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Abstract

Honeybee workers are essentially sterile female helpers that make up the majority of individuals in a colony. Workers display
a marked change in physiology when they transition from in-nest tasks to foraging. Recent technological advances have
made it possible to unravel the metabolic modifications associated with this transition. Previous studies have revealed
extensive remodeling of brain, thorax, and hypopharyngeal gland biochemistry. However, data on changes in the abdomen
is scarce. To narrow this gap we investigated the proteomic composition of abdominal tissue in the days typically preceding
the onset of foraging in honeybee workers. In order to get a broader representation of possible protein dynamics, we used
workers of two genotypes with differences in the age at which they initiate foraging. This approach was combined with RNA
interference-mediated downregulation of an insulin/insulin-like signaling component that is central to foraging behavior,
the insulin receptor substrate (irs), and with measurements of glucose and lipid levels. Our data provide new insight into the
molecular underpinnings of phenotypic plasticity in the honeybee, invoke parallels with vertebrate metabolism, and
support an integrated and irs-dependent association of carbohydrate and lipid metabolism with the transition from in-nest
tasks to foraging.
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Introduction

Many organisms undergo distinct shifts in life-history that are

coupled to changes in their physiology. Examples include changes

of sex in fish [1], parasite adaptations to different hosts [2], and

behavioral changes following mating in social insects [3,4].

Another prominent example is the transition from in-nest tasks

to foraging in worker honeybees [5]. The life of honeybee workers

is characterized by a profound, age-associated change in their

behavioral phenotype. Young worker bees typically stay inside the

nest where they feed, brood, tend to the queen, and maintain the

hygiene of the colony. Thereafter, worker bees become foragers

and leave the colony for daily trips to collect food [4]. This

behavioral change is linked to structural and biochemical

alterations across the body [5]. Thorax muscle physiology is

modified in order to meet the demands of the strenuous foraging

flights [6]. The protein composition of the hypopharyngeal glands,

a tissue that plays a major role in honeybee nutrition, undergoes

major morphological and transcriptional restructuring that is

linked to the different roles performed by nest bees and foragers

[7–9]. In addition, brain metabolism is altered in order to account

for the dramatic change in task and environment [7,8,9].

Less is known about molecular changes in the abdomen,

including the fat body. The invertebrate fat body functions in

energy storage, utilization, and detoxification [10], which makes it

comparable to vertebrate adipose tissue and liver [11,12]. Studies

on the fat body can have implications beyond the realm of insect

science as they provide important insights into possible molecular

causes for obesity and longevity that can be general across taxa

[13,14,15].

The honeybee fat body is more developed in nest bees

compared to forager bees [16], and a decrease in abdominal

lipids has been shown to precede the onset of foraging [17]. These

observations indicate that the biochemistry of the abdomen is

profoundly remodeled during the transition from in-nest tasks to

foraging. However, how such changes are brought about on a

molecular level remains largely unknown. An evolutionarily

conserved regulator of carbohydrate and lipid metabolism is

insulin signaling. Knocking out a major player of the insulin

signaling network, the insulin receptor substrate gene irs, in
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Drosophila and mice can cause elevated lipid levels and a change in

glucose homeostasis [18,19,20,21]. Recently, changes in the

expression of insulin signaling pathway genes were linked to the

onset of foraging [22], and downregulation of irs expression in

the fat body was shown to influence food collection by increasing

the forager’s preference for pollen (protein source) [23]. The

extent of the latter was found to be higher in bees of a genotype

that starts foraging earlier in life [24]. Overall, changes in lipid

metabolism and insulin signaling components appear to be

associated with the distinction between behavioral phenotypes

and are connected to the life-history transition in honeybees.

However, the majority of proteins involved remains to be

uncovered.

Therefore, we employed a proteomics approach in order to

shed light on the proteomic plasticity of honeybee abdominal

tissue in young workers. In parallel, we monitored abdominal lipid

and hemolymph glucose levels. We used bees of two different

genotypes that differ in their onset of foraging and RNA

interference (RNAi) to perturb irs gene expression. Downregula-

tion of irs expression was performed in both genotypes in order to

test the robustness of the molecular response to the knockdown.

Based on prior studies (see above), we hypothesized that: 1. The

abundance of proteins involved in lipid synthesis should change in

an age-dependent manner independent of genotype; 2. Lipid levels

should be higher in the genotype that initiates foraging later in life,

if they are linked to the onset of foraging. These levels should also

be positively influenced by the downregulation of irs in both

genotypes if the connection between irs expression and lipid

metabolism is evolutionarily conserved.

Workers for this study were collected at 7, 9, and 11 days of age,

which represents different stages in their developmental ontogeny

as nest bees [4,25], all typically preceding the onset of foraging

[25,26]. During this period, the hemolymph levels of VG

(vitellogenin), a protein that influences behavior, change dramat-

ically [27], as do other features like the proteomic composition of

the hypopharyngeal glands [7] and the levels of juvenile hormone

(JH), a hormone that influences behavioral maturation in

honeybees [28,29].

We reveal genotype, irs knockdown treatment, and age-

dependent effects on the proteomic pattern of the abdomen, and

we provide data that support a maturation-dependent adjustment

of lipid metabolism in worker bees. We also show that lipid levels

vary with genotype and knockdown treatment in a predictable

way. In addition, our findings include data on the JH-degrading

enzyme juvenile hormone esterase (JHE), VG, and other proteins

with potential implications for metabolic biology and behavioral

plasticity.

Results and Discussion

1. Artificial selection for food collection preference and
irs mRNA levels influence the proteomic pattern of the
abdomen

This experiment aimed to reveal possible implications of

genotype and downregulation of irs expression on the proteomic

pattern in the honeybee worker abdominal tissue at 7 days of

adult life. Both factors - genotype and irs knockdown treatment -

influence honeybee behavior [23,24,30]. The study of their impact

on proteomic patterns can thus aid in our understanding of the

metabolic underpinnings of behavioral plasticity. The RNAi-

mediated knockdown of irs expression in our study [Figure S1] was

comparable to a previously published experiment, which showed

behavioral effects of irs knockdown [23]. Honeybees representing

all possible combinations of two standard genotypes (high vs. low

pollen hoarding) and dsRNA (double stranded RNA) treatments

(control gfp (green fluorescent protein) vs. irs dsRNA) were

collected: CH: gfp control high pollen hoarding genotypes; KH:

irs knockdown high pollen hoarding genotypes; CL: gfp control low

pollen hoarding genotypes; KL: irs knockdown low pollen

hoarding genotypes), and resulting samples were compared using

a quantitative label-free approach carried out essentially as

described before [31].

A hierarchical clustering analysis based on the log2-transformed

data for all quantifiable proteins (147) from this experiment

showed a clear separation of genotypes but overall failed to reveal

effects of the knockdown [Figure 1A]. The exception was one high

pollen genotype knockdown sample, which clustered with the low

pollen genotype. Further, a principal components analysis

corroborated the separation of the controls and revealed a more

scattered pattern for the bees with lowered irs expression

[Figure 1B]. This pattern is probably due to an increased variation

in the knockdown groups compared to the control groups [Figure

S2]. In this context, it should be noted that in previous studies, the

foraging preference of high and low pollen hoarding genotype bees

was mapped to quantitative trait loci (QTL, pln1–pln4), and irs was

identified as a potential contributor to the phenotypic divide

between the two genotypes [27–29]. Thus, however slight, an

influence of irs expression on the proteomic differentiation

between the two genotypes may not be surprising.

Overall, 49 protein species were found to differ in abundance

between groups (Kruskal Wallis test, n = 5, each sample is a pool of

proteins from 3 individual abdominal carcasses, p,0.1 bootstrap

verified cutoff. Note that redundancy can occur when two or more

proteins share the same peptides). Of these, 22 (17 non-redundant

proteins) were affected by genotype when comparing the results for

the control groups, 13 by treatment (combined for CL vs KL and

CH vs KH), and 15 by treatment and genotype [Table 1, Table

S1, and Figure S3] (Mann Whitney U-tests, n = 5, each sample is a

pool of proteins from 3 individual abdominal carcasses, p,0.1

bootstrap corrected cutoff). Differences identified as genotype

effects covered 10 proteins with higher abundance in CH vs CL (5

myosin-related proteins, pericardin, troponin C and T, a histone

2A-like protein, and an amine oxidase) and 7 proteins with higher

abundance in CL vs CH (RFABP (retinoid and fatty acid binding

protein), alpha tubulin, JHE, ribosomal protein 7, an oxidoreduc-

tase, a lon protease-like protein, and pugilist protein). The higher

abundance of 8 muscle-related proteins (5 myosin-related,

pericardin, troponin C and T) in CH indicates a stronger

investment in the building blocks of abdominal muscle tissue in

this genotype at 7 days of age, which could relate to the earlier

onset of foraging compared to CL bees. Of the proteins that

showed higher abundance in CL, we may speculate about the

implications of RAFBP and JHE. A prime area of interest in this

study is lipid metabolism, as higher lipid levels appear to be

associated with the nest-bee stage. Since low pollen genotype bees

start foraging later in life, we assumed that the abundance levels of

proteins involved in lipid metabolism would differ between the two

genotypes. Indeed, we found higher levels of a retinoid and fatty

acid binding protein in the low pollen genotype bees. RAFBPs

function in the binding and transportation of lipids as well as in

lipid signaling [32]. Higher levels of RAFBP could indicate a more

active lipid production/allocation in the CL group, which is in line

with the proposed important role of lipid metabolism in the

division of labor. In worker honeybees, JH is a key determinant of

the switch from in-nest tasks to foraging, with higher levels being

associated with the latter [33]. The higher abundance of the JH-

degrading enzyme JHE in bees of the low pollen hoarding

genotype [Figure 1 C] potentially explains why young bees of this

Proteotyping Honeybee Life-History
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genotype have lower JH levels than age-matched bees of the high

pollen hoarding genotype [34]. JH is proposed to act as a repressor

of VG synthesis [35,36]. If the rate of JH synthesis in the two

genotypes is the same (or lower in bees of the low pollen genotype)

and degradation through JHE is higher in the low pollen genotype,

we would expect lower JH levels and consequently higher VG

levels in CL vs CH. VG levels are indeed higher in the low pollen

hoarding genotype, as revealed in the proteins that were affected

by genotype and treatment [Figure 1D]. The present observations

of higher abdominal VG and JHE levels in bees of the low pollen

hoarding genotype are in line with the postulated importance of

VG and JH in regulating the onset of foraging [35]. A positive

influence of VG on JHE expression could explain the previously

observed negative impact of high VG levels on JH titers.

However, abdominal VG and JH levels may not necessarily

mirror hemolymph levels. Amdam et al. reported that VG

expression in the abdomen and VG levels in the hemolymph are

higher in bees of the high pollen genotype at 7–11 days of age

[37]. In the same study, it was observed that while abdominal

transcript and hemolymph protein levels correlate positively in the

high pollen genotype, the relationship appears to be negative in

the low pollen genotype. Taking into account the present data, we

propose that VG is produced in the fat body and released into the

hemolymph continuously in the bees of the high pollen genotype,

while this is not necessarily the case for bees of the low pollen

genotype. Our results indicate that the release of VG from the fat

body into the hemolymph may play a crucial role in providing

systemic effects of VG. In a study on Madeira cockroaches,

Leucophaea maderae, it was previously found that the amount of VG

already present in the hemolymph influenced the amount of VG

released but not the one produced in the fat body [38]. It appears

possible that bees of the low pollen genotype are more sensitive to

this sort of feedback inhibition than bees of the high pollen

genotype. How this would be achieved on a molecular level is

currently unknown. We observed a trend (p = 0.0952) to lower VG

levels in response to the irs knockdown [Figure 1D]. Overall, this

finding is in line with previous data that reported a decreased

trend of VG expression in response to an irs knockdown [23].

More comprehensive experiments, which include measurements of

abdominal and hemolymph VG protein abundance, posttransla-

tional modification state, as well as transcript level from the same

bees, are needed to further investigate these connections. Another

protein that was affected by genotype and knockdown was

hexamerin 110 [Figure 1E]. Hexamerins are commonly described

Figure 1. Genotype and manipulation of irs expression influence the proteomic pattern on a global and individual protein level.
Color-coding: Orange: low pollen hoarding genotype control (CL), Red: low pollen hoarding genotype knockdown (KL); Light green: high pollen
hoarding genotype control (CH); Dark green: high pollen hoarding genotype knockdown (KH). A: Hierarchical clustering analysis of log2-transformed
abundance values of all quantifiable proteins from experiment 1; B: Principal components analysis based on the Pearson correlation matrix of all
quantifiable proteins. Squares: low pollen hoarding genotype control, dagger: low pollen hoarding genotype knockdown, triangles: high pollen
hoarding genotype control, diamonds: high pollen hoarding genotype knockdown; C, D, E, and F: Boxplots (medians and 25–75 percentiles) of
corrected spectral count as a measure of abundance for juvenile hormone esterase (JHE), vitellogenin (VG), hexamerin 110 (Hex110), and cytochrome
P450 monooxygenase (CYP450), respectively. Non-parametric Kruskal Wallis and Mann Whitney U tests (p,0.1, bootstrap verified cutoff) showed
genotype effects on all four proteins and knockdown effects on VG, hexamerin 110, and cytochrome P450.
doi:10.1371/journal.pone.0024794.g001
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Table 1. Genotype and treatment-dependent differences in protein abundance as revealed by a label-free proteomics approach.

Accession # Similar to Effect
p-value
CL/KL

RS1
CL

RS2
KL

p-value
CH/KH

RS3
CH

RS4
KH

p-value
CL/CH

RS5
CL

RS6
CH

XP_392490 Retinoid- and fatty-acid
binding protein

G 0.151 35 20 0.222 21 34 0.008 40 15

XP_394991 Tubulin alpha-6 chain G 1.000 27 28 0.222 21 34 0.008 40 15

NP_001011563 Juvenile hormone esterase G 0.421 32 23 0.310 22 33 0.008 40 15

XP_001120641 Pericardin G 0.222 21 34 0.841 29 26 0.008 15 40

XP_624700 Histone 2 A G 1.000 28 27 1.000 28 27 0.008 15 40

XP_001120934 Histone 2 A G 1.000 28 27 1.000 28 27 0.008 15 40

XP_001119899 Histone 2 A G 1.000 28 27 1.000 28 27 0.008 15 40

XP_001120346 Histone 2 A G 1.000 28 27 1.000 28 27 0.008 15 40

XP_001120186 Histone 2 A G 1.000 28 27 1.000 28 27 0.008 15 40

XP_623470 Tropomyosin 1, isoform
B isoform 2

G 0.690 30 25 0.690 30 25 0.016 16 39

XP_624943 Ribosomal protein S7, isoform A G 0.310 33 22 0.841 26 29 0.016 39 16

XP_393281 Paramyosin, isoform A G 0.421 23 32 1.000 28 27 0.016 16 39

XP_392125 Tropomyosin 1, isoform
D isoform 1

G 0.690 30 25 1.000 28 27 0.016 16 39

NP_001011651 Troponin C type IIIa G 0.690 25 30 0.690 30 25 0.032 17 38

XP_623046 Tropomyosin 1, isoform D G 0.548 31 24 0.841 26 29 0.032 17 38

XP_624408 Oxidoreductase G 0.151 35 20 1.000 28 27 0.032 38 17

XP_396922 Amine oxidase, isoform 1 G 0.151 35 20 0.421 23 32 0.056 18 37

XP_392970 Lon protease, isoform A G 0.690 30 25 0.690 25 30 0.056 37 18

XP_623298 Tropomyosin 1, isoform A G 1.000 27 28 0.841 29 26 0.056 18 37

NP_001035348 Troponin T G 0.841 29 26 1.000 27 28 0.056 18 37

XP_623143 Pugilist, isoform A isoform 2 G 0.548 24 31 1.000 27 28 0.095 36 19

XP_623070 Pugilist, isoform A isoform 1 G 0.548 24 31 1.000 27 28 0.095 36 19

XP_624353 Aldo-keto reductase,
isoform A isoform 1

T 0.421 23 32 0.008 15 40 0.310 22 33

XP_391994 Aconitase T 0.841 29 26 0.016 39 16 0.690 30 25

XP_392997 Glutathione S-transferase 1-1
(GST class-theta)

T 0.421 23 32 0.032 17 38 0.690 25 30

XP_391843 Yippee interacting protein 2 T 0.222 21 34 0.056 37 18 0.548 31 24

XP_392722 Tat-binding protein-1 T 0.222 34 21 0.056 37 18 0.421 23 32

XP_001120471 3-hydroxyacyl-CoA
dehydrogenase type II

T 0.310 22 33 0.095 36 19 0.690 25 30

XP_394469 Tubulin at 60D T 0.008 40 15 0.310 33 22 0.421 32 23

XP_623673 Isocitrate dehydrogenase,
isoform C isoform 2

T 0.016 39 16 0.151 20 35 0.222 34 21

XP_001122661 Glutamate oxaloacetate
transaminase 1, isoform A

T 0.032 17 38 0.421 32 23 0.421 23 32

XP_394471 Tubulin, beta, 2 T 0.032 38 17 0.841 26 29 0.841 26 29

XP_624112 Vacuolar H+-ATPase 55
kD B subunit, isoform B

T 0.056 18 37 0.310 22 33 0.421 32 23

XP_393806 3-hydroxyacyl-CoA
dehydrogenase, isoform A

T 0.056 18 37 0.421 23 32 0.690 30 25

XP_625027 Elongation factor 1-beta
(EF-1-beta)

T 0.095 36 19 0.690 25 30 0.690 30 25

NP_001035323 Cytochrome P450
monooxygenase

G&T 0.056 37 18 0.008 15 40 0.008 40 15

XP_392479 14-3-3, isoform C isoform 1 G&T 0.421 32 23 0.032 17 38 0.008 40 15

XP_001122876 Hypothetical protein G&T 0.841 26 29 0.095 36 19 0.008 15 40

XP_394645 HSC70-interacting protein,
isoform A isoform 1

G&T 0.056 37 18 0.151 20 35 0.008 40 15

XP_624156 ATP synthase, isoform A G&T 0.095 19 36 0.151 35 20 0.008 15 40

Proteotyping Honeybee Life-History
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as energy storage proteins that can be used by the organism when

the need arises, thus their abundance can be related to the

nutritional status of the bee. It has been shown before that

hexamerin expression in honeybee workers is dependent on the

amount of protein consumed [39]. In a previous study on

honeybee caste development, we showed a negative impact of

downregulating irs expression on hexamerin 110 abundance. The

tendency for a decrease of hexamerin 110 levels in response to an

irs knockdown was found for both genotypes in the present study.

However, the effect was only significant in the low pollen hoarding

genotype. Another protein that showed a genotype-dependent

knockdown response is a 14-3-3 protein with homology to yeast

14-3-3 epsilon [Table 1]. The levels of this protein were elevated

in KH vs CH and in CL vs CH, but we detected no response to

the knockdown in the low pollen genotype bees. The yeast

homologue of this protein has been shown to associate with irs

[40], and, although the function of this interaction remains

unknown, it appears possible that increased levels of 14-3-3 epsilon

increases the likelihood of its binding to irs. Thus, higher levels in

KH vs CH could point to a mechanism in which higher levels of

this protein compensate for lower irs levels and, in the case of

higher levels in CL vs CH, to an inherent difference in insulin

signaling-associated protein-protein interactions.

Based on observations in other species, we expected the irs

knockdown to affect proteins involved in lipid metabolism. Indeed,

we detected a genotype-specific knockdown effect on two 3-

hydroxyacyl-CoA dehydrogenases (HADHs) [Table 1]. One of

them (higher in KL vs CL) is the classical enzyme involved in fatty

acid degradation, while the other is a type II HADH that may serve

as a broad-spectrum oxidoreductase and can fulfill a variety of

functions [41]. Higher levels of the classical HADH indicate a

knockdown effect on lipid metabolism in the bees of the low pollen

genotype and may point to an increased lipid turnover in this group.

Transferrin levels were significantly higher in the knockdown

compared to controls in both genotypes and higher in CL vs CH

[Table 1]. Transferrin is a protein that transports iron within the body

and is thus directly involved in iron storage. In vertebrates, transferrin

has been identified as a potent insulin antagonist [42], and its levels

have been shown to be a predictor of hyperglycemia [43]. However,

the molecular mechanisms behind these functions are unknown.

Two enzymes that may participate in the TCA (tricarboxylic

acid) cycle showed knockdown-dependent differences in abun-

dance: aconitase and dihydrolipoamide S-succinyltransferase (this

enzyme may form part of the alpha-ketogluarate or the pyruvate

dehydrogenase complex) [Table 1]. Both displayed lower

abundance in irs knockdowns over the control for only the high

pollen genotype; thus, it appears that the TCA cycle may be

negatively affected by the knockdown in the high pollen strain.

The isocitrate dehydrogenase identified here has the highest

homology to an NADP+-dependent cytoplasmic isoform rather

than to one that participates directly in the citric acid cycle and is

thus not discussed in this context. The patterns in the high pollen

hoarding genotype could reflect that reduced insulin-insulin like

signaling (IIS) disturbs the TCA cycle akin to what has been

described for diabetic rats [44,45]. It should be noted that TCA

cycle enzymes were found to be regulated in the opposite direction

in nematodes (upregulated in individuals with reduced insulin

signaling) [46]. This observation points to a possible life-cycle or

species-specific impact of IIS on the TCA cycle.

We also identified two proteins that were influenced by the

knockdown in both genotypes, albeit in different directions. The

levels of a protein homologous to a cytochrome P450 monoox-

ygenase (CYP), a family of enzymes involved in the metabolism of

hormones and toxic compounds, were decreased in knockdowns of

the low pollen hoarding genotype and increased in knockdown

bees of the high pollen hoarding genotype compared to controls

[Table 1]. In rat hepatocytes, the expression of a cytochrome P450

isoform was shown to be negatively correlated to insulin levels and

also to the degree of insulin receptor phosphorylation [47].

Furthermore, in a comprehensive study on transcript levels from

mice, flies, and nematodes, it was observed that many but not all

proteins of the cytochrome P450 family were upregulated as a

response to reduced insulin signaling [48]. Our finding of

increased CYP levels in knockdown bees of the high pollen

hoarding genotype [Figure 1F] with reduced insulin signaling

capacities appears to be in agreement with these data. On the

other hand, results from bees of the low pollen hoarding genotype

show the opposite trend and thus indicate a genotype-specific

response. The implications of insulin signaling for the expression of

the various cytochrome 450 genes are complex and deserve

Accession # Similar to Effect
p-value
CL/KL

RS1
CL

RS2
KL

p-value
CH/KH

RS3
CH

RS4
KH

p-value
CL/CH

RS5
CL

RS6
CH

XP_395976 CG33257-PA G&T 0.095 19 36 0.310 33 22 0.008 15 40

XP_001122872 Apidermin 2 G&T 0.032 17 38 0.016 39 16 0.016 16 39

XP_624041 Hexamerin 110 (Larval
serum protein 2)

G&T 0.016 39 16 0.548 31 24 0.016 39 16

XP_392679 Dihydrolipoamide S-
succinyltransferase

G&T 0.222 21 34 0.056 37 18 0.032 17 38

NP_001011578 Vitellogenin G&T 0.095 36 19 0.095 36 19 0.032 38 17

NP_001011572 Transferrin G&T 0.095 19 36 0.095 19 36 0.032 38 17

XP_397201 CG6459-PA G&T 1.000 28 27 0.095 19 36 0.032 38 17

XP_392313 Tubulin at 56D, isoform B G&T 0.032 38 17 0.310 33 22 0.032 38 17

XP_624781 60S acidic ribosomal
protein P1 (RP21C)

G&T 0.548 24 31 0.008 15 40 0.095 36 19

Significant treatment and genotype effects (MWU test, n = 5, p,0.1, bootstrap verified cutoff). CL: control low pollen hoarding genotypes; KL: knockdown low pollen
hoarding genotype; CH: control high pollen hoarding genotypes; KH: knockdown high pollen hoarding genotype; RS: rank sum; indicates which group showed a higher
abundance. G: Genotype; T: treatment; G&T: Genotype and Treatment. See Table S1 for additional information.
doi:10.1371/journal.pone.0024794.t001

Table 1. Cont.
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further investigation. In summary, both treatment and genotype

clearly affected the proteomic pattern in the abdomen of worker

honeybees and provided us with insights into the molecular

underpinnings of phenotypic differences in adult honeybees. This

assessment was independently confirmed by a mixed-model

ANOVA, which corroborated genotype, treatment, and/or

interaction effects for 33 proteins, all of which had also been

identified in the non-parametric analysis (data not shown). Next,

we asked the question of how the abundance levels of abdominal

proteins vary in each of the four phenotypically characteristic

groups in a maturation-dependent manner.

2. Effects related to age, genotype, and knockdown of irs
expression

In an independent experiment aimed at revealing age-related

differences in the same four groups (CL, KL, CH, KH), we

compared protein abundance at 9 and 11 days of adult life. We

employed an approach that relies on isotope-labeling [49], carried

out as previously described [50]. We used this approach rather

than relying on spectral counting as in experiment 1, since labeling

permits running different samples simultaneously, which should

increase accuracy of quantification [51]. Since the following

experiments consider a number of different variables, and this

differential isotopic labeling method allows only for binary

analyses, we had to select a sample that serves as a reference

and can bridge and connect results from different groups. We

chose 7-day-old bees as a reference in two different ways:

– We evaluated maturation-dependent changes within each of

the four groups, using 7-day-old bees as reference. This

procedure allowed for a non-parametric analysis in line with

the procedures employed in the label-free proteomics exper-

iment and detailed age-dependent changes in light of the

metabolic starting point of each of the different groups (2.1.).

– After establishing age-dependent changes in all groups, we next

decided to perform a complete analysis including genotype,

treatment, and age as factors. To this end, we used 7-day-old

bees from the low pollen genotype control group as a reference

for all measurements and a mixed-model ANOVA for data

analysis (2.2.).

2.1 Age-dependent plasticity. The comparisons between 9-

and 11-day-old bees were performed for all groups individually,

using 7-day-old bees of the four different groups as separate

reference points. Non-parametric Mann-Whitney U tests (n = 4

per group, p#0.1, bootstrap verified cutoff) were used to evaluate

statistical significance.

The largest number of differentially regulated proteins was

observed in the control group of the low pollen genotype (CL).

We thus discuss the results for this group first, and then relate

the findings from the remaining groups to the data from this

group.

Overall, we identified 50 differentially regulated proteins in the

CL group [Figure 2A, Table S2, and Figure S4]. Levels of juvenile

hormone are typically of higher abundance in foragers compared

to nest bees [52]. Two potential regulators of JH levels, juvenile

hormone epoxide hydroxylase (an enzyme involved in the

degradation of JH) and a JH binding protein, were found at

significantly lower levels in more mature bees. Since both juvenile

hormone epoxide hydrolase and juvenile hormone binding protein

are theoretically capable of reducing circulating JH titers [53], we

propose that the abdominal fat body plays a major role in

regulating JH levels during the behavioral transition from nest to

forager bees through JH binding and degradation. However, it

should be noted that a recent study found that JH epoxide

hydrolase may only marginally contribute to JH degradation and

is likely to play a more prominent role in lipid metabolism [54].

It is known that the fat body of honeybee foragers is

substantially smaller than the one of nest bees, and that lipid

levels drop even before the onset of foraging [16,17]. We thus

expected to see an image of this transition on the proteomic level.

Overall, it appeared that carbohydrate and lipid metabolism

change profoundly and in an integrated fashion during maturation

[summarized in Figure 3]. Pyruvate carboxylase, cytosolic malate

dehydrogenase, and ATP-citrate lyase have been implicated in

lipogenesis in vertebrate adipose tissue [55], and it is tempting to

suggest that they are metabolically connected in honeybees as well.

Another enzyme, transketolase, is central to the interconversion of

carbohydrates in the pentose phosphate cycle, thereby linking

carbohydrates to lipid metabolism [56]. We found additional

evidence for the involvement of carbohydrate and lipid metabo-

lism in honeybee maturation among the proteins that were found

at higher abundance in 11-day-old vs 9-day-old bees. In this

category, we detected two proteins involved in fatty acid

degradation (enoyl-CoA hydratase and ETF (electron transfer

flavoprotein)), a key enzyme of oxidative phosphorylation

(Ubiquinol-cytochrome C reductase), and an enzyme that

interconverts ADP and ATP to maintain energy homeostasis

and keep oxidative phosphorylation active (adenylate kinase). ETF

couples fatty acid degradation to oxidative phosphorylation as it

passes electrons to coenzyme Q, and subsequently these are

transferred to ubiquinol-cytochrome C reductase [57]. Based on

this data, it is tempting to speculate that younger bees utilize

carbohydrates for the generation of lipids to a higher extent than

older bees, in which the degradation of fatty acids becomes more

important. These connections point toward a careful balance of

carbohydrate and lipid metabolism during maturation. How could

this be achieved? A prime candidate for regulating this network is

the interplay between ChREBP (carbohydrate response element

binding protein) and xylulose 5-phosphate as it is observed in

vertebrates [58]. As levels of carbohydrate consumption increase,

more xylulose 5-phosphate is produced in the pentose phosphate

pathway, thus inducing nuclear translocation of ChREBP, where

it aids in the transcription of genes involved in lipogenesis such as

pyruvate kinase. This mechanism is intriguing, as it can link the

nutritional carbohydrate status of the colony to the lipid levels in

individual bees, which appear to be associated with the bee’s social

role. The varying abundance of the pentose phosphate pathway

enzyme transketolase indicates the possibility for a positive

feedback loop on transketolase expression, which would further

stimulate the formation of xylulose 5-phosphate. A homologue of

vertebrate ChREBP is present in the honeybee genome (data not

shown), and future studies can investigate its postulated role in the

onset of foraging.

In vertebrates, higher rates of oxidative phosphorylation and

fatty acid oxidation can be accompanied by a higher production of

reactive oxygen species [59,60]. Fittingly, we detected higher levels

of catalase, peroxiredoxin, and a glutathione S transferase (GST)

in the more mature bees. Catalase and peroxiredoxin are known

to be involved in the detoxification of hydrogen peroxide [61].

GSTs carry out diverse functions, usually related to the

detoxification of harmful substances, such as peroxidized lipids

and hydrogen peroxide [62].

Thus, we propose that honeybees shift from lipid synthesis to

degradation during maturation. This shift is associated with an

increase in the production of reactive oxygen species, which is

matched by a higher abundance of enzymes that protect against

these molecules.
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As mentioned above, the fat body is known to lose lipids and

volume before the bees start to forage [17], indicating a decrease

of biosynthetic activity in this tissue. We observed lower levels of 5

proteins potentially involved in vesicle trafficking and membrane

integrity (Rab 1 and 7, GDP dissociation inhibitor, ADP-

ribosylation factor, and receptor expression enhancing protein)

[63,64] in 11-day-old bees. High capacities for vesicle transport

could provide a framework for a higher biochemical activity.

Thus, the data with lower capacities for vesicle transport in more

mature bees may provide a molecular image of the visible decline

of fat body metabolic activity during honeybee maturation [16].

As would be expected, if biosynthetic activity were indeed

modulated during maturation, protein synthesis also appeared to

be affected.

Elongation factors 1 alpha and 2 regulate the production of

new proteins and are present at higher levels in less mature bees

[65], while the two acidic ribosomal proteins P1 and P2,

implicated in the specificity of protein synthesis [66], were found

at lower levels in less mature bees. This finding indicates a higher

but somewhat less precise protein synthesis in 9-day-old bees. On

the other hand, two proteins involved in protein degradation, a

proteasome subunit and cathepsin, were found at higher

abundance in 11-day-old bees, indicating higher propensities

for protein degradation in older bees. It would be expected that,

when protein production is upregulated, proteins involved in

protein folding should also be of higher abundance. This was

indeed the case. Heat shock proteins (represented here by hsp

90, hsp 8 and hsc 70), which are often associated with protein

folding [67], were more abundant in younger bees. The same

held true for thioredoxin reductase and glutaredoxin, proteins

that were recently implicated in protein folding in addition to

their role in antioxidant defence mechanisms [68]. Finally, we

found alpha glucosidase II, an enzyme that acts on 1,4 alpha

glycosydic bonds and thus breaks multimeric sugars into

monomeric glucose [69] at higher abundance in older bees.

This enzyme is known to be of high abundance in the

hypopharyngeal glands of foragers, where it could enable

workers to convert nectar into honey [70,71]. It also seems

possible that it is used for the digestion of sucrose, as appears to

be the case for its homologue in mosquitoes [72]. In any case, its

changing abundance levels appear to be tightly linked to the life-

history transition of the bee.

We next investigated abundance dynamics in the KL group for

which we detected differences in 10 proteins [Figure 2B, Table S2,

and Figure S4]. Among these, 4 (peroxiredoxin, cathepsin,

CG30084-PC, and venom protein) were also identified in the

low genotype control group, and the directionality of abundance

was the same as in the CL group.

Figure 2. Age-related changes in protein abundance. Heatmaps of proteins that displayed abundance changes associated with age (Mann-
Whitney U-test rank sum test, p,0.1, bootstrap corrected cutoff). Rows were clustered using Pearson correlation and complete linkage clustering.
Rows represent proteins, columns represent samples. High values are distinguished by a red color, low values are yellow. A: Low pollen hoarding
genotype control (CL); B: low pollen hoarding genotype knockdown (KL); C: high pollen hoarding genotype control (CH); D: high pollen hoarding
genotype knockdown (KH).
doi:10.1371/journal.pone.0024794.g002
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Two proteins involved in the degradation of lipids, acyl-CoA

dehydrogenase and electron transfer flavoprotein dehydrogenase,

were found to be of higher abundance in 9 vs 11-day-old bees.

This contrasts findings for the control bees, as fatty acid

metabolizing proteins were of higher abundance in the 11 vs 9-

day-old bees in this group. Thus, as in experiment 1, it appears

that the knockdown had an effect on the abundance dynamics of

enzymes involved in fatty acid metabolism. Similarly, the only heat

shock protein identified was found at higher levels in 11-day-old

bees rather than in 9-day-old bees as in the control group.

Were the discussed trends also found in bees of the high pollen

genotype?

We detected differences in 27 proteins in the CH group

[Figure 2C, Table S2, and Figure S4], out of which 7 (pyruvate

kinase, transketolase, rab7, the ADP-ribosylation factor, GST,

actin, and a deformed wing virus protein) were also detected in

control bees of the low pollen phenotype. The directionality of the

abundance trends was the same between high and low pollen

genotype bees in all cases. Other proteins that fit conceptually with

the interpretations made for the low genotype control bees include

another GST isoform, a superoxide dismutase (involved in the

detoxification of the reactive oxygen species superoxide), and a

heat shock protein (hsc 5). In contrast to the results in the low

pollen genotype, two proteasome subunits were detected at higher

levels in 9-day-old bees. This finding indicates the possibility of a

difference in the dynamics of protein degradation between the two

genotypes.

The last group consisted of irs knockdown bees of the high

pollen hoarding genotype. In total, we detected 23 proteins with

abundance variation between the 9 and the 11-day-old KH bees

[Figure 2D, Table S2, and Figure S4]. Of these, 5 (transketolase,

pyruvate carboxylase, dihydroxyacetone kinase, elongation factor

2, and venom protein) were also differentially expressed in the low

strain control genotype bees. The trends for all of these proteins

were the same in both groups. Other proteins again followed the

mechanistic connections proposed on the basis of the low pollen

genotype data. The abundance levels for elongation factor 1

gamma, deoxyribose-phosphate aldolase (an enzyme that, similar

to transketolase, participates in the pentose phosphate cycle), and

phosphoglycerate kinase (which functions in the same pathway as

pyruvate kinase and pyruvate dehydrogenase), were higher in 9-

day-old workers. Similar to the findings of the high pollen

genotype control bees, a proteasome subunit was found to be of

higher abundance in 11-day-old bees. Proteins involved in fatty

acid degradation (ETF, hydroxybutyrate coenzyme A transferase,

and acetyl CoA acyltransferase), were of higher abundance in 9-

day-old workers - a trend that is comparable to the KL but not the

CL group. In addition, proteins that could be involved in the

transport of lipids, retinoic acid binding protein and apolipophorin

III, were found at higher levels in younger bees. Thus, lipid

metabolism is affected by downregulation of irs expression, and

mobilization of lipid storage may occur more profoundly at a

younger age in knockdown bees.

2.2 Interaction effects related to age, genotype, and irs

expression. In this experiment, we analyzed additional samples

based on the labeling approach employed in 2.1 and relied on

mathematical inference (see methods section for details) in order to

complete a full-factorial design and enable insight into interaction

effects between all factors. To facilitate the study of these complex

effects, we employed a mixed-model ANOVA analysis rather than

Figure 3. A model for possible metabolic connections in the honeybee abdomen. The model integrates findings on protein abundance
from the low strain control bees and metabolic connections described in the literature (see text for details). Plus sign: higher abundance in 9-day-old
vs 11-day-old bees. Minus sign: lower abundance in 9-day-old vs 11-day-old bees. Solid arrows: enzyme (shown in orange) showed age-dependent
abundance differences. Dashed arrows: no evidence found in the present data but connections are supported by vertebrate studies. The model
proposes a shift from lipogenesis to lipid degradation and higher oxidative phosphorylation with increasing age. SDH: sorbitol dehydrogenase; ADH:
alcohol dehydrogenase; DHAkinase: dihydroxyacetone kinase; TK: transketolase; PK: pyruvate kinase; PC: pyruvate carboxylase; MDH: malate
dehydrogenase; ACL: ATP-citrate lyase; ECH: enoyl CoA hydratase; ETF: electron trasfer flavoprotein; UcCR: Ubiquinol-cytochrome C reductase; AK:
adenylate kinase; PPP: pentose phosphate pathway; FA degradation: fatty acid degradation; Ox. Phos: oxidative phosphorylation; PPP: pentose
phosphate cycle; FA: fatty acid; grey circle: mitochondrium.
doi:10.1371/journal.pone.0024794.g003
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the previously used approach based on Mann Whitney U tests. In

all, 37 proteins showed differential abundance between groups

[Table 2 and Table S3].

Age was an influencing factor for 36 out of the 37 proteins: 33

were affected by genotype and 32 by treatment. All but one

protein (GDP binding factor, influenced by age) were affected by

more than one factor [Table 2].

Twenty-four proteins (about 65%) overlapped with the

experiment that investigated age-dependent changes. The differ-

ences between the two experiments can be explained by two

interconnected factors: 1. The present experiment contained more

and different samples, which allows for the identification of

previously unidentified proteins; 2. Two different statistical

approaches were used in the analysis of the two experiments,

which can result in lower numbers of identified proteins, even

when additional samples are measured. Two proteins (about 5%)

overlapped with proteins from experiment 1. This low overlap can

be attributed to biological variation between experiments as well

as to different extraction and quantification methods resulting in

different subsets of proteins being extracted and sampled. It

highlights the gain of information when using a diversity of

different samples and approaches in tackling the proteome.

Table 2. Age, genotype, and treatment effects as revealed by a mixed-model ANOVA.

Accession # Similar to A A&T A&G T&G A&G&T

XP_001120585 Cuticle protein - - - - ‘

XP_623197 GDP dissociation inhibitor ‘ - - - -

XP_001120008 Hypothetical protein - - - - ‘

XP_623196 Transketolase ‘ ‘ ‘ - ‘

XP_001122872 Apidermin 2 - ‘ ‘ ‘ ‘

XP_001121046 Succinyl-CoA synthetase - - - - ‘

XP_001120220 Niemann-Pick type C2 ‘ ‘ ‘ - ‘

XP_392405 Heat shock protein - - ‘ - ‘

XP_392490 Retinoid and fatty acid binding protein - - ‘ - ‘

XP_624401 Aldo-keto reductase - - ‘ ‘ ‘

XP_625135 Cathepsin ‘ ‘ ‘ - ‘

XP_001120364 Ribosomal protein - - - - ‘

XP_001123353 Enoyl-CoA hydratase - - ‘ - -

XP_001120025 Rab7 - ‘ - - ‘

XP_001121060 Pyruvate carboxylase - - - - ‘

XP_391841 14-3-3 protein, isoform zeta - - - ‘ -

XP_393294 Proteasome subunit - ‘ ‘ ‘ ‘

XP_393368 Actin - - ‘ - -

NP_001014993 Elongation factor 1a - - ‘ ‘ ‘

XP_624456 Saccharopine dehydrogenase - ‘ - - -

XP_623199 HSC70Cb - ‘ ‘ - -

XP_623065 Succinate dehydrogenase - - - - ‘

XP_623962 Catalase - - - - ‘

XP_623798 Aldehyde dehydrogenase - ‘ - - -

XP_392060 Phosphatidylethanolamine-binding protein - - - ‘ -

XP_624102 Electron transfer flavoprotein - ‘ - - ‘

XP_623084 Aldehyde dehydrogenase - - ‘ ‘ ‘

XP_624662 Glutathione S transferase - - - - ‘

XP_624361 Peroxiredoxin ‘ ‘ - - ‘

XP_395851 Glutamate carboxypeptidase - ‘ - - ‘

XP_623095 Phospholipid-hydroperoxide glutathione peroxidase - - ‘ - -

XP_624390 Pyruvate kinase ‘ ‘ ‘ - ‘

XP_392990 ADP-ribosylation factor ‘ ‘ - - -

XP_623383 Hydroxypyruvate isomerase - - ‘ - -

NP_001035314 Odorant binding protein 13 ‘ - - - ‘

NP_001035346 Troponin I - ‘ - - ‘

NP_001035349 Alpha-glucosidase - - ‘ ‘ -

‘: indicates a significant effect; -: indicates no effect; A: Age, G: genotype, T: treatment. This table shows significant age, genotype, and treatment effects as revealed by a
mixed model ANOVA. See Table S3 for additional information.
doi:10.1371/journal.pone.0024794.t002
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It is known that the two genotypes used in this study vary in

maturation time [73], and that a decrease in insulin signaling (as

can be caused by decreased levels of irs expression) can have a

profound effect on developmental time, lifespan, and food choice

in insects in general [58–60]. It is apparent from our results that

age, treatment, and genotype interact to produce a complex

proteomic pattern, which can ultimately affect phenotype during

the days that typically precede the onset of foraging. We

exemplify these complex effects on eight selected proteins that

represent different protein categories. Overall, an age-dependent

decrease in the abundance of proteins involved in lipid synthesis

and carbohydrate metabolism (PK (pyruvate kinase), TK

(transketolase); Figure 4A and B, respectively) as well as in

vesicle trafficking and protein folding (ADP ribosylation factor,

HSC70, Rab7; Figure 4F, G, and H, respectively) is accompanied

by an increase in the abundance of proteins associated with lipid

degradation (ETF, ECH (enoyl CoA hydratase); Figure 4C and

D, respectively) and lipid peroxide removal (phospholipid-

hydroperoxide glutathione peroxidase; Figure 4E). Expression

trends for proteins involved in lipid metabolism follow our

previous observations of a shift from lipid synthesis to increased

lipid degradation with maturation. For the selected proteins

depicted here, the high pollen genotype generally appeared to

respond to downregulation of irs expression with a decreased age-

dependent modulation of protein abundance [Figure 4]. The

same pattern was observed for ETF but not for other proteins in

the low pollen genotype. This observation suggests that some of

the selected proteins are more prone to irs-dependent modulation

in the high pollen genotype compared to the low pollen genotype.

Nevertheless, the negative impact of the knockdown on ETF

abundance in both genotypes corroborated an effect of the

modulation of irs expression on proteins involved in lipid

metabolism across genotypes. In order to assess whether the

observed proteomic differences have an image on the metabolite

level, we next measured lipid levels in the abdomen and glucose

levels in the hemolymph.

Figure 4. Proteomic indicators of the biosynthetic capacity of the abdomen are affected by treatment, genotype, and age. Boxplots
(medians and 25–75 percentiles) of normalized protein abundance for A: PK (pyruvate kinase), B: TK (transketolase), C: ECH (enoyl CoA hydratase), D:
ETF (electron transfer flavoprotein), E: PHGP (phospholipid-hydroperoxide glutathione peroxidase), F: ADP-ribosylation factor, G: HSC70, H: rab7. X-
axes: Low pollen hoarding genotype control (CL), low pollen hoarding genotype knockdown (KL), high pollen hoarding genotype control (CH), high
pollen hoarding genotype knockdown (KH). Numbers 7–11 refer to the ages (in days) of the bees. Normalized protein abundance: all values are
relative to CL7 and log2-transformed. Y-axes: log2(spectral count_corr).
doi:10.1371/journal.pone.0024794.g004
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3. Lipid and glucose levels vary with genotype and
treatment

The aforementioned experiments showed that genotype,

treatment, and age have an impact on the proteomic pattern

during maturation. They suggest that the levels of proteins that are

connected to lipid and carbohydrate metabolism are extensively

remodeled in connection with the life-history transition of the

worker honeybee. It is known that bees of the high and low pollen

hoarding genotype show differences in their developmental speed

and bees of the high pollen hoarding genotype start to forage

earlier in life [24,73]. We thus hypothesized that lipid storage,

which is negatively correlated to in-nest tasks [15,16], should be

higher in bees of the low pollen hoarding genotype. In addition, irs

expression and insulin signaling affect foraging behavior [23] and

possibly the initiation of foraging [22] in honeybees. Importantly,

irs is known to have an effect on lipid metabolism in fruit flies and

mice. A knockout of the fruit fly homologue of irs leads to an

increase in lipid levels [20]. Four different irs homologues are

encoded in the mouse genome (IRS 1–4), the two most abundant

of which are IRS-1 and 2 [74]. In analogy to data from fruit flies, it

has been shown that knockouts of IRS-1 and IRS-2 lead to a

change in the expression of enzymes involved in lipid metabolism

and result in elevated lipid levels [21,74,75]. Given these findings

in fruit flies and mice, we expected that a downregulation of irs

expression in honeybees would similarly lead to an increase in lipid

levels. Such a finding would further support a role for irs in the

transition from nest to forager bee as this transition is closely

associated with a change in lipid levels. In mice, IRS knockout can

also influence glucose homeostasis. Knockouts of IRS-1 and 2

result in phenotypes typical of type 2 diabetes mellitus and insulin

resistance with increased blood glucose levels at fasting and fed

states (IRS-2) [18] and/or following an insulin tolerance test (IRS-

1) [76]. Knockout of the lowly expressed IRS-4 leads to slightly

decreased base blood glucose levels [19], while knockout of IRS-3

does not appear to have any effect on glucose homeostasis [77].

Based on these results and the fact that only one irs gene has been

reported for the honeybee, we expected to find a modulation of

hemolymph glucose levels in response to the irs knockdown.

To test these ideas, we measured abdominal lipids and

hemolymph glucose in 11-day-old bees of all four groups (CH:

gfp control high pollen hoarding genotype; KH: irs knockdown

high pollen hoarding genotype; CL: gfp control low pollen

hoarding genotype; KL: irs knockdown low pollen hoarding

genotype). We found that treatment had an effect on abdominal

lipid (factorial ANOVA: treatment, F(1,40) = 4.3019, p = 0.04455)

and hemolymph glucose (two-factorial (factorial ANOVA, treat-

ment, F(1,59) = 14.89, p = 0.0002849) levels, and that genotype had

an additional effect on lipids (factorial ANOVA: genotype,

F(1,40) = 4.3019, 13.9294, p = 0.00059). Interaction effects between

irs knockdown and genotype were not significant. Barplots of the

results [Figure 5] show higher levels of glucose and lipids in

knockdowns and, as predicted, higher lipid levels in bees of the low

pollen hoarding genotype.

In all, this data shows that the effect of an irs knockdown in

honeybees on lipid levels mirrors the results for irs knockouts in

fruit flies and mice, and that the two genotypes differ in their

abdominal lipid levels in a way that can be predicted based on

their differences in the onset of foraging. In addition, the higher

glucose levels in response to the irs knockdown specifically

resemble metabolic effects of an IRS-2 knockout in mice [18].

4. General conclusions
Our analysis showed that: 1.The abundance levels of enzymes

involved in lipid metabolism are significantly affected by age,

genotype and downregulation of irs expression; 2. Abdominal

lipid levels are higher in the early-foraging genotype. They are

also positively affected by a downregulation of irs expression in

both genotypes. This result emphasizes the robustness of the

metabolic response to the knockdown and is in line with the

consequences of irs knockouts in fruit flies and mice. The

increased lipid levels were accompanied by higher glucose levels,

which are reminiscent of metabolic patterns in mice with

disrupted IRS-2. Our data further suggest an age-dependent

coordinated change in enzymes regulating lipid and carbohy-

drate metabolism, which is accompanied by a change in the

abundance of proteins involved in antioxidative stress response,

hormone metabolism, and protein turnover. In all, our results

show how the proteome of a major tissue in honeybee workers is

extensively remodeled preceding an important life-history

transition. A transition from lipogenesis to lipid degradation in

the fat body may help fuel the restructuring process in other body

parts or occur concomitantly to those changes. In addition, it

could aid in decreasing the weight of the bee before foraging

flights. Furthermore, the fat body is capable of remotely

influencing gene expression and hormone secretion in other

tissues and to thereby influence overall organismal physiology

and behavior. A change in the composition of the fat body as

described in this study may thus play an important role in

triggering behavioral and physiological changes in the worker

honeybee associated with the transition from in-nest tasks to

foraging. However, more information on fat body signaling

during the transition will be needed in order to further clarify

these connections.

Figure 5. Abdominal lipid and hemolymph glucose levels at 11
days of age. A: overall, abdominal lipids were significantly affected by
genotype (factorial ANOVA: genotype, F(1,40) = 4.3019, 13.9294,
p = 0.00059) and treatment (factorial ANOVA: treatment,
F(1,40) = 4.3019, p = 0.04455). B: overall, glucose levels in the hemolymph
were significantly affected by treatment (factorial ANOVA, treatment,
F(1,59) = 14.89, p = 0.0002849) but not by genotype (factorial ANOVA,
genotype, F(1,59) = 0.006, p = 0.9395109). No significant interaction
effects were observed for either lipid or glucose levels. Barplots
represent means 6 s.e. Orange: low pollen hoarding genotype control
(CL); red: low pollen hoarding genotype knockdown (KL); light green:
high pollen hoarding genotype control (CH); dark green: high pollen
hoarding genotype knockdown (KH).
doi:10.1371/journal.pone.0024794.g005
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Materials and Methods

Bee stocks
Selectively bred high and low pollen hoarding genotype Apis

mellifera worker bees from two queens each were used in all

experiments (see [30] for details on the selection program). Bees

were kept and sampled in apiaries at Arizona State University

(proteomics experiment 1) and the University of California, Davis.

Queens were caged on a frame for 24 h in order to restrict the

time of egg-laying. All frames were subsequently put into two

colonies with wild-type bees as background. The night before

emergence, frames were pulled from their respective hives and put

in an incubator at 34uC with 45% relative humidity. Newly

emerged high and low pollen hoarding genotype bees were

injected intra-abdominally with either irs (insulin receptor

substrate) dsRNA (double stranded RNA) or gfp (green fluorescent

protein) dsRNA on the day of emergence. Thereafter, they were

introduced into two replicate wild-type host colonies, and bees

were retrieved when they were 7, 9, and 11 days old. The

abdominal carcass (abdomen without digestive and reproductive

systems) was used for RNA and protein extraction.

Preparation of dsRNA and injections
The dsRNA synthesis and injection procedures were essentially

performed as described previously [23].

The Qiaquick Gel Extraction Kit (Qiagen) was used to purify

PCR products from 1% low melting agarose gels and the

AmpliScribe T7 transcription kit (Epicentre Biotechnologies) was

used for the production of dsRNA. Phenol:choloform extraction

was used to purify the resulting dsRNA and 3 ml of a 10 mg/ml

solution (dsRNA in aqua dest.) were used for injections. The bees

were chilled at 4uC for 5 min prior to injection, and dsRNA was

injected into the hemolymph by inserting a needle dorsally under

the penultimate tegument in the abdomen. Injections were

conducted over two days and injected bees were marked with

different colors. Injected bees of both strains were mixed and put

into two wild-type A. mellifera colonies. Four sample types were

generated: CH: high pollen hoarding genotype control, KH: high

pollen hoarding genotype knockdown, CL: low pollen hoarding

genotype control, KL: low pollen hoarding genotype knockdown.

RNA extraction for a verification of the knockdown and
protein extraction for proteomics experiment 1

Adult bees were collected, the digestive tract was pulled out of

the abdomen, and the abdominal carcass was flash-frozen in liquid

nitrogen. Samples were then stored at 280uC until further use.

Individual carcasses were transferred into 500 ml of TRIzolH and

extracted following the procedure provided by the manufacturer

(Invitrogen). Thereafter, total RNA was treated with DNaseI

(TURBO DNA-freeTM Kit, Ambion) following standard instruc-

tions. For knockdown verifications, quantitative real-time PCR

(qRT-PCR) was done in triplicate and analyzed with the

comparative CT method [61] using the highest expression value

as a reference. As before, tubulin at 56D CG9277-PB, isoform B

(XM_392313) was chosen as a reference gene [78].

Label-free proteomics
Equal amounts of samples dissolved in TRIzolH (see before)

from three individuals were mixed and proteins were precipitated

out of 200 ml of the trizol phase by using methanol:chloroform

precipitation [79]. Pellets were air-dried for 10–15 min before

proceeding to protein digestion.

Proteins were redissolved in 50 ml of buffer containing 50 mM

tris pH 8.5, 6 M urea, 2 M thiourea, 0.15 M NaCl, 1 mM CaCl2.

Consecutively, 150 ml of the same buffer without urea and

thiourea was added, samples were spun at 10,000 rcf for 2 min,

and the supernatant was used for further analysis. The Bradford

assay was used to determine protein concentration [80], and 40 mg

per sample were subjected to digestion over night at 30uC with

1 mg of trypsin in digestion buffer (50 mM tris pH 8.5, 0.15 M

NaCl, 1 mM CaCl2).

Peptide desalting was performed the next day as described

before [70,81].

LC-MS/MS analysis was essentially performed as described

previously [70]. Dried peptides (from 10 mg protein) were

dissolved in 5% acetonitrile, 2% TFA and used in a non-targeted

LC-MS/MS analysis. Peptides were separated on a picofrit

column (75 mm ID, New objective, Woburn, USA) using a

105 min gradient ranging from 95% A (0.1% formic acid, 99.9%

H2O) to 80% B (0.1% formic acid, 99.9% acetonitrile) followed by

a 15 min equilibration step. Peptides were eluted from the

reversed phase mLC column directly into an LTQ mass

spectrometer (Thermo, San Diego, USA), and the following

settings were used: isolation window: 3 m/z, collision energy: 35,

and activation time: 30 ms. MS2 spectra were recorded for the five

most abundant peaks in each MS survey spectrum.

Forward sequences for trypsin, keratin, and the reverse

sequences for all proteins were added to the A. mellifera sequence

database retrieved from NCBI (http://www.ncbi.nlm.nih.gov/).

The open source search tool OMSSA (version 2.0.0) [82] was used

to match experimentally obtained spectra against the compiled

database. The following filtering criteria were used: 0.8 Da

fragment tolerance, 0.8 Da precursor tolerance, maximum of

two missed cleavages, only tryptic sequences allowed, initially ten

possible peptide hits per spectrum reported then filtered to one

peptide hit per spectrum, variable modifications: methionine

oxidation, deamidation of N and Q. Acceptance threshold for

peptides: e#0.1. The false discovery rate was determined to be 0%

for proteins (at least two peptide hits were required for the

identification of a protein).

The proteomics data from this experiment have been deposited

at NCBI (http://www.ncbi.nlm.nih.gov/peptidome/repository/

PSE144).

Proteomics dependent on chemical labeling
As before, carcasses of three individuals were pooled for each

sample. Samples were washed three times in ice-cold PBS before

they were transferred to 2 mL safelock tubes (Eppendorf)

containing a tungsten bead in 50 ml PBS and complete protease

inhibitor tablet (Roche) at 8 times the suggested concentration.

Samples were homogenized in a bead mill by shaking at 30 Hz for

5 min. Lysis buffer (100 ml of 1% NP-40, 150 mM NaCl, 20 mM

Tris pH 7) was added to the samples and passed ten times through

a syringe tipped with a 25 G needle, after which the samples were

clarified for 10 min at 16,100 rcf at 4uC and the pelleted debris

was discarded. Proteins were precipitated overnight by adding

1 mL ethanol (100%) with 20 ml of 3 M sodium acetate pH 5 and

20 mg of glycogen. Protein pellets were collected by centrifugation

for 10 min at 16,100 rcf, briefly dried for 5 min in a vacuum

centrifuge, and resolubilized in 30 ml in solubilization buffer (6 M

urea, 2 M thiourea in 10 mM HEPES pH 8).

Protein concentration was determined in duplicates using the

Coomassie Plus Protein Assay reagent (Pierce). Samples were

aliquoted into 8 mg portions of 2 ml total volume and stored in

220uC until used.

Protein samples were reduced using 0.5 mg dithiothreitol for

30 min at 37uC, then carbamidomethylated by 2.5 mg iodoaceta-

mide for 20 min. For overnight digestion, samples were mixed
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with 5% acetonitrile and 1 mM calcium chloride in 50 mM Tris

pH 8 before adding 0.5 mg of modified trypsin. On the next day,

100 ml of sample buffer (1% trifluoroacetic acid, 3% (v/v)

acetonitrile, 0.5% (v/v) acetic acid) was added to each sample

and peptides were desalted as described above.

For isotopic labeling, peptides were resuspended in 10 ml of

500 mM sodium acetate pH 5 and mixed with one of three

isotopologues of formaldehyde (10 ml at 200 mM) and one of two

isotopologues of sodium cyanoborohydride (1 ml at 1 M): CH2O

with NaCNBH3 (light-labeled), C2H2O with NaCNBH3 (medium-

labeled), and 13C2H2O with NaCNB2H3 (heavy-labeled) [83]. The

reaction was allowed to occur for two hours; samples were

replenished with equivolumes of formaldehyde and cyanoborohy-

dride after one hour. To quench the excess reagents, 10 ml of

ammonium chloride (3 M) was added for 10 min, followed by 3-

fold volumes of sample buffer for one hour. Samples to be

compared were mixed in equal amounts (by protein amount) and

purified as before by STAGE tips. Overall, four sample categories

were measured: CH: gfp control, high pollen hoarding genotype;

KH: irs knockdown, high pollen hoarding genotype; CL: gfp

control, low pollen hoarding genotype; KL: irs knockdown, low

pollen hoarding genotype. For the first labeling experiment,

samples from all three timepoints (7, 9, and 11 days) of each

sample group were labeled, mixed and measured (i.e. CL6/CL8/

CL10, CH6/CH8/CH10, KL6/KL8/KL10, KH6/KH8/KH10

were measured separately. Four replicates were measured per

trimethylated sample). The aim of the second experiment was to

make all sample groups directly comparable to each other. CL6

was chosen as the reference sample and the following additional

samples were measured: KH6/CL6, CL6/CH6, CH6/KL6 (all

dimethylated) and KL6/KH6/CL6, KH6/CH6/CL6 (both

trimethylated). The results from these measurements were used

to compute remaining missing values.

All samples were eluted onto a 96-well autosampler plate, dried

by vacuum centrifugation, and resuspended in sample buffer such

that 4 mg was injected onto a reversed phase column (3 mm-

diameter ReproSil-Pur C18, Dr. Maisch, Ammerbuch-Entringen,

Germany), manually packed into a 15 cm-long, 75 mm-inner

diameter fused silica emitter. Elution from the 1100 Series

nanoflow high performance liquid chromatography system

(Agilent) was directly coupled through a nanoelectrospray ion

source (Proxeon, Odense, Denmark) to a linear trapping

quadrupole-OrbitrapXL (LTQ-OrbitrapXL, ThermoFisher Sci-

entific, Bremen, Germany) tandem mass spectrometer as described

[84].

Raw data files were parsed through Extract_MSN.exe (Thermo-

Fisher Scientific) and DTASuperCharge (v.1.37) using the default

parameters to obtain peak lists. Using Mascot (v2.2), the peak lists

were then read against a database compiled essentially as described

above. The following parameters were used for the search: trypsin

(allowing up to one missed cleavage), carbamidomethyl as a fixed

modification, variable modifications of oxidation at methionine, and

dimethylation at the N-termini and lysine e-amino groups

(+28.031300 – light, +32.05251 – medium, +36.0757 – heavy), 10

parts-per-million (ppm) peptide tolerance, 0.8 Da MS/MS toler-

ance, and ESI-Trap fragmentation characteristics. Results were

saved in Peptide Summary format with the ‘‘Require Bold Red’’

option checked, applying a score cutoff corresponding to p,0.05,

which is 27. MSQuant (http://msquant.sourceforge.net/) was used

to semi-automatically extract chromatographic peak volumes (XIC)

in the light, medium, and heavy isotopologues of each detected

peptide. Peptides with an absolute calibrated mass error of .5 ppm

were not further considered. To calculate the false discovery rate for

proteins, a non-redundant list was compiled from all the samples and

replicates. Moreover, the list was additionally confirmed using the

same database used in the Mascot searches and the in-house Perl

script 25inalist.pl. This script ensures that all protein hits have at least

one non-redundant peptide match. As in proteomics experiment 1,

proteins identified using only one peptide were eliminated and the

false discovery rate for proteins was 0% (for proteins identified based

on one peptide it was 0.6%). Peptide ratios were averaged in order to

obtain a protein ratio. The data is accessible at the Honey Bee

PeptideAtlas, March 2010 Build (https://db.systemsbiology.net/

sbeams/cgi/PeptideAtlas/buildDetails?atlas_build_id = 282).

Glucose quantification
Hemolymph (1.0 ml) was collected into centrifuge tubes from

individual honeybees 10 days after dsRNA injection. Samples were

immediately transferred to liquid nitrogen and stored at 280uC
until use. The Glucose Assay Kit (Sigma Aldrich) was used to

measure the glucose concentration in hemolymph as described

previously [23]. Absorbance was read at 340 nm on a spectro-

photometer (Ultraspec 2100 pro, Amersham Biosciences). A

standard curve using known amounts of glucose was used for

quantification. Each sample was run in duplicate and average

values were used for analysis (n = 17 (KH), 15 (CH), 15 (KL), 16

(CL)).

Lipid measurements
Samples were collected from 11-day-old bees, transferred to a

centrifuge tube, immediately flash frozen into liquid nitrogen, and

stored at 280uC until use. Thereafter, samples were depleted of

proteins using the deproteinizing kit from Biovision following

manufacturer’s instructions. Following protein removal, the

samples were transferred to glass tubes and homogenized in

5 ml methanol: chloroform buffer (1:2) overnight. Homogenized

samples were filtered over glass wool, samples were dried to 2 ml

(final volume) using a speed vac, and thereafter subjected to lipid

analysis as described [17]. Absorbance was read at 525 nm on a

spectrophotometer (Ultraspec 2100 pro, Amersham Biosciences).

A standard curve using known amounts of pure cholesterol was

used to calculate lipid amounts. Each sample was run in duplicate

and average values were used for analysis (n = 11 (KH), 12 (CH),

10 (KL), 11 (CL)).

Statistical analysis
R.2.10.1 was used for all calculations except where indicated

otherwise. Expression data in high and low pollen genotype bees

(irs RNAi and control) conformed to the assumptions of Levene’s

test and was analyzed with a factorial ANOVA.

Statistical analysis for proteomics experiment 1 was essentially

conducted as described previously using non-parametric Kruskal

Wallis and post-hoc Mann-Whitney U-tests [70] (n = 5 per group,

p#0.1, cutoff verified by a bootstrap procedure including 1000

iterations and sampling without replacement). At least two

peptides per protein were required for considering a protein in

the quantitative analysis. Further, quantification for proteins

required the presence of a spectral count $3 in 3 or more of

the 5 replicates of one group and the identification of at least 2

peptides in at least 4 out of 5 replicates in one group. Individual

spectral counts were divided by the total spectral count to account

for possible variations in total protein amount. Protein values were

log2-transformed for HCA (hierarchical clustering analysis). Then,

a pearson correlation matrix was calculated and complete linkage

clustering was employed using the hclust function in the R stats

package. The command prcomp in the stats package was used to
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calculate the principal components from the normalized spectral

count matrix and the first two principal components, which

explained .90% of the variance were plotted.

For the experiment monitoring maturation effects, non-

parametric Mann-Whitney U rank sum tests were used to analyze

the results analogous to the analysis in experiment 1 (n = 4 per

group, p#0.1, bootstrap verified cutoff). Only proteins that were

present in at least three out of the four replicates of one group were

considered. Sample values were z-transformed before analysis.

Missing values were replaced first with +0.5 and next with 20.5

(60.5 STDEV). P-values were calculated for both options and

proteins were only retained if they were deemed to be statistically

different between groups with both replacement options. For final

calculations of p-values, +0.5 was used. To analyze interaction

effects between all factors (age, treatment, genotype), we modified

a standard approach used in the analysis of microarray datasets

[85]. Raw values were log2-transformed and only proteins that

were identified in all four replicates of at least one group were

considered. Data were analyzed using a mixed-model ANOVA

(mmANOVA) [85,86,87] implemented in SAS 9.1.3 (Cary, NC)

with the following model: Yabcd = treatmenta+genotypeb+agec+
(treatment*genotype)ab+(treatment*age)ac+ (genotype*age)bc+ (treat-

ment*genotype*age)abc+,sampled+eabcd where a indexes the treat-

ment (control or RNAi groups), b indexes the genotype (high or low

pollen-hoarding line), c indexes the timepoint at which each sample

was collected (7, 9, or 11 days), d indexes the sample within each

group, and eabcd is normally-distributed error. The ,denotes a

random effect; all interactions were considered fixed effects. F-tests

were calculated for each protein. P-values were corrected for

multiple testing using a false discovery rate (FDR) adjustment in

SAS using the PROC MULTEST procedure [88]. The significant

proteins represent differences in relative protein abundance that are

significantly associated with variation in treatment group, genotype,

age, or their interactions.

Lipid and glucose data was log2-transformed and analyzed with a

two-way factorial ANOVA calculating effects of treatment,

genotype, and interaction. One abdominal lipid sample displayed

a value more than three times the value of any other sample. A

Dixon outlier test confirmed the outlier characteristic of this sample

(p,2.2e-16) and it was thus excluded from any further analysis.

Supporting Information

Figure S1 RNAi-mediated downregulation of irs expres-
sion levels in workers of the high and low pollen
hoarding genotype. Irs transcript levels were significantly

downregulated in adult high and low strain bees 6 days post irs

dsRNA injection as determined by a factorial ANOVA (treatment:

F(1,56) = 4.7652, p = 0.03325, n = 15). Bars represent mean 6 s.e.

Irs mRNA shown as the log-transformed relative quantities (RQ)

of tubulin mRNA in individuals treated with either irs dsRNA or

gfp dsRNA (control).

(TIF)

Figure S2 The effect of downregulation of irs expression
levels on the coefficient of variance. The coefficients of

variance (standard deviation divided by the mean, y-axis) were

calculated for all quantifiable proteins. Bars represent mean 6 s.e. A

two-factorial ANOVA indicated a significant treatment but no

genotype difference (treatment: F(1,580) = 11.7385, p = 0.0006555,

n = 146). Light green: high pollen hoarding genotype control (CH);

dark green: high pollen hoarding genotype knockdown (KH);

orange: low pollen hoarding genotype control (CL), red: low pollen

hoarding genotype knockdown (KL).

(TIF)

Figure S3 Proteins with statistically significant changes
in Experiment 1. Comparisons were conducted by considering

the effects of treatment – gfp control (C) or irs knockdown (K) in the

genetic background of either high (H) or low (L) pollen hoarding 7-

day-old bees. This Venn diagram illustrates the number of

proteins with statistically significant regulation levels in the four

relevant comparisons (CL/KL, KL/KH, KH/CH, CL/CH) and

how many regulated proteins are shared among them.

(TIF)

Figure S4 Proteins with statistically significant changes
due to age in various genetic and treatment groups in
Experiment 2. This Venn diagram illustrates the number of

proteins that demonstrate an age-associated change by comparing

the abdominal proteomes of 7-day-old bees against 9- and 11-day-

old bees. CH: gfp control, high pollen hoarding genotype; KH: irs

knockdown, high pollen hoarding genotype; CL: gfp control, low

pollen hoarding genotype; KL: irs knockdown, low pollen

hoarding genotype.

(TIF)

Table S1 Detecting protein abundance differences
associated with genotype and treatment. All proteins from

label-free proteomics experiment 1 that matched the criteria for

quantification are listed in this table. Tissue from 7-day-old bees

was used and four groups were assayed: Low pollen hoarding

genotype control (CL), low pollen hoarding genotype knockdown

(KL), high pollen hoarding genotype control (CH), high pollen

hoarding genotype knockdown (KH). See methods for further

details.

(XLSX)

Table S2 Detecting protein abundance differences
associated with age. All proteins from proteomics experiment

2 that matched the criteria for quantification are listed in this

table. The experiment was aimed at detecting age-dependent

changes in protein abundance in all four groups individually: Low

pollen hoarding genotype control (CL), low pollen hoarding

genotype knockdown (KL), high pollen hoarding genotype control

(CH), high pollen hoarding genotype knockdown (KH). Samples

of 7-day-old bees of each group served as a reference and statistical

comparisons were thus possible between 9- and 11-day-old bees

within each group. Each experimental group is organized in a

different worksheet. The file also includes a table with all proteins

that were found to show significant differences in abundance

(worksheet: significant differences). See methods for further details.

(XLSX)

Table S3 Detecting protein abundance differences
associated with genotype, treatment, and age. This table

lists all significant age, treatment, genotype, and interaction effects

detected in proteomics experiment 3 as determined by a mixed-

model ANOVA (worksheet: significant differences). In addition, it

contains the values for all significantly regulated proteins identified

in this experiment. Compared to proteomics experiment 2, this

experiment relied on additional measurements and mathematical

inferring in order to allow for a direct comparison between all

groups. 7-day-old bees of the CL group were used as a reference

for all comparisons.

(XLSX)
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