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Abstract

Background: MiRNAs from body fluids gain more and more attraction as biomarker candidates. Besides serum,
patterns from whole blood are increasingly considered as markers for human pathologies. Usually, the contribution
of different cell types to the respective signature remains however unknown. In this study we provide insights into
the human miRNome of different compounds of the blood including CD3, CD14, CD15, CD19, CD56 positive cells
as well as exosomes.

Methods: We measured the miRNA repertoire for each cell type and whole blood for two individuals at three time
points over the course of one year in order to provide evidence that the cell type miRNomes can be reproducibly
detected.

Results: For measurements repeated after 24 hours we found on average correlation of 0.97, even after one year
profiles still correlated with 0.96, demonstrating the enormous stability of the cell type specific miRNomes. Highest
correlation was found for CD15 positive cells, exceeding Pearson correlation of 0.99. For exosomes a significantly
higher variability of miRNA expression was detected. In order to estimate the complexity and variability of the cell type
specific miRNomes, we generated profiles for all considered cell types in a total of seven unaffected individuals. While
CD15 positive cells showed the most complex miRNome consisting of 328 miRNAs, we detected significantly less
miRNAs (186, p = 1.5*10−5) in CD19 positive cells. Moreover, our analysis showed functional enrichment in many
relevant categories such as onco-miRNAs and tumor miRNA suppressors. Interestingly, exosomes were enriched just
for onco-miRNAs but not for miRNA tumor suppressors.

Conclusion: In sum, our results provide evidence that blood cell type specific miRNomes are very consistent between
individuals and over time.
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Background
Small non-coding RNAs (miRNAs) are involved in the
majority of biological processes, including proliferation,
apoptosis, differentiation, and development [1-3]. More-
over, the majority of human genes are regulated by
miRNAs. Not surprisingly, miRNAs also play a crucial
role in pathogenic processes.
In the beginning of miRNA research mostly tissue has

been in the focus of research, thus for all human tissue
types specific profiles have been discovered, e.g. from
patients with lung cancer [4], breast cancer [5] or glio-
blastoma [6]. More recently body fluids as source for

non-invasive or minimal-invasive markers have become
more important. Besides serum (biomarker discovery
for non-ischaemic systolic heart failure [7], pulmonary
tuberculosis [8], non small-cell lung cancer [9,10], breast
cancer [11], prostate cancer [12], or ovarian cancer [13]),
one of the most frequently applied approaches remains
to measure miRNAs from whole blood (biomarkers for
myocardial infarction [14], lung cancer [15], multiple
sclerosis [16,17], melanoma [18], ovarian cancer [19],
COPD [20], glioblastoma [21] and Alzheimer’s Disease
[22]). As miRNAs are known to be very specific for differ-
ent tissues, they are likewise known to be specific for differ-
ent compounds of the blood. The respective knowledge on
the origin of blood-borne miRNA patterns has however
been hardly considered.
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In our study we aimed to provide miRNomes for com-
mon compounds of the human blood, including CD3,
CD14, CD15, CD19, CD56 positive cells and exo-
somes. For all samples we also provided the measurement
of whole blood using PAXgene tubes as comparison. In
a first stage, we measured the miRNA repertoire for
each cell type and whole blood for two individuals at
three time points (t0; t1 = t0 + 1 year; t2 = t1 + 1 day) in
order to get an estimation how stable cell type specific
miRNomes are over time. Here, we detected a very
high reproducibility and stability for all tested cell
types.

In a second stage we extended the measurement to 7
individuals in order to understand the complexity and
variability of cell type specific miRNomes. Our results
showed that the cell type miRNomes are highly specific
but comparably constant between different individuals.
Thus, our study represents a standard repertoire of
miRNAs in the considered cell types.

Results and discussion
Stability of the human blood compound miRNomes
A central question of our study was how reproducible and
reliable can miRNomes of individuals be measured. To

Figure 1 Cluster Heatmap. The figure presents clustering in different blood cell types (represented by different colors on top of the heatmap) for
two individuals (represented by two different shapes on top of heatmap) at three different timepoints (represented by numbers on top of heatmap).
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this end we picked one male and one female individual
and collected blood at three time points: t0, t1, which was
one year after t0 and t2, which was one day after t1. Blood
cell type extraction and detection of the respective
miRNomes was done immediately after blood collec-
tion. This set-up allows us to test for the reproducibility
of cell type specific miRNomes over a very short period
of time but at the same time offers to report the stability
of the miRNA repertoire in individuals over a longer
period.
For measurements repeated within 24 hours we found

on average a high correlation of 0.97, indicating a rea-
sonable reproducibility of the blood collection, cell
type separation and miRNA profiling approach. Astonish-
ingly, profiles correlated even after one year still very well.
On average, Pearson correlation was as high as 0.96, dem-
onstrating the enormous stability of the cell type specific
miRNomes over a longer period of time.
Considering the two consecutive time points, the highest

correlation for a specific cell type was reached by CD15
positive cells, exceeding 0.99. Just CD3 positive cells
reached almost the same level of reproducibility. A similar
behavior was also observed for the correlation within cell
types in general. Here, CD3, CD15 and CD56 positive
cells reached correlation of 0.98, CD14 positive cells
and PAXgene whole blood reached average correlation
of 0.97, CD19 positive cells showed lowest but still sub-
stantial correlation of 0.96.
To understand how the different cell populations are

related to each other we applied hierarchical clustering
on the 50 most variable miRNAs. As the dendrogram in
Figure 1 presents, different cell types cluster perfectly to
each other. PAXgene blood shows the most different
patterns, CD14 and CD15 positive cells clustered well
together as well as CD3, CD19 and CD56 positive cells.
Notably, for PAXgene blood and CD3 positive cells, indi-
viduals likewise cluster together. Regarding the three time
points we just observed a tendency of the latter two time
points to cluster well together, again demonstrating the
high stability of blood cell type specific miRNomes over a
longer period of time.

Complexity and specificity of cell type specific miRNomes
In order to improve our understanding of the complexity
and specificity of cell type miRNomes we extended our
cohort to 7 unaffected individuals and measured the
same cell fractions. The bar diagram in Figure 2 pre-
sents the average number of detected miRNAs per cell
fraction. While CD15 positive cells showed the most
complex miRNome consisting of as much as 328 of the
measured 1,205 markers, we detected significantly less
miRNAs (186, p = 1.5*10−5) in CD19 positive cells.
CD56, CD14 and CD3 positive cells showed comparable
number of miRNAs with 262, 247 and 223 detected

miRNAs on average. The respective miRNomes per
cell fraction are available in Supplemental Table 1.
Based on the different complexity in miRNome we

concluded that the respective profiles as such may also
show a high degree of variability. To validate this hypoth-
esis we focused on the miRNAs with highest variance
among all cell types and calculated the expression as per-
centage of average expression over all cell types for each
miRNA. As the spider diagram and heatmap in Figure 3
detail, we discovered 6 miRNAs being significantly higher
expressed in CD19, CD3 and CD56 positive cells as com-
pared to CD14 and CD15 positive cells: miR-150, miR-
342-5p, miR-146a, miR-342-3p, miR-155 and miR-151-5p.
7 miRNAs showed the opposite behavior: miR-223*, miR-
199b-5p, miR-582-5p, miR-424, miR-223, miR-338-3p and
miR-340. These results are in line with our initial findings
on the two individuals measured over 1 year, overall CD14
and CD15 positive cells have similar patterns as well as
CD19, CD3 and CD56 positive cells. However, we also de-
tect miRNAs that are highly expressed just in single cell
types, such as miR-145, miR-143 and miR-3663-3p for
CD15 positive cells. Vice versa, miR-363 and miR-181b
are over expressed in CD56 positive cells and show signifi-
cantly decreased expression in CD15 positive cells.
Notably, we discovered for each cell fraction at least

a single specific miRNA, i.e. a miRNA that was just
expressed in this cell type (in two experiments) while not
in any other cell type. For CD56 positive cells highest
number of specific miRNAs was detected (25), in contrast,
the other fractions showed substantially less specific
markers: CD14 (3), CD56 (5), CD3 (4) CD19 (1). The re-
spective specific markers are summarized in Figure 4. The
full miRNome profile of the respective individuals for all
cell types is available in Supplemental Table 2.

The miRNome profile of exosomes
Besides measuring whole miRNome profiles from different
tissues or body fluids like whole blood, serum or urine,

Figure 2 Bar diagram detaining the number of different
miRNAs in all tested cell compounds.
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miRNA profiles of exosomes that are released by cells and
circulate in body fluids become likewise more central for
current research. Thus, we also extracted exosomes from
serum of the same two individuals at t1 and t2 and mea-
sured the respective exosome miRNomes. Repeated ex-
traction of exosomes of the same individuals correlated
well to each other, on average, pearson correlation was
above 0.95. While this still represents a reasonable stability
of exosome profiles, the values were clearly below mea-
surements for the different cell types, corresponding to a
higher variability of miRNAs in exosomes.
Altogether, we found just a small number of miRNAs

being expressed in these microvesicles. On average, 128
miRNAs were detected, a number well below the average
number of detected miRNAs in the different analyzed
blood cell types from the same blood donors. Despite the
lower complexity of exosome miRNA profiles we searched
for miRNAs being present just in exosomes while not in
any other cell fraction. Indeed, we detected markers
present at least in two different exosome measurements

while not in any blood cell type or whole blood of the
same individuals. The respective 16 markers include hsa-
miR-1299, hsa-miR-3124, hsa-miR-4290, hsa-miR-2278,
hsa-miR-32*, hsa-miR-3149, hsa-miR-877*, hsa-miR-584,
hsa-miR-3148, hsa-miR-122, hsa-miR-718, hsa-miR-670,
hsa-miR-3680*, hsa-miR-193b*, hsa-miR-3911 and hsa-
miR-1228* (see Figure 4).

Family and function of blood cell compound miRNAs
In order to find potentially enriched miRNA families or
clusters as well as biological functions we used the freely
available TAM tool [23]. Specifically, we analyzed all
miRNAs for each blood compound that has been de-
tected at least in 2 measurements. Our analysis revealed
that in many cases specific miRNA families are enriched
in selected cell types, for CD14 positive cells, miR-106a
cluster was significant while for CD19 positive cells
miR-106b cluster was found to be enriched. Interestingly,
miR-17 cluster was significant for all cell types but not for
exosomes. The same holds for the Akt pathway, Cell

Table 1 Enriched clusters, families and functions

CD14 CD15 CD19 CD3 CD56 EXOSOMES

hsa-mir-106a cluster 0,0281 0,0903 0,0676 0,1882 0,0576 0,7784

hsa-mir-106b cluster 0,0932 0,181 0,0377 0,0915 0,1382 0,2424

hsa-mir-17 cluster 1,74E-03 8,98E-03 7,50E-03 0,0294 5,03E-03 0,1644

hsa-mir-181c cluster 0,3601 0,025 0,1888 0,0874 0,0151 0,1233

let-7 family 8,20E-04 4,67E-04 8,46E-05 4,66E-05 1,68E-04 1

mir-15 family 0,2459 0,0701 8,05E-03 0,0288 0,0498 0,0704

mir-29 family 0,0963 0,1906 0,0393 0,0944 0,1441 NA

mir-30 family 0,0917 0,026 0,0308 0,09 0,1462 1

mir-320 family 0,0267 0,0736 8,16E-03 0,0291 0,0512 6,88E-03

Akt pathway 5,97E-04 8,81E-03 7,17E-03 3,90E-03 3,43E-03 1

Angiogenesis 2,38E-05 6,49E-06 7,32E-05 5,62E-04 3,56E-05 5,11E-03

Apoptosis 2,32E-05 1,06E-04 1,26E-07 1,39E-06 1,11E-05 0,1011

Bone regeneration 4,25E-03 0,0488 0,1377 0,0465 0,0141 1

Cell cycle related 8,25E-04 1,18E-03 1,76E-05 1,31E-05 6,85E-04 0,0214

Cell proliferation 0,0142 9,84E-03 5,48E-04 5,20E-03 0,029 0,1563

Chemosensitivity of tumor cells 0,0262 0,068 7,86E-03 0,0282 0,0486 0,0672

Folliculogenesis 0,0741 0,0386 0,0192 9,54E-03 0,1328 0,2249

Granulopoiesis 2,85E-04 1,66E-04 1,96E-05 2,48E-04 9,81E-04 0,1486

HCV infection 0,5524 0,8972 0,2993 0,5554 0,7399 0,0363

HIV latency 1,69E-03 8,77E-03 2,27E-03 8,77E-03 0,0102 0,058

Hormones regulation 7,30E-09 9,82E-07 9,80E-09 3,25E-08 1,52E-08 4,69E-03

Human embryonic stem cell regulation 0,0379 8,71E-03 0,0312 5,54E-03 6,97E-03 0,0664

Immune response 2,40E-05 1,57E-05 6,88E-07 5,56E-06 4,32E-06 0,0105

Inflammation 0,23 0,0413 0,037 0,0563 0,0595 0,6727

miRNA tumor suppressors 4,66E-04 1,18E-06 1,76E-05 1,85E-06 1,04E-05 0,1986

onco-miRNAs 4,49E-06 9,76E-05 7,84E-08 3,34E-06 2,83E-06 6,08E-03
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proliferation, Apoptosis, Granulopoiesis and others. Most
interestingly, miRNA tumor suppressors were enriched in
all categories besides exomes, however, in the case of
onco-miRNAs, exosomes became likewise significant. All
results are summarized in Table 1.

Conclusion
While for gene expression various studies have been
carried out in order to systematically explore patterns in
different cell types, for miRNAs few studies have been
published [24,25]. As an example, Yu and co-workers

demonstrated that positive and negative selection do
not have a significant influence of the miRNA pattern
[26]. In order to reduce the risk of contamination with
other cells and to reach high purity of the isolated cell
fractions we decided to apply positive cell selection. In
two stages we then systematically explored the specific
miRNomes of 5 cell fractions including CD3, CD14,
CD15, CD19 and CD56. We also performed profiling of
the same individuals using PAXgene blood tubes, repre-
senting one of the gold standard approaches for detecting
circulating disease markers for various human pathologies.

Figure 3 Spider diagram showing the abundance of selected miRNAs in different cell types. Total blood cells have been used to normalize the
data (100%).
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Even more importantly, we likewise generated profiles
from exosomes of the respective individuals.
In summary our study reveals that 1) miRNA patterns

of specific compounds of human blood can be reliably
measured and are stable even over the course of one year;
2) the different cell types show substantial differences with
respect to the complexity of their respective miRNomes;
3) CD14 and CD15 positive cells have a common myeloid

progenitor and show a similar expression pattern, likewise
CD3, CD19 and CD56 positive cells (common lymphoid
progenitor) are generally related to each other; 4) Exosomes
show a less complex and more variable miRNA profile as
compared to other cell types.

Methods
Study set-up and miRNA profiling
The study set-up is presented in Figure 5. All partici-
pants in the study gave written informed consent. The
local ethics committee (Ärztekammer des Saarlandes)
approved the study (reference: 01/08). From all blood
donors (details see Table 2), blood was collected in
PAXgene RNA blood tubes (Becton Dickinson) and in
S-Monovette® with EDTA K2 (Sarstedt). RNA from
PAXgene whole blood was extracted according to manu-
facturers instruction using the PAXgene Blood miRNA
Kit (Qiagen). For different cell types, positive selection
was applied. While for CD3, CD19, CD15, and CD14
positive cells non-magnetic beads along with a sieve

Figure 4 miRNAs that are specific for the different cell compounds. The miRNAs below the respective compounds have been detected just
in the respective compounds while not being available in any other type.

Table 2 Information for all blood donors

Blood donor Gender Age Health status

h1 female 32 healthy

h2 female 45 bee venom allergy

h3 male 55 pollen allergy

h4 female 31 healthy

h5 male 39 healthy

h6 female 49 healthy

h7 female 48 Von Hippel-Lindau disease
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(pluriSelect) were used, for CD56 positive cells magnetic
beads (Miltenyi Biotech) were used. The selection has
been carried out using the leukocyte fraction. Exosome
extraction has been carried out using ExoQuick Exosome
Precipitation Solution (System Biosciences). Total RNA
including small RNAs was isolated from different cell
types and from exosomes using miRNeasy Micro Kit
(Qiagen) according to manufacturer’s instructions.
Expression analysis was performed as previously de-

scribed using Agilent’s Sure Print G3 Human v16
8x60K miRNA microarrays [27]. These arrays contain
40 replicates of each of the 1,205 miRNAs as annotated
in miRBase v16 [28].

Bioinformatics analysis
The initial data analysis was performed using Agilent’s
Feature Extraction software as described in the manu-
facturers instructions. For further down-stream analysis,
the 40 replicates of background corrected miRNA mea-
surements were summarized using Agilent’s Feature Ex-
traction software. These measurements are available as
raw data at GEO with the reference GSE56590. The fur-
ther down-stream analysis has been carried out using the
freely available statistical programming language R [29] in
version 3.0.2.
In order to carry out hierarchical clustering and calcu-

late heatmaps source code from the heatmap.2 function,

provided as part of the “gplots” CRAN package (version
2.12.1) has been used. In more detail, hierarchical clus-
tering relying on the Euclidian distance has been carried
out on quantile normalized data (normalization has been
done by the “preprocessCore” package using standard
parameters). In order to estimate the linear dependencies
between the different replicates the Pearson correlation
coefficient has been calculated (standard “stats” package).
If not mentioned explicitly, significance vales have been
calculated using t-test (unpaired, two-tailed, homoscedas-
tic variance). As alpha level, 0.05 has been used through
the manuscript. In order to evaluate whether homoscedas-
tic t-test is applicable to the data, normal distribution was
verified using the Shapiro Wilk test and the variance has
been tested using Bartletts test (both provided by the R
“stats” package.
Finally, functional enrichment analysis has been

carried out using TAM, the tool for annotations of
microRNAs, which is freely accessible online (http://
202.38.126.151/hmdd/tools/tam.html/ [23]). TAM re-
lies on the hypergeometric distribution to calculate
p-values.

Availability of supporting data
The array data have been deposited in the Gene expression
Omnibus GEO and are freely accessible under reference
GSE56590.

Figure 5 Study set-up. The diagram shows the different time points and cohort sizes for which the blood cell compounds were calculated.
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