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N. gonorrhoeae and N. meningitidis, the only two human pathogens of Neisseria, are closely related species. But the niches they
survived in and their pathogenic characteristics are distinctly different. However, the genetic basis of these differences has not
yet been fully elucidated. In this study, comparative genomics analysis was performed based on 15 N. gonorrhoeae, 75 N.
meningitidis, and 7 nonpathogenic Neisseria genomes. Core-pangenome analysis found 1111 conserved gene families among
them, and each of these species groups had opening pangenome. We found that 452, 78, and 319 gene families were unique in
N. gonorrhoeae, N. meningitidis, and both of them, respectively. Those unique gene families were regarded as candidates that
related to their pathogenicity and niche adaptation. The relationships among them have been partly verified by functional
annotation analysis. But at least one-third genes for each gene set have not found the certain functional information. Simple
sequence repeat (SSR), the basis of gene phase variation, was found abundant in the membrane or related genes of each unique
gene set, which may facilitate their adaptation to variable host environments. Protein-protein interaction (PPI) analysis found at
least five distinct PPI clusters in N. gonorrhoeae and four in N. meningitides, and 167 and 52 proteins with unknown function
were contained within them, respectively.

1. Introduction

The Neisseria species are a group of Gram-negative,
oxidase-positive, β-proteobacteria organisms within the
family Neisseriaceae. They typically appear in pairs with
the adjacent sides flattened and occasionally monococcus
or tetrads and grow best at 37°C in the animal body or
media [1, 2]. Up to now, at least 30 species of Neisseria
have been identified (http://www.bacterio.net/neisseria.
html). The majority of Neisseria species were found
primarily on mucosal and dental surfaces in warm-
blooded animals as harmless commensals, including N.
lactamica, N. elongata, and N. mucosa [2–4]. However,
two of them are globally significant pathogens: N. menin-
gitidis and N. gonorrhoeae.

The N. meningitides, a causative agent of meningitis,
normally colonize in the upper respiratory tract. It is carried
by more than 10% young adults without causing diseases [5].
However, for children under the age of 5 years or adults older
than 65 years, it can cause meningococcal disease, which is a
life-threatening illness and leads to about 10% case fatality
[5, 6] and devastating sequelae, such as deafness and loss
of limbs, among survivors. Its serotype distribution varies
pronouncedly throughout the world. Six out of thirteen
identified capsular types of N. meningitidis, including A, B,
C, W, X, and Y, account for most disease cases worldwide
[7]. The multiple subtypes have hindered the development
of vaccines to provide broad-spectrum protection from
meningococcal disease [8]. N. gonorrhoeae is an obligate
human pathogen. It typically causes mucosal infection of

Hindawi
International Journal of Genomics
Volume 2019, Article ID 6015730, 19 pages
https://doi.org/10.1155/2019/6015730

http://orcid.org/0000-0001-8589-2834
http://orcid.org/0000-0002-2766-5569
http://www.bacterio.net/neisseria.html
http://www.bacterio.net/neisseria.html
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/6015730


the urogenital tract, rectum, pharynx, or eye, even dissemi-
nated infections [9, 10]. Untreated N. gonorrhoeae infections
can cause serious sequelae, such as infertility, urogenital
tract abscesses, and adverse pregnancy outcomes, which
significantly degrade the quality of life [10]. There are
106.1 million cases of N. gonorrhoeae per year in the world
[11]. In recent years, the number of cases of gonorrhea has
risen significantly. But there is still no effective vaccine to
prevent gonorrhea until now [12]. And worse yet, the
multidrug-resistant N. gonorrhoeae strains have been
found widespread emergence [12]. Thus, it is significant
to thoroughly understand the adaptive and pathogenic
mechanism of Neisseria pathogens.

Previous studies found that these two Neisseria patho-
gens shared plenty of virulence genes [13]. In recent years,
much work has been done to explore their key factors of
virulence, interaction with host cells, mechanism of immune
escape, and so forth. For example, type IV pili, encoded by
genes pilC, pilD, pilE, pilS, etc., is required for initial attach-
ment, twitching motility and competence for natural trans-
formation and autoagglutination [14, 15]. fHbp and nspA,
two immune modulators, can bind to complement factor H
to inhibit host immune defenses [16, 17]. With the develop-
ment of new sequence technologies, enormous genomes of
Neisseria strains have been sequenced, which makes our
understanding of genetic basis of biological characters and
biochemical mechanisms more systemic and all-round.
Based on comparative genomics of 17Neisseria strains, Marri
et al. found that widespread virulence genes exchanged
among them and commensal Neisseria served as reservoirs
of virulence genes [18]. Phase variation was found very prev-
alent in Neisseria pathogens and plays an important role in
their niche adaptation and virulence [19, 20].

Although Neisseria meningitides and Neisseria gonor-
rhoeae are closely related, the niches they survived in and
pathogenic characteristics are distinctly different. The genetic
background of these differences has not yet been fully
defined. In addition, previous studies focus on a limited
number of genes or genomes. There remains a need for a
comprehensive picture of similarities and differences of their
genome composition to have a better understanding of the
genetic basis of their phenotypic features.

In this study, we performed Neisseria genus-wide
comparative genomics analysis based on all the Neisseria
complete genomes that are available on public databases.
We intended to identify genes that could underlie the
apparent differences of specialized niche and pathogenic
characteristics of N. meningitidis and N. gonorrhoeae.
Moreover, the genus-wide comparative genomics can give
us an overall and profound understanding of genome
structure and the evolutional relationships of all the
sequenced Neisseria species.

2. Materials and Methods

2.1. Data Retrieval and Genome Management. In this study,
the GenBank (.gbk) files of Neisseria species with complete
genome were retrieved from the National Center for Biotech-
nology Information (NCBI) genome database (https://www

.ncbi.nlm.nih.gov/genome), including 15 N. gonorrhoeae
strains and 85 N. meningitidis strains. Because of few
genomes sequenced for nonpathogenic Neisseria strains
(NPNS), 7 genomes which have at most 10 scaffolds were
retrieved. In order to keep the consistence of raw data, the
sequences of chromosome, plasmids, and scaffolds for each
strain were pasted together into a pseudochromosome by
sequence “NNNNNCATTCCATTCATTAATTAATTAAT
GAATGAATGNNNNN,” which does not affect the genome
structure annotation results [21].

To avoid the contradiction that comes from using differ-
ent annotation pipelines in different research projects,
uniform reannotation pipeline was utilized to each genome.
In particular, Glimmer v3.02 [22] was used to predict open
reading frames (ORFs). The program RNAmmer v1.2 [23]
and tRNAscan-SE v1.4 [24] were used to predict ribosomal
RNA (rRNA) and transfer RNA (tRNA) genes, respectively.

SSRs of each genome were identified by tandem
repeats finder v4.09 [25]. In order to adapt the criteria
as the previous study [20, 26], parameters were set as
follows: match weight = 4, mismatch penalty = 20, indel
penalty = 20, match probability = 80, indel probability = 10,
min score to report = 24, and max period size to
report = 10. The high penalty values ensured that there
were without any mismatches within the repeats and, at
the same time, the repeats in which a unit length is greater
than 10 bases were discarded.

The candidate contingency loci were identified according
to the following criteria. The repeats must be located within
the region of an ORF or at most 100 bp upstream of the
ORF. Single-base homopolymers must have a length of
greater than 6 bp, and dinucleotide repeats must consist of
at least 3 repeats. The other repeats with a maximum unit
of 10 bases must consist of at least 2 repeats.

2.2. Protein Cluster Analysis and Gene Families. All the
predicted genes for each Neisseria strain were translated into
proteomes. Homologous proteins were searched by all-
against-all BLASTP comparisons, which means all the pro-
teins existing in one genome against themselves or all the
proteins in other genomes [27]. Those pairwise proteins
which meet the threshold (identity> 50%, query cover-
age> 50%, and e-value≤ 1e − 05) were used for further
analysis. Then, the Markov clustering algorithm (MCL) [28,
29] was implemented to cluster these blast results. The per-
centage of homologous proteome for any two genomes was
calculated as follows:

Ps =
Ns

Na +Nb
, 1

where Ps is the percentage of shared proteome, Ns is the
number of shared proteins, Na is the number of one strain
protein, and Nb is the number of another strain protein.

The comparison results were displayed in a heat map,
which showed the percentage of shared proteome between
or within the strain by using the gradation of color.
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2.3. Phylogenetic Analysis. To investigate the phylogenetic
relationship of the 107 Neisseria strains, 16s rRNA was
used to construct the phylogenetic tree. Staphylococcus
aureus and Streptococcus dysgalactiae were used as out-
groups. The multiple sequence alignment was performed
by MAFFT v7.123b [30]. Then, the evolutionary history
was inferred by the neighbour joining (NJ) [31] method,
and the analysis was conducted in MEGA v7 [32] with
1000 bootstrap replications.

To assess the reliability and consistency of the 16s rRNA
tree, a genome-scale approach was used to construct the phy-
logenetic tree [33]. All the single-copy genes were extracted
and aligned using MAFFT v7.123b. Then, the results were
concatenated for each strain with uniform order. Gblocks
v0.91b [34] was used to eliminate poorly aligned positions
and divergent regions. Maximum likelihood (ML) and 100
times bootstrap resampling approach were used to compute
the phylogenetic tree using RAxML version 8.2.8 [35]. The
final tree was visualized by MEGA.

2.4. Estimation of Core and Pangenome Size. As follows, two
mathematic models [21, 36] were employed to simulate
relations between core/pangenome size and genome num-
ber, respectively.

Fitting for the pangenome profile model is as follows:

y = A1x
B1 + C1, 2

where y is the pangenome size, x is the genome number, and
A1, B1, and C1 are the fitting parameters.

Fitting for the core genome profile model is as follows:

y = A2e
B2x + C2, 3

where y is the core genome size, x is the genome number, and
A2, B2, and C2 are the fitting parameters.

Four genome groups, including all of the tested 107 Neis-
seria strains (ATNS), 85 N. meningitidis strains (NMS), 15 N.
gonorrhoeae (NGS), and 7 nonpathogenic Neisseria strains
(NPNS), were analyzed and visualized by R-3.2.5 (https://
www.r-project.org/), respectively. Specifically, for each
group, 100 random permutation lists of all the genomes were
generated. Subsequently, we calculated the changes of core/
pangenome size at each time a new genome added for each
list. Finally, the median values of all counts were used to
curve fitting.

2.5. Functional Categorization of the Core and Dispensable
Genomes. As described in Section 2.4, the dataset was com-
bined into four groups. For core and dispensable genomes
of each group, functional annotation and classification were
performed using the BLASTP program against Clusters of
Orthologous Group (COG, 2014 update, https://www.ncbi
.nlm.nih.gov/COG/) database [37], respectively. The func-
tion classification results were shown in a bar chart.

2.6. Unique Gene Analyses of N. meningitidis and N.
gonorrhoeae. The unique genes for each genome group were
identified, based on the protein cluster analysis. The gene

families shared by NGS, NMS, and NPNS groups and their
combinations were detected by a python script. Then, the
statistic results were plotted with a Venn diagram using
VennDiagram v1.6.0 [38] in R. The operon predictions of
N. meningitidis MC58 and N. gonorrhoeae 32867 were
performed using database for prokaryotic operons (DOOR)
v2.0 [39]. Then, function annotations of these genes were
performed based on consecutive comparisons against public
protein databases as follows: UniProt/Siwss-Prot [40],
virulence factor database (VFDB) [41], InterProScan v7
[42], and NCBI nonredundant (NR) protein database [43].
Furthermore, Clusters of Orthologous Groups (COGs, 2014
update) [44] and evolutionary genealogy of genes: nonsuper-
vised orthologous groups (eggNOG) v4.5.1 [45] were used to
classify orthologous groups. Finally, all the results above were
manually integrated into consolidated results.

2.7. SSR Locus Analysis of the Unique Genes for Neisseria
Pathogens. The distribution of functional category and SSR
loci of unique genes for Neisseria pathogens were analyzed
to assess whether phase-variable genes that code for certain
functions were more frequent than expected by chance. The
statistic of SSR for each gene set was based on all the corre-
sponding genome sets, and the results were presented as the
mean± standard error.

2.8. Protein-Protein Interaction Network Analysis of Unique
Protein Sets. To better understand the role of unique protein
sets of Neisseria pathogens in their niche adaptability and
pathogenicity, PPI network analysis was performed using
Search Tool for the Retrieval of Interacting Genes/Proteins
(STRING v10.5, https://string-db.org/). Then, the PPI results
were visualized by Cytoscape 3.6.1 [46].

3. Results and Discussion

3.1. Genome Statistics and General Features. There are 820 N.
meningitidis and 434 N. gonorrhoeae genome records in
NCBI genome database. Additionally, some nonpathogenic
Neisseria species, such as N. lactamica, N. elongata, N.
mucosa, N. weaveri, and N. zoodegmatis, were sequenced
[47–49]. In this study, total of 107 genomes of Neisseria
strain were used, including 85 N. meningitidis, 15 N. gonor-
rhoeae complete genomes, and 7 NPNS, of which six have
complete genomes and N. mucosa C102 has seven scaffolds
(Table 1). Only three N. gonorrhoeae strains have plasmid.
The average genome size of 107 strains is 2,201,350 bp, rang-
ing from 2,139,957 (N. meningitidis LNP21362) to 2,552,522
(N. zoodegmatisNCTC12230). The average GC content of all
the genomes is 51.76% (N. gonorrhoeae: 52.43%, N. meningi-
tidis: 51.68%, and NPNS: 51.49%), ranging from 49% (N.
weaveri NCTC13585) to 54.26% (N. elongata ATCC
29315). The average number of open reading frame (ORF)
is 2396, ranging from 2132 (N. mucosa C102) to 2668 (N.
zoodegmatis NCTC12230).

According to a survey of some biological characters of
Neisseria species, they exhibited far more diverse and wide-
spread than previously recognized. For example, members
in this genus have a spectrum of morphologies, including
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bacillus [50, 51], coccobacillus [52], and diplococcus [53],
which exists in few bacteria genera. Furthermore, besides
humans, some of the Neisseria species have been isolated
from wide range of animals, such as dog, chimpanzee,
and duck [54–56].

3.2. Homologous Proteome Analysis by Pairwise Comparisons.
To estimate similarity of Neisseria species, the ratios of
homologous clusters shared within each strain pair were
calculated and visualized (Figure 1). The homologous ratio
of different species ranged from 75.21% (N. gonorrhoeae
NCTC13799 vs. N. meningitidis DE10444) to 52.55% (N.
gonorrhoeae FDAARGOS 205 vs. N. zoodegmatis NCT
C12230). Within N. meningitidis strains, the minimum
homologous ratio was as low as 80.38% (N. meningitidis
FDAARGOS_214 vs. N. meningitidisWUE 2594), indicating

the high genetic diversity of this species. But for N. gonor-
rhoeae strains, they were generally above 90.75% (N. gonor-
rhoeae FA 1090 vs. N. gonorrhoeae FDAARGOS 205). The
homologous ratio within genome ranged from 7.19% (N.
meningitidis M0579) to 1.4% (N. weaveri NCTC13585) with
average 2.74%, which showed the low redundancy of this
genus strain genome composition. For N. gonorrhoeae, the
homology ratio ranged from 4.49% (N. gonorrhoeae 34530)
to 3.53% (N. gonorrhoeae 32867) with average 4.01%, which
was greater than N. meningitidis.

3.3. Phylogeny of the Genus Neisseria. It is medically interest-
ing that the Neisseria species live in similar habitats but
exhibit diverse phenotypes with respect to their interactions
with hosts [5, 72, 73]. In order to better understand the evo-
lutionary pattern of Neisseria species, a phylogenetic analysis
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Figure 1: Homologous proteome analysis between different strain proteomes (orthologous) and within a strain proteome (paralogous). The
percentages of orthologous and paralogous proteins were represented by orange and green, respectively. The color depth corresponded to the
size of homologous proportion. The ratios of homologous were shown in both corresponding boxes and Table S1.
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of the genus Neisseria was performed, based on 16s rRNA
(Figure 2(a)), and conserved amino acid sequences
(Figure 2(b)), respectively. The two phylogenetic trees have
identical topology, demonstrating the high reliability of the
evolutional relationship. In addition, it is obvious that the
tree based on single-copy gene dataset has maximum support
for a single tree. In line with the previous studies [74, 75],
using conserved gene dataset could yield a fully resolved phy-
logenetic tree with maximum support.

For each tree, each species was clearly distinguished from
others. The pathogens, N. meningitidis and N. gonorrhoeae,
were most closely related species and were adjacent to the
distal end of the tree, and N. lactamica was the closest species
to them. Interestingly, from rooted nodes to outer breaches,
the morphologies of those species were bacillus (N. elongata,
N. weaveri), coccobacillus (N. zoodegmatis), and diplococcus
(N. mucosa, N. lactamica, N. gonorrhoeae, and N. meningiti-
dis). This may suggest the process of morphological evolu-
tion of this genus member.

3.4. Core-Pangenome Analysis. In order to estimate the
genome polymorphism of Neisseria species, the core and
pangenome analyses were performed. For all the genomes
in the study, the core genome size reached a plateau over

15 additions and finally kept stable at 1111, about half of
the average gene content. However, the pangenome size
quickly reached 8926 gene clusters, including 3493 single-
tons, with an average of 62 gene cluster additions for the fol-
lowing each genome addition (Figure 3(a)). Moreover, for 85
N. meningitidis genomes, the core and pangenome sizes were
1519 and 4841 gene clusters, respectively (Figure 3(b)). For
15 N. gonorrhoeae genomes, the core and pangenome sizes
were 1921 and 3153 gene clusters, respectively (Figure 3(c)).

In this study, the power law model was used to describe
and predict the trend of Neisseria pangenome. The exponent
size reflects the characters of pangenome. If it was greater
than 0 and less than 1, the pangenome would be open; other-
wise, it would be closed [36]. By power law regression of pan-
genome size, the fitting parameters B1 kept within the range
of 0~ 1 (0.4783, 0.2805, and 0.3149 for three groups, respec-
tively), indicating that both Neisseria genus and Neisseria
pathogens (N. meningitidis and N. gonorrhoeae) had open
genome. In order to adapt to a variety of environments, bac-
teria have to change their genomes, but living in monotone
habitats would have smaller pangenome [76]. Most of the
Neisseria species colonize on the mucosa, which may be the
reason that the pangenome size is relatively small compared
with other niche diversity species [77, 78].
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Figure 2: Phylogenetic analysis of Neisseria strains included in this study. (a) Phylogenetic tree of 107 Neisseria strains constructed by
neighbour joining (NJ) approach using 16s rRNA genes with the Kimura 2-parameter substitution model, bootstrapped ×1000 replicates.
Staphylococcus aureus subsp. aureus NCTC 8325 and Streptococcus dysgalactiae subsp. equisimilis AC-2713 were used as outgroups.
Approval values of each major node were indicated. The subtree of N. meningitidis was compressed and denoted in purple. (b)
Phylogenetic tree constructed by a maximum likelihood (ML) approach using concatenated single-copy gene dataset, bootstrapped ×100
replicates. Approval values of each major node were indicated. The subtree of N. meningitidis was compressed and denoted in purple.
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In contrast to pangenome, the core genome size is rela-
tively stable. However, the core genome sizes of NMS and
NGS were greater than ATNS 408 and 810, respectively. This
difference showed that there are some unique genes existing
in Neisseria pathogens, which may be responsible for their
pathogenesis characteristics.

3.5. Functional Category of Core and Dispensable Genomes.
The core genome is always responsible for the basic life pro-
cess and shared phenotypic characteristics of a group of
strains. On the contrary, the dispensable genome, which con-
tributes to the species’ own unique characteristics, is proba-
bly not essential to their basic life but provides selective

advantages, including drug resistance and niche adaptation
[79]. The core and dispensable genome sizes of ATNS,
NMS, NGS, and NPNS are 1111/7815, 1517/4795, 1921/
3786, and 1176/6598, respectively. In the present study, for
the core and dispensable genomes of each strain group, func-
tional category was performed using the COG database and
divided into 24 subcategories, respectively (Figure 4). The
unassigned gene families were merged into the category
“function unknown.”

As we expected, most of the core genome proteins for
each group play a role of housekeeping. As shown in
Figure 4, for the core genome of ATNS, NMS, NGS, and
NPNS groups, these function categories that concentrated
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Figure 3: Core and pangenome size evolution. Blue and red curves represent core and pangenome fitting curves for each group, respectively.
(a) Core and pangenome of 107 Neisseria strain genomes using medians and a power law fit. (b) Core and pangenome of 85 N. meningitidis
genomes using medians and a power law fit. (c) Core and pangenome of 15 N. gonorrhoeae genomes using medians and a power law fit.
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in were as follows: (1) translation, ribosomal structure, and
biogenesis (14.06%, 9.00%, 10.88%, and 13.78%, respec-
tively); (2) amino acid transport and metabolism (8.99%,
6.97%, 8.49%, and 8.61%, respectively); (3) energy produc-
tion and conversion (6.74%, 5.66%, 6.90%, and 6.50%,
respectively); and (4) coenzyme transport and metabolism
(6.74%, 4.55%, 5.86%, and 6.42%, respectively). These per-
centages were much greater than those of dispensable
genome, and those functions are basic for life. On the con-
trary, for the dispensable genome of each group, mobilome:
prophages, transposons (8.23%, 9.82%, 11.40%, and 6.14%,
respectively) and replication, recombination, and repair
(6.49%, 5.03%, 5.07%, and 6.34%, respectively) were the most
plentiful categories.

3.6. Identification and Annotation of Unique Genes for Each
Neisseria Group. It is a reasonable assumption that unique
genome contents of an organism are related directly to its
unique phenotypes, which lead to the ability to adapt to
unique and complicated conditions of its niche [80]. The

number of unique genes for each group, including ATNS,
NMS, NGS, and NPNS, was investigated and illustrated with
a Venn diagram. As indicated in Figure 5, there are 1111 gene
families shared by ATNS, which is in line with preceding core
genome analysis results. Interestingly, as many as 319 gene
families were unique genes for Neisseria pathogens (UGNP)
but absent in NPNS. Moreover, NMS and NGS shared 11
and 39 gene families only with NPNS, respectively. Further-
more, there were 78 unique genes for NMS (UGNMS) and
452 unique genes for NGS (UGNGS). These unique genes
of Neisseria pathogens may be the key factors which are
related with their niche adaptability and pathogenicity. To
some extent, the sample sizes of NGS and NPNS have an
impact on reliability of the unique genes. More Neisseria
samples should be sequenced in the future. In order to com-
prehend the roles of these unique genes in Neisseria patho-
gens, we investigated the gene functions of UGNP,
UGNMS, and UGNGS.

The UGNP genes (Table S2) were enriched in COG
categories C: energy production and conversion (average
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7.98% for N. gonorrhoeae; average 8.24% for N. meningitidis,
the same order with the following), E: amino acid transport
(7.15%; 7.36%), and P: inorganic ion transport and
metabolism (6.38%; 6.56%), significantly. Those genes are
associated with basic metabolism, and many of them have
been proved to be important factors surviving in their niche
[81]. For example, Na+-transporting NADH:ubiquinone
oxidoreductase (Na+-NQR, opr_724 for N. gonorrhoeae
32867; opr_285 for N. meningitidis MC58) was found
conservative in plenty of bacteria pathogens such as Vibrio
cholerae [82], Klebsiella pneumoniae [83], and Yersinia pestis
[84]. This enzyme pumps Na+ across the cell membrane to
generate a sodium motive force that can be used for solute
import, ATP synthesis, and flagella rotation [85]. In V.
cholerae, it was considered as an important factor to induce
virulence factors [82]. Besides, many high-affinity iron
uptake systems, which facilitate acquisition of the essential
irons in the host, were found unique in Neisseria pathogens.
ABC transporters, fbpA and fbpB, transcribed as an operon
(opr_122 for N. gonorrhoeae 32867; opr_312 for N.
meningitidis MC58), are necessary for the utilization of iron
bound to transferrin or iron chelates [86, 87]. Furthermore,
many other UGNP proteins, including Mn2+ efflux pump
(MntP), multidrug resistance translocase (farB), and factor
H-binding protein (fHbp), have been found to play
important roles in niche adaptation [16, 88, 89].

For the UGNGS genes (Table S3), COG categories X:
mobilome: prophages, transposons (average 6.43%), M: cell
wall/membrane/envelope biogenesis (average 4.62%), and
P: inorganic ion transport and metabolism (average 3.89%)

were enriched. Similarly, for the UGNMS genes (Table S3),
COG categories X (average 11.39%), U: intracellular
trafficking, secretion, and vesicular transport (average
7.54%), and P (average 4.91%) were enriched. Substantial
mobilome suggests that horizontal gene transfer may be
widespread and frequent occurrence in N. gonorrhoeae
genomes, which is beneficial for them to survive in
changeable environmental conditions and develop resistance
[90, 91]. In addition, most proteins of COG categories M, P,
and U are membranes or membrane-associated proteins,
such as glycosyltransferase involved in LPS biosynthesis (lgtB,
lgtE: opr_1140 of N. gonorrhoeae 32867) and large exoprotein
involved in heme utilization or adhesion (opr_252, opr_253,
opr_256, opr_257 of N. meningitidis MC58), which play vital
roles in interaction with the host and environment [92, 93].
What is more, the composition differences between UGNGS
and UGNMS may be contributing greatly to their different
tissue tropisms and pathogenic characteristics.

As detailed in Tables S2 and S3, a large number of genes
that conserved in each species group were clustered into
operons and had synergistic effects on its pathogenicity and
niche adaptation. However, for each gene set, at least one-
third genes (average 31.17% for UGNP, 52.38% for
UGNGS, and 35.0% for UGNMS) have not been found the
certain annotation information, indicating that the study
for Neisseria species is not sufficient, and many more
studies are still required to be done in the future.

3.7. SSR Locus Identification and COG Enrichment Analyses
of Unique Genes of Neisseria Pathogens. In many microbial
pathogens, it has been found ubiquitous that SSRs were used
in genes, which are mostly involved in host interactions,
such as antigenic variation, to generate phase variation or
protein sequence diversity, and this has been considered to
contribute greatly to their virulence and adaptation [94,
95]. So, we investigated the distribution of SSR loci in each
COG category for UGNP, UGNMS, and UGNGS genes
(Figure 6), respectively.

In UGNP genes (Figures 6(a) and 6(b)), the average num-
bers of SSR for about one half COG categories were greater
than 4. It is interesting that W: extracellular structures (aver-
age 8.9 for N. gonorrhoeae; 6.7 for N. meningitidis, the same
order with the following); U: intracellular trafficking, secre-
tion (8.0; 7.6), and vesicular transport; N: cell motility (8.9;
6.7); and M: cell wall/membrane/envelope biogenesis (6.2;
6.1) were the SSR-enriched genes. Obviously, most of these
genes are membrane or related proteins (Table S1), such as
type IV pilus proteins (pilC, pilP, and pilV) [96] and type V
secretory pathway [97] (as detailed in Table S1), which are
associated with virulence, niche adaptation, or other host
interactions. Those genes have a high rate of mutation via
slipped-strand mispairing at SSR loci during replication,
which helps the Neisseria pathogens adapt to vastly different
environments and evade host immune systems [19, 20, 94].
Additionally, the phase variation of these genes that encode
surface-associated antigens is a big challenge to develop
clinically efficient vaccine [98].

According to Figures 6(c) (based on UGNGS dataset)
and 6(d) (based on UGNMS dataset), the average number

N. gonorrhoeae
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N. meningitidis

452

319

78

(3.85%)

(15.8%)

1111

(54.9%)
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Figure 5: Venn diagram showing the distribution of shared gene
families among NMS, NGS, and NPNS. Red, yellow, and green
circles represent core genome of N. gonorrhoeae, N. meningitides,
and nonpathogenic Neisseria strains, respectively. Their
intersections represent the gene families they conserved.
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of SSR of most COG categories of UGNMS is greater than
UGNGS, especially in W: extracellular structures (1.6; 7.9),
U: intracellular trafficking, secretion, and vesicular transport
(2.6; 7.8), and Q: secondary metabolite biosynthesis, trans-
port, and catabolism (3.1; 6.0). Eleven large exoproteins with
average about 7 SSRs per gene (located in operons: opr_252,
opr_253, opr_256, opr_257, opr_884, opr_885, and opr_886
of N. meningitidis MC58), which are involved in heme utili-
zation or adhesion, were found in UGNMS. For UGNGS,
eleven restriction-modification system-associated proteins,
which are important to defense against foreign DNA, were
identified as SSR-rich genes (average 4.5 SSRs per gene).

Besides, phase variation of those DNA methyltransferases
alters global DNA methylation patterns, which is associated
with the epigenetic regulation of gene expression of multiple
proteins that are involved in colonization, infection, and
resistance to host defense, to aid N. gonorrhoeae adaptation
to changing circumstance [99].

3.8. Protein-Protein Interaction Network Analyses of Unique
Genes. The unique genes ofN. gonorrhoeae orN. meningitidis
which is absent from NPNS were analyzed by STRING to
construct the protein-protein interaction (PPI) network
map. As showed in Figure 7, 489 proteins were contained
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Figure 6: COG enrichment analysis of SSR loci in NMS and NGS unique genes. Subplots (a) and (b) represent the UGNP gene set
characteristics based on Neisseria gonorrhoeae and Neisseria meningitidis datasets, respectively. Subplot (c) represents the UGNGS gene
set characteristics based on 15 Neisseria gonorrhoeae strains, and subplot (d) represents the UGNMS gene set characteristics based on
Neisseria meningitidis strains. The red circular markers represent the average percentage of genes that enriched in the COG function
categories (C–X) for each genome dataset. The blue inverted triangle markers represent the average number of SSR of each COG category
gene for each genome dataset. The error bar represents the standard error of the mean for each gene group. Since the gene is absent from
five COG categories (A, B, D, Y, and Z) in presented dataset, they have been omitted from the figures. Besides, the genes unassigned to
any COG categories were combined into category S (function unknown). COG abbreviations: C: energy production and conversion; E:
amino acid transport and metabolism; F: nucleotide transport and metabolism; G: carbohydrate transport and metabolism; H: coenzyme
transport and metabolism; I: lipid transport and metabolism; J: translation, ribosomal structure, and biogenesis; K: transcription; L:
replication, recombination, and repair; M: cell wall/membrane/envelope biogenesis; N: cell motility; O: posttranslational modification,
protein turnover, and chaperones; P: inorganic ion transport and metabolism; Q: secondary metabolite biosynthesis, transport, and
catabolism; R: general function prediction only; T: signal transduction mechanisms; U: intracellular trafficking, secretion, and vesicular
transport; V: defense mechanisms; W: extracellular structures; X: mobilome: prophages, transposons; S: function unknown.
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in the N. gonorrhoeae PPI network map, including 244
UGNP proteins and 245 UGNGS proteins. Obviously,
the network map had at least 5 major PPI clusters, and
the proteins within them may interact with each other to
function properly.

Most proteins of clusters 1 and 2 were UGNP proteins,
and functional enrichment analysis indicated that they were
involved in basic substance transport/metabolism and cellu-
lar processes associated with interacting networks, respec-
tively. Specifically, ABC-type amino acid transport/signal
transduction system (orf_439-orf_441, orf_2359-orf_2362),
energy production and conversion-associated PPI network
(orf_577, orf_778, orf_779, orf_1719, orf_1771, orf_1774,
etc.), and so on were contained in cluster 1. They were
important enzymes involved in signaling pathways and met-
abolic processes. In cluster 2, there was a cell wall polysaccha-
ride biosynthesis system (orf_491, orf_1557, orf_2021,

orf_2442-orf_2447, orf_2525, etc.), which was involved in
immune system evasion, attachment to epithelial tissue, and
an important mediator of the proinflammatory response
[100]. Besides, the ion recognition and transport system
(orf_264, orf_265, orf_331, orf_2462, orf_1513-orf_1515,
orf_1585, etc.) have been proved crucial to the survival
of Neisseria pathogens in vivo [101]. The cluster 3 codes
for Na+-translocating NADH:ubiquinone oxidoreductase
(orf_1633-orf_1638, orf_1640, orf_1641, and orf_1659),
which was found widely in pathogenic and conditionally
pathogenic bacteria and shown to be important for the
induction of virulence factors [82, 102].

However, most proteins of cluster 4 came from UGNGS
and they were associated with DNA methylation and repair-
ing (orf_8, orf_10, orf_361, orf_362, orf_431, orf_665,
orf_825, orf_1109, orf_2226, etc.). They were related to the
fine tuning of gene expression and DNA repair to aid N.
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Figure 7: Protein-protein interaction of UGNP and UGNGS. N. gonorrhoeae 32867 genome is used as reference. The names of nodes
correspond to Table S1. Circular nodes represent the UGNP proteins, and diamond nodes with yellow margin represent the UGNGS
proteins. Only the networks with the number of nodes greater than 3 were shown. The network edges represent the protein-protein
associations, and their line thickness indicates the confidence of the association between corresponding nodes. The disconnected nodes are
hidden in the map. Different colors reflect different protein function categories: red: basic substance transport and metabolism; purple:
genetic information processing, including replication, transcription, and translation; blue: cellular processes, including cell wall/
membrane/envelope biogenesis and cell motility; green: bacteria-environment interaction, including signal transduction, extracellular
structures, and defense mechanism; grey, function unknown.
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gonorrhoeae adaptation to changing circumstance [99].
Moreover, cluster 5 was also unique in N. gonorrhoeae
(orf_1074–orf_1077, orf_1079, orf_476, orf_477, and
orf_479). Those genes code for restriction endonucleases.
Weyler et al. found restriction endonucleases, which were
released by intracellular Neisseria gonorrhoeae, damaged
human chromosomal DNA, and distorted mitosis [103].
Besides, some other pathogenic-associated clusters were also
found in Figure 7 network, such as the nitric oxide metabolic
pathway (orf_1612-orf_1620) [104] and Tfp pilus assembly
protein (orf_65, orf_129, orf_1665, orf_2249, orf_528,
orf_1467, and orf_1757) [105].

For N. meningitidis, 252 proteins were contained in the
PPI network map (Figure S1), including 203 UGNP proteins
and 49 UGNMS proteins. The PPI clusters 1, 2, and 3 in N.
meningitidis were found to be similar with N. gonorrhoeae.
Moreover, cluster 4 associated with heme utilization or
adhesion (orf_543, orf_545, orf_548, orf_551, orf_551,
orf_556, orf_1971, orf_1983, and orf_1984) was found in
Figure S1 network.

As analyzed above, plenty of proteins have been identi-
fied as crucial determinants in the context of colonization
and invasive capability. Those unique proteins in N. menin-
gitides and N. gonorrhoeae may account for the differences
of pathogenicity and their niche adaptation. However, 167
proteins within Figure 7 and 52 proteins within Figure S1
still have no definite functional annotation at present. Their
functions should be studied in the future.

4. Conclusions

N. meningitidis and N. gonorrhoeae, the closely related
human pathogens with distinct habitat niches and patho-
genic features, have been studied deeply. However, the
genetic background of these differences has not yet been fully
elucidated. In the present investigation, genus-wide compar-
ative genomics analysis of Neisseria was performed to
identify genes associated with pathogenicity and niche adap-
tation, based on sequenced genome of NMS, NGS, and
NPNS. The core and dispensable genome sizes of ATNS,
NMS, NGS, and NPNS are 1111/7815, 1517/4795, 1921/
3786, and 1176/6598, respectively. The power law regression
analysis of pangenome found that both Neisseria genus and
each Neisseria pathogen have open pangenome (Figure 3).
Most of the Neisseria species colonize on the mucosa but in
various individuals, which may lead to the open pangenome
but relatively small size compared with other niche diversity
species [77, 78]. Secondly, the number of UGNP, UGNMS,
and UGNGS is 319, 78, and 452, respectively. Functional
analysis indicated that plenty of them have been proved as
ones that playing significant roles in their pathogenicity and
niche adaptation. Moreover, SSR locus identification and
COG enrichment analysis of those unique genes showed that
a large number of host interaction-associated proteins, espe-
cially membrane or related ones, were enriched with SSR.
These results are in good agreement with previous observa-
tions [20]. Finally, the PPI analyses of N. meningitidis and
N. gonorrhoeae unique proteins found that the majority of

UGNP proteins were markedly clustered into two clusters
(Figure 7, Figure S1). Functional enrichment analysis indi-
cated that they are basic substance transport/metabolism
and cellular processes associated with interacting networks,
respectively. Some other clusters were also found, such as
restriction-modification system, nitric oxide metabolic
pathway, and heme utilization or adhesion system. Those
proteins unique in N. meningitides and N. gonorrhoeae
may well be vital to the niche adaptation and pathogenic-
ity of the corresponding Neisseria species. However, 167
proteins with unknown function of N. gonorrhoeae and
52 of N. meningitidis exist in PPI analysis maps. They
may interact with others and should be investigated in
the future. What is more, the methods used in this study
could be applied to other species to infer relationships
between phenotypes and genotypes.
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