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Excitation of Faraday-like 
body waves in vibrated living 
earthworms
Ivan S. Maksymov1 & Andrey Pototsky2

Biological cells and many living organisms are mostly made of liquids and therefore, by analogy with 
liquid drops, they should exhibit a range of fundamental nonlinear phenomena such as the onset of 
standing surface waves. Here, we test four common species of earthworm to demonstrate that vertical 
vibration of living worms lying horizontally on a flat solid surface results in the onset of subharmonic 
Faraday-like body waves, which is possible because earthworms have a hydrostatic skeleton with a 
flexible skin and a liquid-filled body cavity. Our findings are supported by theoretical analysis based on a 
model of parametrically excited vibrations in liquid-filled elastic cylinders using material parameters of 
the worm’s body reported in the literature. The ability to excite nonlinear subharmonic body waves in a 
living organism could be used to probe, and potentially to control, important biophysical processes such 
as the propagation of nerve impulses, thereby opening up avenues for addressing biological questions 
of fundamental impact.

Vibrations and fluid-structure interactions are essential for efficient communication between living beings and 
they also underpin human-made imaging, spectroscopy and sensing techniques such as medical ultrasound and 
photoacoustic imaging modalities1, Brillouin Light Scattering spectroscopy2, and laser vibrometry3 to name a few. 
Sound and vibrations are also likely to play an important role in the propagation of nerve impulses4,5 as well as 
they can be used to develop new methods of bacteria and virus killing6–8. Furthermore, using vibrations one could 
monitor, understand and control the behaviour of some animals, such as earthworms9, and exploit them to sense 
and modify soil structure as well as to increase crop yields10–12.

Earthworms – tube-shaped, segmented worms that have a world-wide distribution and are commonly found 
in soil – have become a subject of intensive research focused on their response to vibrations and sound. Some 
of these studies aim to explain the response of these animals to natural vibrations produced by predators, rain 
or plants9. Furthermore, the glial cell wrapping of the giant axons of earthworms resembles the myelin sheath of 
vertebrate nerve fibers13. Therefore, earthworms serve as a platform for neurobiological studies14. Earthworms are 
also cheap and using them does not require ethics approval. Hence, we choose these animals to demonstrate the 
onset of Faraday-like subharmonic body waves in a living organism subjected to external mechanical vibration.

Classical nonlinear standing Faraday waves appear on the horizontal surface of an infinitely extended liquid 
supported by a vertically vibrating container15. For any given vibration frequency ω, when the vibration amplitude 
exceeds a certain critical value, the flat surface of the fluid becomes unstable and subharmonic surface waves 
oscillating at the frequency ω/2 are formed. These oscillations are due to a parametric resonance between the 
forcing at the frequency ω and gravity-capillary surface waves with the dispersion relation Ω k( ), being k a certain 
wave vector selected as ωΩ =k( ) /2.

Faraday waves have become a paradigmatic example of nonlinear wave systems exhibiting complex periodic16 
and quasi-periodic17–19 dynamics as well as chaotic behaviour20–23. Recently, a number of applications of Faraday 
waves in the fields outside the area fluid dynamics have been suggested, including novel photonic devices24,25, 
metamaterials26,27, alternative sources of energy28, and applications in biology29.

Parametrically excited vibrations and surface waves have also been observed in isolated liquid drops subjected 
to external mechanical forcing30–38. In response to vibration, the drop can either adopt a regular star shape30–33 or 
exhibit a more dramatic transformation by spontaneously elongating in horizontal direction to form a worm-like 
structure of gradually increasing length34–37.

1Centre for Micro-Photonics, Swinburne University of Technology, Hawthorn, Victoria, 3122, Australia. 2Department 
of Mathematics, Faculty of Science Engineering and Technology, Swinburne University of Technology, Hawthorn, 
Victoria, 3122, Australia. e-mail: imaksymov@swin.edu.au; apototskyy@swin.edu.au

OPEN

https://doi.org/10.1038/s41598-020-65295-4
mailto:imaksymov@swin.edu.au
mailto:apototskyy@swin.edu.au
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-65295-4&domain=pdf


2Scientific Reports |         (2020) 10:8564  | https://doi.org/10.1038/s41598-020-65295-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

In contrast to the classical Faraday instability in infinitely extended systems, in isolated liquid drops the 
boundary conditions at the drop edge dictate the existence of a discrete set of vibrational modes39–42. The eigen-
frequency Ω of each mode depends on the boundary conditions at the contact line40,41. When a drop is vibrated 
at the frequency ω, the fundamental subharmonic resonance occurs when the resonance condition ωΩ = /2 is 
fulfilled30.

In inviscid fluids, the subharmonic response sets in at a vanishingly small vibration amplitude at frequencies 
that satisfy the resonance condition. For frequencies that do not satisfy the resonance condition, the critical 
amplitude is nonzero. In experiments with viscous isolated drops, the dependence of the subharmonic critical 
amplitude on the vibration frequency ω was shown to exhibit periodic variations30,32,33. This feature is in stark 
contrast with the Faraday instability in infinitely extended fluids, where the critical amplitude monotonically 
increases with the driving frequency ω43.

In this work, we observe experimentally the subharmonic oscillations of the body of living earthworms lying 
horizontally on a flat solid surface subjected to vertical vibration. We measure the critical amplitude of the onset 
of subharmonic response as a function of the vibration frequency f , and we reveal that the obtained dependence 
exhibits signature characteristics of parametrically excited capillary surface waves in vibrated liquid drops30–33. In 
particular, we show that the critical amplitude varies periodically with f . We explain the observed results by 
modelling the body of the worm as a horizontally-extended, liquid-filled elastic cylinder subjected to vertical 
vibration.

Because the excitation of Faraday-like waves in living organisms has thus far received little attention44, our 
findings promise to push the frontiers of our knowledge of fundamental nonlinear phenomena and chaotic 
behaviour in biological systems. For instance, our results should be qualitatively reproducible in other living 
systems such as bacteria, biological cells or individual organs in the body including the brain and blood vessels.

Experimental results
We tested four different earthworm species encountered in the south eastern regions of Australia45. To correctly 
identify the earthworm species, we used an earthworm identification guide46. Eisenia fetida earthworms were pur-
chased from a local fishing goods store, and on average they were 100–120 mm long and 5–6 mm wide. Lumbricus 
terrestris earthworms were harvested in the field and closely related to them Lumbricus rubellus earthworms were 
obtained from a local compost worm supplier. In this group, we selected the worms that measured approximately 
120–150 mm in length and 8–10 mm in width. Several smaller 6–8-mm-long and 2–3-mm-wide Aporrectodea 
caliginosa earthworms were also harvested in the field and outcomes of their test were qualitatively similar.

Earthworms are non-regulated animals, and therefore this research did not require the approval of our 
Institutional Animal Ethics Committee. However, the worms were treated as humane as practical and afterwards 
they were placed into a worm farm where they fully recovered.

In preparation for experiments, earthworms were first placed in 20% ethanol for approximately 2 minutes, 
which immobilised them to simplify handling. Then, the entire body of an immobilised worm was placed on 
top of a thin Teflon plate [Fig. 1(a)] that was vertically vibrated with the harmonic frequency f. The vibrations 
were detected by using an in-house laser vibrometry setup38 [Fig. 1(b)] consisting of a red laser diode (Besram 
Technology, China, 650 nm wavelength and 1 mW maximum power) and a photodetector (Adafruit, USA). The 
intensity of light reflected from the worm is modulated due to the vertical vibration as well as the onset of para-
metrically excited body waves. We recorded these signals with Audacity software and Fourier-transformed them 
with Octave software to obtain frequency spectra. When required, the skin of the worm was moistened with water 
to avoid drying. However, in those cases special care was taken to remove all liquid drops from the Teflon plate. 
This ensured that Faraday waves are not excited on the liquid drop surface38 and also dramatically simplified the 
analysis of the results.

The experiments were conducted by using the following protocol. The laser beam was focused on the body of 
the worm and the vibration amplitude of the Teflon plate was gradually increased until the point when the onset 
of Faraday instability was observed with the oscilloscope. The position of the worm was continually monitored 
with a digital camera to make sure that the same part of the worm is illuminated. Large vibration amplitudes 
leading to a horizontal displacement of the worm or jumps of the entire body were avoided to help keep the worm 
in the focus of the laser vibrometry setup. Large vibrations were also avoided because they additionally lead to 
ejection of a sticky fluid from the worm, which could serve as a medium for surface Faraday waves not wanted in 
our measurements. Typically, the total duration of measurements using the same worm was under five minutes to 
avoid desiccation. After the experiment, the worms were rehydrated and released into a worm farm.

Figure 2(a,b) show, respectively, the vibration spectrum of the Teflon plate without the worm and the vibration 
spectrum of a Lumbricus terrestris earthworm placed horizontally on top of the Teflon plate. In both cases the 
Teflon plate is subjected to vertical vibration at =f 40 Hz.

The vibration spectrum of the unloaded Teflon plate is dominated by the peak at the frequency =f 40 Hz and 
its higher-order harmonic frequencies 80, 120 and 160 Hz. The intensity of the second (third) harmonic is approx-
imately 50 (80) times smaller than that of the fundamental signal and these signals are consistent with the intrin-
sic nonlinear distortion of the source of vertical vibrations used in our setup. We also calculated47 that the 
fundamental natural vibration frequency of the Teflon plate is 43.7 Hz. The natural frequencies of the two higher 
order modes – 137.9 Hz and 294.9 Hz – are well above the vibration frequencies used in this work. This means that 
the vibration regime of the plate is far from the nearest anti-resonance and that its frequency response is uniform 
in the frequency range of interest.

In the vibration spectrum of the earthworm, we observe that the harmonic waves lose their stability via a 
period-doubling bifurcation38 as evidenced by the appearance of the peaks at =f 20, 60, 140 and 180 Hz not 
present in the vibration spectrum of the Teflon plate. Significantly, the harmonic frequency peaks in the spectrum 
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Figure 1.  (a) Photograph of an anaesthetised Eisenia fetida earthworm. (b) Schematic of the experimental 
setup. A subwoofer covered by a thin Teflon plate is used as the source of vertical vibration. The sinusoidal 
vibration signal of frequency f is synthesised with a digital signal generator and amplified with an audio 
amplifier. Vibrations of the earthworm placed horizontally on top of the Teflon plate are measured by using a 
continuous wave red laser diode and a photodetector. The detected signals are visualised with an oscilloscope 
and sent to a laptop for post-processing. A digital camera is used to continuously monitor the position of the 
worm.

Figure 2.  Vibration spectra of the (a) Teflon plate without the worm, (b) Lumbricus terrestris earthworm, (c) 
Eisenia fetida earthworm and (d) earthworm-mimicking phantom. The vertical vibration frequency is f = 40 Hz. 
All spectra are normalised to their respective maxima. Note the presence of subharmonic (f/2, 3f/2 and so on) 
frequency peaks in the spectrum of the earthworms and the phantom, which are not present in the spectrum 
of the unloaded Teflon plate. The peaks in the spectrum of the earthworms are wider than in the case of the 
Teflon plate (as shown in the inset on the right), which is a result of the amplitude modulation and appearance 
of frequency sidebands leading to the broadening of the peak38. Also note that the spectra of the worms and the 
worm-mimicking phantom are qualitatively similar.
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of the worm are wider as compared with the respective peaks in the spectrum of the Teflon plate (see the right 
inset in Fig. 2). This is because the onset of subharmonic oscillations also results in the amplitude modulation and 
appearance of sidebands, which in turn leads to broadening of the spectral peaks previously reported for liquid 
films20,21 and liquid drops subjected to vibration38. Qualitatively the same behaviour is observed in the vibration 
spectrum of the other tested earthworm species, including the Eisenia fetida worms [Fig. 2(c)]. We also note that 
the observed broadening effect cannot be attributed to the response of the Teflon plate. In general, broadening of 
spectral peaks of vibrated solid bodies can only be observed in the regime of extremely large vibration amplitudes 
not reached in our experiments.

Experimental idealisation of a worm as an elongated liquid drop covered by a thin elastic skin is feasible 
because their water-filled body cavity is surrounded by a flexible skin and it acts as a hydrostatic (i.e. supported 
by fluid pressure) skeleton48. The muscles of the worm are made of a viscoelastic material, but their volume is 
small as compared with that of the water-like liquid inside the body of the worm. Yet, when the worm is anaes-
thetised, its nervous system does not produce nerve impulses and therefore the muscles of its body are fully 
relaxed14. Consequently, the viscoelastic properties of the muscles can be neglected in the analysis of anaesthe-
tised worms. Furthemore, whereas in non-anaesthetised worms high internal pressure helps to maintain a cylin-
drical shape49, the pressure in anaesthetised worms is close to ambient50. We verified this by establishing that a 
puncture of the skin of an anaesthetised worm does not lead to a dramatic ejection of internal fluids typically seen 
in non-anaesthetised worms. (Here, we draw an analogy between the worm and a pressurised balloon).

To verify that an anaesthetised worm can be experimentally idealised as a water drop at ambient pressure 
enclosed by a thin elastic skin, we tested an earthworm-mimicking phantom made of a finger of an approximately 
0.1-mm-thick latex glove filled with water. The thickness of the phantom wall is of the same order of magnitude 
as the body wall of an earthworm51, but mechanical properties of latex films of sub-millimeter thickness52 are 
similar to those of living worms53. The vibration spectrum of the phantom is shown in Fig. 2(d) and it is in good 
qualitative agreement with the vibration spectra of the real earthworms.

Furthermore, in the following we assume that the body wall of the worm is an elastic cylindrical shell under-
going flexural vibrations. (A relevant model was used in ref. 12, but later on in this paper we show that flexural 
vibrations should be responsible for the subharmonic response of the worms). Direct mapping of flexural vibra-
tion modes with our laser vibrometry setup is currently unavailable. Thus, to demonstrate that the entire body of 
worm undergoes vibrations resulting in the appearance of subharmonic frequencies in the vibration spectrum, 
we use a time-domain approach. We first film worms vibrated at 40 Hz frequency with a digital camera capturing 
120 frames per second and then we process the resulting videos in Octave software, where we binarise each frame 
and use the bwboundaries command to find the contours of the worm (see the inset in Fig. 3). Then, we cal-
culate the area of the contour for every frame and we finally Fourier-transform the resulting area-versus-time 
dependence to obtain the vibration spectrum of the body of the worm.

As shown in Fig. 3, in agreement with the results obtained with the laser vibrometry setup (Fig. 2), the body of 
the worm oscillates at the vibration frequency ≈f 40 Hz and the subharmonic frequency f/ =2 20 Hz. However, 
whereas the spectra in Fig. 2 were obtained by focusing the laser beam on a part of the worm’s body, the spectrum 
in Fig. 3 originates from the vibrations of the entire body of the worm. The higher frequencies peaks present in 
Fig. 2 are not reproduced in Fig. 3, because the finite resolution and sample rate of the digital camera limit the 
resolving ability of the image processing based approach at higher frequencies.

As a next step, we measure the lowest value of the vibration amplitude at which the subharmonic response 
of the worm body sets in. We call this value the critical amplitude and we plot it in Fig. 4 as a function of the 

Figure 3.  Vibration spectrum of the body of the earthworm subjected to vertical vibration at the frequency 
f = 40 Hz obtained by processing a video of the vibrated worm as explained in the main text. The subharmonic 
peak at f/2 = 20 Hz can be clearly seen. The inset shows an example of the contour of the worm obtained from a 
single frame extracted from the video.
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frequency f for an Eisenia fetida worm. To obtain consistent results, we illuminated the same part of the body of 
the worm and we also established that the critical amplitude was unaffected by the intensity of the laser beam and 
the diameter of the laser spot. Significantly, in the investigated frequency range, the response of the Teflon plate 
to vertical vibrations is essentially uniform within the margin of error and also it is linearly proportional to the 
acoustic response of the subwoofer. The amplifier of the subwoofer also operates in the linear regime that allows 
us to use its input as a measure of the vibration amplitude. Thus, the measured critical amplitude is based on the 
input of the subwoofer, it does not require normalisation on the response of the Teflon plate and therefore its 
variations with the frequency are attributed solely to the response of the worm.

In the 35…45 Hz frequency range, the critical amplitude is relatively low and therefore the body of the worm 
does not shift along the surface of the Teflon plate, thereby allowing us to obtain accurate results. In the critical 
amplitude dependence for the worm (Fig. 4), we observe oscillations with the two minima at ≈f 38 Hz and 

≈f 43 Hz. In contrast, the critical amplitude of an approximately 6 × 6 cm pancake-like drop of canola oil is 
quasi-monotonic in the 35…45 Hz range. [However, in agreement with the previous results30,32,33, we observed a 
non-monotonic response at >f 50 Hz (not shown for simplicity)].

A similar nonmonotonic dependence of the critical amplitude on the vibration frequency was previously 
observed in infinitely extended viscoelastic films54. In contrast to liquid drops of simple Newtonian fluids38, the 
nonmonotonic dependence originates from the ability of a viscoelastic material to’remember’ past stresses. Thus, 
in the Maxwell model of linear elasticity, the instantaneous stress in the material is described by a time-dependent 
relaxation modulus decaying over a characteristic relaxation time. The coupling between the period of forcing 
with the relaxation time of the material viscoelastic response leads to the oscillation of the critical amplitude as 
the function of the vibration frequency.

Based on our experimental data, it is not possible to conclude whether the nonmonotonic dependence in 
Fig. 4 is due to viscoelastic properties of the skin of the worm, the finite size of the worm body or a combined 
effect of viscoelastic properties of the skin and the geometry of the worm. In the following, we assume that, simi-
lar to small liquid drops30–33, the nonmonotonic subharmonic response of the worm originates from the discrete 
spectrum of its natural vibration frequencies. We also develop a theoretical model considering the worm as an 
elastic cylindrical shell filled with an incompressible fluid, and we correlate the experimental results with the 
theoretical predictions.

Theoretical model
The observed subharmonic oscillations of the earthworms bear a striking resemblance to the well-known phe-
nomenon of parametrically excited capillary surface waves in vertically vibrated liquid drops30–33,55. To under-
stand the physical origin of the subharmonic response of earthworms, we neglect the damping effect of the 
viscosity and model the body wall of the worm as an elastic cylindrical shell of length L with the Young’s modulus 
E, radius R and shell thickness H. The cylinder is filled with incompressible and inviscid fluid with the density ρl.

An elastic cylindrical shell model of the worm body has been previously used to analyse the pressure exerted by 
earthworms during their burrowing activity12. When such a cylinder with the horizontally oriented axis is supported by 
a solid plate, its cross-sectional shape is no longer circular due gravity deformation [Fig. 5(left)]. To estimate the squash-
ing depth δ that measures the change in the vertical height of the cylinder in the squashed state, we neglect the bending 
energy of the thin shell ( h R) as compared with the energy due to stretching. In this case, the equilibrium shape of 
the gravity deformed cross-section of the cylinder filled with an incompressible fluid of density ρl can be found by bal-

Figure 4.  Critical vibration amplitude of the onset of the subharmonic response in an earthworm (triangles) 
and a pancake-like canola oil drop (circles) plotted as a function of the vertical vibration frequency f. The dashed 
lines are the guide to the eye. Whereas in the selected frequency range the response of the canola oil drop is 
quasi-monotonic, the curve for the critical amplitude for the worm exhibits oscillations. These oscillations allow 
us to correlate the experimental data with the predictions of our theoretical model.
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ancing the tension T  per unit axial length of the elastic shell with the hydrostatic pressure56. In particular, we obtain 
ρ κ κ= −gH T( )l B A , where H is the height difference between the points A and B in Fig. 5 (left) and κA B,  denotes the 
curvature of the shell at the points A B( , ). Assuming weak deformation such that δ R/ 1, we approximate the shape 
of the squashed cylinder by an ellipse with the minor and the major semi-axis δ−R /2 and δ+R /2, respectively. Then, 
the curvatures to the first order in δ/R are R R R R O R( /2)/( /2) 3 /(2 ) ( / )A

2 1 2 2κ δ δ δ δ= − + ≈ − +−  and 
κ δ δ δ δ= + − ≈ + +−R R R R O R( /2)/( /2) 3 /(2 ) ( / )B

2 1 2 2. Finally, taking into account that δ=T Eh R/  and 
δ= −H R /2, we obtain the following estimate

δ ρ
= .

R
gR
Eh3 (1)

2

Viscoelastic properties of earthworms are poorly understood and previous works on mechanical properties 
of earthworms worm do not report the values of the Young’s modulus57,58. However, mechanical properties of 
millimeter-sized nematode Caenorhabditis elegans worms have been recently reported53, where a micropipette 
deflection setup59 was used to study the stiffness of the worms. In particular, the effective bulk Young’s modulus of 
the worm body was found to be in the 105…106 Pa range, with the maximum value originating from the cuticle. 
On the other hand, it has also been suggested that all nematodes exhibit a universal elastic response dominated by 
the mechanics of pressurised internal organs60. Nevertheless, the values of the bulk modulus reported in60 are of 
the same order of magnitude as those in ref. 53. Furthermore, the effective Young’s modulus of the cuticle strongly 
depends on its thickness53,60. Thus, assuming that the elasticity of the worm body is entirely due to the stiffness of 
the cuticle, the Young’s modulus can reach 200…400 MPa61.

Significantly, for the lowest expected value of the effective Young’s modulus of the cuticle =E 1 MPa53,60 the 
gravity squashing of the worm body remains small, as demonstrated below. We take the thickness of the cylindri-
cal wall to be =h 50 μm, which corresponds to the combined thickness of the cuticle and the epidermis of earth-
worms51. The effective density of the internal body fluid can be estimated as ρ = 1100l  kg/m3 because the body of 
the worm consists of a water-like liquid48 and it also contains blood vessels filled with blood, where the density of 
blood plasma is approximately 1025 kg/m3 and the density of blood cells circulating in the system is approxi-
mately 1125 kg/m3. Finally, for the largest possible value of the worm radius used in our experiments =R 5 mm, 
we estimate the relative squashing from Eq. (1) to be δ ≈R( / ) 4%. We note that in reality δ R( / ) should be much 
smaller than 4% because the effective Young’s modulus of the cuticle could be about three orders of magnitude 
higher61.

Then, we neglect viscoelastic damping and obtain a linear model of parametrically excited subharmonic body 
waves in an elastic fluid-filled cylinder. We follow the approach developed for subharmonic vibrations of a water 
drop placed on an oscillating solid plate30, where natural vibration frequencies of a cylinder squashed by gravity 
are considered [Fig. 5(left)]. The degree of squashing is characterised by the indentation depth δ that, in turn, is 
proportional to the gravity acceleration g . In the co-moving frame of the vibrating plate, the gravity is 
time-dependent. This means that the effect of the vibration is equivalent to periodically varying the squashing of 
the cylinder. Therefore, in the linear regime, natural frequencies of the squashed cylinder are periodically modu-
lated, thereby leading to a parametric type of forcing.

Figure 5.  Schematic of the theoretical model for a vibrated earthworm represented as a liquid-filled elastic 
cylinder of length L with the Young’s modulus E, undeformed radius R, and shell thickness h. The cylinder is 
filled with incompressible and inviscid fluid with the density ρl. (left) Cross-section of the elastic cylinder 
deformed by the gravity in contact with a non-deformable solid plate. The dashed line shows the contour of an 
undeformed cylinder of radius R. The squashing depth is δ ρ≈ R gR Eh/(3 )

2 . (right) Calculated spatial profiles 
of the first three lowest frequency vibration modes. The integer numbers in the parentheses denote, respectively, 
the number of the circumferential and the axial vibration mode (see the main text).
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To the best of our knowledge, the analysis of the vibrational frequencies of a cylinder supported by a solid 
plate along its entire length has not been reported. (Although Faraday instability of a horizontal water-filled 
half-cylinder subjected to vertical vibrations was investigated in a recent work55, the model presented there can-
not be applied in our case because it does not consider mechanical properties of the earthworm skin). Therefore, 
we estimate the order of magnitude of the natural frequencies by using the well-known result for a cylinder with 
freely supported ends62–64, as demonstrated below. A comprehensive review of the linear and nonlinear vibration 
and instabilities of cylindrical shells and plates can be found in refs. 47,65,66.

In cylindrical coordinates, the axial θu r( , ), azimuthal θv r( , ) and radial θw r( , ) displacements of the shell of a 
cylinder with freely supported ends can be written as

π θ
π θ
π θ

=
=
=

u U t mz L n
v V t mz L n
w W t mz L n

( )cos( / )cos( ),
( )sin( / )sin( ),
( )sin( / )cos( ), (2)

where the integers n and m determine the circumferential and the axial vibration modes, respectively. As a repre-
sentative example, in Fig. 5(right) we show the first three lowest frequency modes.

For δ R/ 1, the deviation of vibrational frequencies from those of a circular cylinder is of first order in δ/R67. 
This allows us to write the equations of motion for the amplitudes U V W, ,  as

δ
≈



 +



ẍ J J x

R
,

(3)0 1

where =x U V W( , , ), J0 is the Jacobi matrix corresponding to the circular cylinder and J1 is its first order correc-
tion due to squashing. When the solid plate is vibrated with the frequency ω, its vertical displacement is given by 

ωA tcos( ), where A is the vibrational amplitude. The gravity acceleration in the co-moving frame of reference is 
ω= +g t g a t( ) [1 cos( )], where ω=a A g/2  is the dimensionless scaled amplitude. Since viscosity is neglected, we 

anticipate the onset of the subharmonic vibrations at small amplitude a 1. In this regime, we obtain from Eq. (1) 
for the time-dependent squashing δ ω≈ +ρ ( )( )R t/ 1 cosgR

Eh
a

3 2

2
. In this limit, Eq. (3) reduces to the 

three-dimensional Mathieu equation

ρ π=





+ +






ẍ J J J xgR

Eh
q f

3
cos (2 ) ,

(4)
0

2

1 1

where = ρq a gR
Eh2 3

2
 is the scaled vibration amplitude.

We emphasise that the linear model Eq. (4) can only be used for qualitative estimations of generally nonlinear 
subharmonic response. Discrepancies with experimental results obtained for real earthworms can be due to vis-
coelastic damping, nonlinear deformation and twisting of the worm body, as well as due to the assumption of a 
thin wall elastic cylinder filled with Newtonian fluid used in the model.

The properties of solutions of Eq. (4) are well-known68. Parametrically excited instability sets in when 2πf 
coincides with one of the combination frequencies ω ω±( ) ( )i k0 0 , where ω( )i0

2 =i( 1, 2, 3) are the eigenvalues of 

− + ρJ J( )gR
Eh0 3 1

2
. Because ∼ .ρ 0 04gR

Eh3

2
 for =E 1 MPa, we can neglect the term ρ JgR

Eh3 1
2

 in Eq. (4) as compared 
with J0, which implies that the natural frequencies ω( )i0  of the gravity squashed worm can be approximated by 
those of a circular elastic cylinder.

Amongst the three frequencies ω( )i0  =i( 1, 2, 3) one is typically two orders of magnitude lower than the other 
two. This lowest frequency ω0 corresponds to the mode with predominantly radial displacement and is given by64

ω ρ λ
ν

λ

λ

ρ λ

λ ρ λ
=







+
−

+
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where λ π= m R L/m  and In is the modified Bessel function of the first kind of order n.
Considered as a whole, the combination ω ρR

E0  in Eq. (5) (called the frequency factor) depends on the geom-
etry of the cylinder, the Poisson ratio ν and the ratio of the densities ρ ρ/l , but is independent of the Young’s mod-
ulus E. In Fig. 6(a), we plot the frequency factor as a function of the axial mode number m for different values of 
n for a cylinder of length =L 10 cm, shell thickness h = 50 μm, radius =R 5 mm, filled with a fluid with density 
ρ ρ= = 1100l  kg/m3. The first three lowest frequency modes with = =n m( 1, 1), = =n m( 2, 2) and 

= =n m( 2, 1) are shown in the right panel of Fig. 5 for the sake of illustration.

Discussion
The presented theoretical model can, in general, be used to find the mode profiles corresponding to the resonance 
frequencies found in the experiment in Fig. 4 by using experimental data for the Young’s modulus E of earth-
worms as a key input parameter. However, plausible values of E for different worm species are a subject of active 
debate due to a large range of the reported values and poor understanding of the impact of the cuticle on mechan-
ical properties of worms53,60.
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To circumvent the lack of experimental data, we reanalyse our experimental results in Fig. 4 in light of the 
predictions of the developed model Eqs. (4 and 5). In particular, we establish which of the theoretically possible 
vibrational modes could be excited at a given value of E. Here, we vary the value of E in a range bounded by two 
critical values – the effective bulk Young’s modulus of the worm from ref. 53 and the locally measured stiffness of 
the cuticle60,61. Whereas the exact values of E are yet to be confirmed experimentally, it has already been estab-
lished that E would be a function of the thickness of the cuticle60 and that it would approach 200…400 MPa61 in a 
limiting case of the mechanical properties of the worm defined solely by the cuticle.

Naturally, the thickness and stiffness of the cuticle vary for different species of worms and they are also likely 
to vary from one animal to another within the same species group. Indeed, in our experiments we established that 
Eisenia fetida earthworms appear to be slightly stiffer when palpated as compared with the other species tested in 
this work. However, this difference alone cannot result in an order of magnitude discrepancy in the values of E.

Firstly, for the fundamental subharmonic resonance in our model we choose the doubled frequency to be 
ω π= f0 min, where fmin is either 38 Hz or 43 Hz corresponding to the first and the second minimum of the meas-
ured critical vibration amplitude function (Fig. 4). Then, for any fixed value of E we find all theoretically possible 
vibrational modes = … = …n m( 0, , 1, ) whose doubled frequency ω π/0  differs by at most 1 Hz from either 
38 Hz or 43 Hz. We choose the tolerance of ±1 Hz because it corresponds to the frequency resolution in the exper-
imental data in Fig. 4. It is noteworthy that our model predicts another upper bound for E when the tolerance is 
varied. However, choosing the tolerance dictated by the resolution in the experimental data serves the purpose of 
comparing the experimental and theoretical results obtained in this work.

Denoting the number of modes that match 38 Hz and 43 Hz as N38 and N43, respectively, we define the total 
number of matches as =N N N38 43. Finally, by gradually varying E with a fixed increment, we obtain the depend-
ence N E( ) and plot it in Fig. 6(b). We observe that the largest possible value of the Young’s modulus lies in the 

= . ... .E 8 3 8 9 MPa range, which corresponds to the mode = =n m( 3, 3) excited at =f 38 Hz and the mode 
= =n m( 2, 3) excited at =f 43 Hz. The corresponding values of the frequency factor are shown by the two 

horizontal lines in Fig. 6(a). Based on these results, we predict that the body of the worm subjected to vertical 
vibration and undergoing Faraday-like body oscillations would assume the spatial profiles shown in the insets in 
Fig. 6(a).

The values of the Young’s modulus = . ... .E 8 3 8 9 MPa produced by our model feasibly fall within the expected 
range. In fact, these values are approximately one order of magnitude higher than those of the effective bulk 
Young’s modulus of the worm predicted in ref. 53, being at the same time one order of magnitude lower than those 
obtained from local measurements of the stiffness of the cuticle60,61. This is consistent with the point of view that 
the effective mechanical properties of the worm are not exclusively defined by the stiffness of the cuticle. However, 
we also conclude that the cuticle plays a considerable role in the response of the worm to vibration.

Figure 6.  Analysis of experimental results in light of the predictions of the developed theoretical model. By 
scanning through all theoretically possible combinations of vibration modes and varying the value of the 
effective Young’s modulus of the worm, we find the modes involved in the subharmonic response of the worm 
and plot the respective spatial mode profiles. (a) Frequency factor ω ρR E/0  plotted as a function of the axial 
mode number m for the circular elastic cylinder filled with liquid with density ρl. The other parameters are =R 5 
mm, =L 10 cm, ρ ρ= = 1100l  kg/m3, ν = .0 5 and =h 50 μm. The circumferential mode number n is indicated 
next to each curve. The two solid horizontal lines correspond to the levels of π ρR E38 /  and π ρR E43 /  with 

= .E 8 3 MPa. For = .E 8 3 MPa, the mode = =n m( 3, 3) is excited at 38 Hz and the mode = =n m( 2, 3) is 
excited at 43 Hz. The frequencies 38 Hz and 43 Hz correspond to the first and the second minimum of the critical 
vibration amplitude function in Fig. 4. (b) The number of modes N that match the subharmonic resonance 
criterion as a function of E (see the main text for details). From this panel we obtain information about the largest 
possible values of the Young’s modulus corresponding to the modes at 38 Hz and 43 Hz.
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Conclusions
We have demonstrated the excitation of subharmonic Faraday-like waves in living earthworms lying horizontally 
on a flat solid surface subjected to vertical vibration. We tested four common species of earthworm – Eisenia fet-
ida, Lumbricus terrestris, Lumbricus rubellus and Aporrectodea caliginosa, and in all tests we observed the appear-
ance of spectral peaks at subharmonic frequencies with overall behaviour similar to that of finite-size liquid drops 
subjected to vibration. We also used an earthworm-mimicking phantom made of a water-filled cylinder with thin 
elastic walls, the measurements of which qualitatively reproduced the response of the real earthworms. Moreover, 
we measured the critical amplitude of the onset of subharmonic waves in the worms and found that it exhibits 
oscillations as a function of the driving frequency. This feature is typically observed in the response of infinitely 
extended viscoelastic fluids54 and isolated small drops composed of a Newtonian fluid30–33. By modelling the 
body of the worm as an elastic cylindrical shell filled with fluid, we explained the observed subharmonic response 
by parametric excitation of the discrete set of vibrational modes. We therefore conclude that the nonmonotonic 
dependence of the critical amplitude on the vibration frequency should be a direct consequence of the discrete 
nature of the spectrum of eigenfrequencies.

Because biological cells and many living organisms are mostly made of fluids, unique properties of nonlinear 
waves observed in fluidic systems are likely to open up unique opportunities for biology and medicine as well as 
the adjacent areas. The work in this direction is already in progress44,55. Thus, we believe that our results would 
not only push the frontiers of our knowledge of fundamental nonlinear phenomena and chaotic behaviour in 
biological systems, but they could also be used to develop new techniques for probing and controlling biophysical 
processes inside a living body.

For example, it has been suggested69 that Faraday-like body waves in vibrated living earthworms could be 
used to verify the soliton model of nerve pulse propagation4,5. Mechanical stimulation has long been used to 
excite nerve impulses70, but so far this has not enabled researchers to establish a reliable link with the brain. 
The ability to form a soliton in the nerve may not necessarily mean that solitons underpin the principal natural 
mechanism for nerve impulse propagation. However, the demonstration of soliton existence in externally excited 
nerve fibres would be a paradigm shift in the way we understand the nervous system4,5. As shown in this paper, 
Faraday-like body waves in living earthworms may have 20–300 Hz frequencies coinciding with those of natural 
nerve impulses. Thus, hypothetically, constructive or destructive interference of these waves with nerve impulses 
could be used to amplify or suppress the nerve signalling in a living worm69, which in turn should open up novel 
opportunities to control nerve signals mechanically.

Finally, we note that in neuroscience experiments the worm is often anaesthetised to inhibit the generation 
of natural nerve impulses14. We experimented with non-anaesthetised and lightly sedated worms and we also 
observed the onset of Faraday-like body waves in many cases. However, whereas this result indicates that the 
results presented in our work should also apply to non-anaesthetised worms, it is very challenging to keep the 
worms in the focus of the laser beam and therefore experimental data are difficult to interpret and analyse using 
the available mathematical models.

We also note that our theoretical model remains valid in case of non-anaesthetised earthworms having higher 
internal pressure. As a result, the linear approximation Eq. (4) neglecting the squashing depth becomes even more 
accurate because the squashing depth in Eq. (1) is further decreased. Because natural frequencies of pressurised 
elastic cylinders increase as compared with those of low-pressure elastic cylinders71, in non-anaesthetised earth-
worms the minima in the critical vibration amplitude in Fig. 4 should shift to higher frequencies.

Methods
The hardware used in our experimental setup is similar to that in38. Because the maximum frequency of interest in 
this work is about 200 Hz, we used a photodiode (Adafruit, USA) designed for general applications in sensors and 
laboratory instrumentation. The photodiode is sensitive to the light in the broad 400…1100 nm spectral range 
with the sensitivity peak around 750 nm. The maximum frequency response of the photodiode measured using 
our laser diode controlled by an electronic driver circuit is 14 kHz, which is well above 200 Hz. Photodetector 
data were acquired using Audacity, a standard digital audio recording software that is often used for research 
purposes14. Overall, at low vibration frequencies and other similar experimental conditions, the accuracy of our 
setup is comparable to that of a commercial laser Doppler vibrometer.

Because of the low vibration frequencies, a consumer action camera (Kogan 4K, Australia) providing the reso-
lution of 1280 × 720 pixels at 120 FPS speed was able to resolve the frequencies of the harmonic and subharmonic 
response of the body of the earthworm. Moreover, this camera is waterproof and easy to clean, which is important 
in research on animals, and it is also equipped with a 140° wide lens that allows capturing more ambient light, 
thereby dramatically improving the resolution as compared with a standard high-speed digital camera recording 
at up to 1000 FPS at the same illumination conditions.

Data produced by the camera were processed using the FFmpeg and Octave software. Because in all experi-
ments our setup operated in a regime of moderate vibration amplitudes, approximately 30-second-long videos 
of vibrated worms were not affected by significant motion of the worm with respect to the centre of the camera’s 
field of view. Long worms were bent to maximise the portion of their body captured by the camera. However, the 
curvature of the worm’s body did not affect the results of our analysis. Because all liquids surrounding the worm 
were carefully removed before each measurement using a syringe and cotton wool tips, the standard Octave com-
mand bwboundaries alone allowed finding the contours of the worm without the need of removing artefacts.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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