation factor λ of order 1-10 for the

purpose of representing density profiles similar to [28]. Digital pathology images are thinner

than that and the slices from section B.3 of the S1 Supplementary Material (4x4x0.02 mm)

would be a more accurate representation of real samples. Nevertheless, we do not generate

density profiles from these simulated thin slices since they are sparsely populated and, conse-

quently, the densities would be much lower and the stochastic variations much larger than in

real hotspot samples.

A special case is γ=1; when this scaling factor is chosen, the tumor is entirely represented in

ABM (Figs 3 and S4). Although this scenario is highly descriptive for initial tumor growth

stages, it becomes unmanageable for large tumors because of the high computational cost that

a sizable grid and the representation of millions of cells would require.

ABM as a coarse-grained model for the whole tumor. If ABM is used to describe the

growth dynamic of the entire tumor, each agent is assumed to contain a group of cells and the

scaling factor γ is the number of cells that that agent represents. The QSP-ABM coupling guar-

antees that the ABM representation follows the same macroscopic temporal dynamics as the

QSP model. Spatially, the depiction of large groups of cells as agents introduces randomness

that a macroscopic model would not capture. Thus, the accuracy of the model is inversely

related to the value of γ, and the spatial dynamics gets restricted by the number of agents that

comprise the entire system. This coarse-grained approach requires the multiplication of

migration rates of agents by 1/γ1/3, a scaling factor that represents the fraction of cells that

would move in a specific direction in a 3D grid if we assume that γ is the number of cells inside

a voxel occupied by an agent. Because of these limitations, the spatial distribution of agents

gives us a rough picture of the tumor that we present in terms of cell density distributions

(Figs 4 and 5). However, accurate analysis of the invasive front is not viable with this approach.

Potential improvements in the tumor growth description

The accuracy of the spQSP model to describe tumor shape and IF properties is not only limited

by the modeling approaches (e.g., deterministic/stochastic, macroscopic/microscopic), but

also by the species and mechanisms that are explicitly represented.

The significant role of the extracellular matrix (ECM) in the evolution of solid cancers is

not taken into account explicitly in the spQSP model [73]; implicitly, its effects are reflected in

the parameters such as migration and proliferation rates. Induced ECM components are

dynamic during progression, and promote invasion and metastasis [74,75]. ECM also mediates

resistance of cancer cells to existing treatments [76,77]. Future extensions of the model could

be combined with detailed spatial representations of the ECM fiber network such as [78] and
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[79] in order to elucidate its influence on tumor shapes and cell migration patterns. Funda-

mental elements of the tumor microenvironment such as macrophages and fibroblasts are also

crucial in tumor progression [30].

Although, we define a probabilistic T cell extravasation mechanism from blood that

depends on the local cancer cell density, the angiogenesis process and the tumor vasculature

network [80,81] are not explicitly included in this model. Adding a detailed capillary-scale

complete network at the tumor scale would require very significant computational costs. How-

ever, the same modeling approaches proposed for the representation of agents and mecha-

nisms in the spQSP could be applied to implement tumor vasculature in the model: coarse-

grained approximation and refined description of the vessel network at the tumor scale and

the invasive front scale, respectively. There is an extended literature regarding modeling angio-

genesis and tumor vasculature as well as their role in invasive and metastatic processes that

could be used to implement these mechanisms [81].

Besides mechanistic models, recent artificial intelligence and deep learning approaches for

whole-slide image segmentation are becoming indispensable for the spatial analysis of patho-

logical samples [82,83]. They provide unique data about the components of the tumor micro-

environment, the tumor boundaries, and the response to treatment. This highly valuable

information would be undoubtedly useful for future spQSP calibration, model improvement,

and validation processes.

Conclusions

Quantitative Systems Pharmacology, pharmacokinetics (PK) and physiologically based phar-

macokinetic (PBPK) models have been used to represent the dynamics of drug transport in

patients in conjunction with ABM to predict the disease trajectories as different treatment

strategies are applied. By capturing the histopathology with agent-based models, these systems

recapitulate the spatiotemporal disease dynamics in high-resolution; however, the computa-

tional cost can be prohibitive, especially in scenarios involving tissues of larger size and longer

time frames.

Besides the representation of macroscopic processes with ordinary-differential-equations-

based QSP models (ODE-based), and the depiction of spatially heterogeneous systems with

ABM, some approaches also capture the development of agents (either single entities or clus-

ters) with systems of ODEs [84,85]. Others include partial differential equations (PDEs) in

combination with QSP and ABM in order to visualize the spatial dynamics of some species,

without adding the stochastic level of detail and complexity of ABM [33,36,37,86]. Although,

these studies include alternative approaches to ours, the optimal model depends on the pur-

pose of the study. The systems, processes, species, and reactions that comprise a hybrid model

need to be a priori analyzed one by one to decide the appropriate accuracy-to-computational-

cost ratio. Similarly, the number of elements represented in the model need to be properly

assessed since the computational cost and the data required for parameterization and valida-

tion increase as the model gets developed.

In this study, we have extended a recently published spatial QSP platform where a QSP

model and an ABM are combined to represent the spatial heterogeneity of the tumor microen-

vironment. The original hybrid approach defined the state of the species in the tumor by com-

bining the outcomes from QSP model and ABM. Here, however, the limited QSP

representation of cells in the tumor is fully replaced by the ABM spatial representation after

applying a scaling factor. This establishes a simple methodology to transform QSP models into

their equivalent spatial representations. It also guarantees consistency between QSP model and

ABM to estimate the overall behavior of the tumor when ABM is used as a coarse-grained
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version of the tumor and when it is used to represent specific regions of interests (parts of the

tumor) where cells are tracked as individual entities. The dynamic cell recruitment in ABM

from the QSP blood compartment that is implemented in this extended version provides a

clearer picture of the spatial heterogeneity of the immune response without and with

immunotherapy.

Our conclusions can be summarized as follows:

• Analysis of tumor growth based on cancer cell properties has been performed to charac-

terize physical tumor features and their evolution over time.

• The extended spQSP model combines the characteristics of two methods that are used for

CD8+ T cell enumeration in prognosticating TNBC: hotspot versus whole-tumor. It pro-

vides information at the whole-tumor scale while estimating the regions where the main

hotspots are located.

• spQSP model is able to characterize the heterogeneous evolution of the invasive front

under different tumor growth and immune response conditions (formation of fingering

structures, budding morphology, cluster formation, etc.).

• The spatial analysis shows the formation of clusters at the whole-tumor scale as well as

higher heterogeneity at the invasive front when immunotherapy is applied.

• The relative location of cancer stem-like cells and progenitor cells as well as the location

of cytotoxic CD8+ T cells could be helpful in interpretations of digital pathology images

to define the outer boundary of the invasive front.

• The study paves the way to full integration of spatial QSP modeling and multiplex digital

pathology for model parameterization and validation, as well as biomarker discovery.

• Both model simulations of the tumor microenvironment and the corresponding digital

pathology images can be analyzed using methods of spatial statistics and deep learning.
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Sové, Haoyang Mi, Holly Kimko, Aleksander S. Popel.

References

1. Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013; 39(1):

1–10. https://doi.org/10.1016/j.immuni.2013.07.012 PMID: 23890059

2. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nature Medi-

cine. 2013; 19(11): 1423–37. https://doi.org/10.1038/nm.3394 PMID: 24202395

3. Gajewski TF, Schreiber H, Fu YX. Innate and adaptive immune cells in the tumor microenvironment.

Nature Immunology. 2013; 14(10): 1014–22. https://doi.org/10.1038/ni.2703 PMID: 24048123

4. Ansell SM, Vonderheide RH. Cellular composition of the tumor microenvironment. American Society of

Clinical Oncology Educational Book. 2013; 33(1): e91–7. https://doi.org/10.1200/EdBook_AM.2013.

33.e91 PMID: 23714465
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18. Wang H, Ma H, Sové RJ, Emens LA, Popel AS. Quantitative systems pharmacology model predictions

for efficacy of atezolizumab and nab-paclitaxel in triple-negative breast cancer. Journal for Immunother-

apy of Cancer. 2021; 9(2): e002100. https://doi.org/10.1136/jitc-2020-002100 PMID: 33579739

19. Jafarnejad M, Gong C, Gabrielson E, Bartelink IH, Vicini P, Wang B, et al. A computational model of

neoadjuvant PD-1 inhibition in non-small cell lung cancer. The AAPS Journal. 2019; 21(5): 79. https://

doi.org/10.1208/s12248-019-0350-x PMID: 31236847

20. Milberg O, Gong C, Jafarnejad M, Bartelink IH, Wang B, Vicini P, et al. A QSP model for predicting clini-

cal responses to monotherapy, combination and sequential therapy following CTLA-4, PD-1, and PD-

L1 checkpoint blockade. Scientific Reports. 2019; 9(1): 11286. https://doi.org/10.1038/s41598-019-

47802-4 PMID: 31375756
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