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Abstract* 
The ability to adequately and efficiently integrate 
unstructured, heterogeneous datasets, which are 
incumbent to systems biology and medicine, is one of 
the primary limitations to their comprehensive 
analysis. Natural language processing (NLP) and 
biomedical ontologies are automated methods for 
capturing, standardizing and integrating information 
across diverse sources, including narrative text. We 
have utilized the BioMedLEE NLP system to extract 
and encode, using standard ontologies (e.g., Cell 
Type Ontology, Mammalian Phenotype, Gene 
Ontology), biomolecular mechanisms and clinical 
phenotypes from the scientific literature. We 
subsequently applied semantic processing techniques 
to the structured BioMedLEE output to determine the 
relationships between these biomolecular and 
clinical phenotype concepts. We conducted an 
evaluation that shows an average precision and 
recall of BioMedLEE with respect to annotating 
phrases comprised of cell type, anatomy/disease, and 
gene/protein concepts were 86% and 78%, 
respectively. The precision of the asserted phenotype-
molecular relationships was 75%.  

Introduction 
Unlike the traditional, reductionist practice of clinical 
medicine that independently examines individual 
components, systems medicine approaches focus on 
the dynamic interactions among multiple factors that 
affect complex diseases, such as diabetes, coronary 
artery disease and cancers1. The increasing 
availability of powerful high-throughput 
technologies, computational tools and integrated 
knowledge bases, has made it possible to establish 
new links between genes, biologic functions and 
human diseases, providing the hallmarks of systems 
medicine, including signatures of pathology biology, 
and links to clinical research and drug discovery2. 
Holistic systems biology methodologies promise to 
provide the foundation for such prospective medicine 
through the construction of integrated biomolecular 
networks3. However, one of the primary limitations 
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to such an approach is the availability of integration 
methodologies for combining diverse types of data 
and generating knowledge bases that are precise and 
detailed enough to derive testable hypotheses across 
different scales of biology2. To address this gap in 
knowledge, we have evaluated a natural language 
and semantic processing-based approach for 
generating integrated biomolecular and phenotypic 
data sets from existing published literature and 
biomedical ontologies. 

Background 
Biomedical Ontologies 
One key to the emergence of systems medicine will 
be the ability to harness the vast amounts of 
biomolecular and phenotypic data produced by high-
throughput technologies and advanced measurement 
techniques3,4. Community efforts for the integrative 
annotation of such data sets include combining 
automated computation with human-supervised 
curation, the use of quality indices, text mining tools, 
biological ontologies and the semantic web2. 
Biomedical ontologies, in particular, provide a means 
for structuring this information such that it is 
computationally tractable and comparable across 
resources. One such effort is that of the Open 
Biomedical Ontologies (OBO) Foundry, which has 
the broad-based goal of “creating a suite of 
orthogonal interoperable reference ontologies in the 
biomedical domain”5. Examples of biomolecular and 
phenotype ontologies available via the OBO Foundry 
include: Cell Type Ontology (CO), Mammalian 
Phenotype (MP), Adult Mouse Anatomy (MA), Gene 
Ontology (GO), and National Center for 
Biotechnology Information (NCBI) taxonomy. 
PhenoGO 
Natural language processing (NLP) tools and 
semantic reasoning techniques can help to increase 
the availability of annotated resources and address 
the current gap in integrative translational knowledge 
necessary for the fields of systems biology and 
medicine2. The PhenoGO system utilizes an existing 
natural language processing (NLP) system, called 
BioMedLEE6, and a knowledge-based phenotype 
organizer system (PhenOS) in conjunction with 
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MeSH indexing and established biomedical 
ontologies, including the Unified Medical Language 
System (UMLS) and those comprising the OBO 
Foundry, to add contextual phenotypic information to 
existing associations between gene products and GO 
terms as specified in the GO Annotations (GOA)7. A 
feasibility assessment, focused on the extraction of 
phenotypic information from the scientific literature 
related to the mouse model, using an early version of 
BioMedLEE demonstrated 64.0% precision and 
77.1% recall respectively6. A previous evaluation of 
the PhenoGO system, conducted in the context of the 
Mouse Genome Database, resulted in precision of 
91% and recall of 92%, with respect to coding 
anatomical and cellular concepts and assigning the 
coded phenotypes to the correct GOA7.  The 
PhenoGO database has recently been updated to 
include eleven of the species defined in the NCBI 
taxonomy, including Homo sapiens8. 
This manuscript expands the previous evaluations of 
BioMedLEE6 and PhenoGO7 to assess the feasibility 
of applying an NLP and semantic processing 
approach to the construction of a high-quality 
network comprised of integrated biomolecular and 
phenotypic data for Homo sapiens. 

System Design 
In the following sections, we describe a method for 
extracting, encoding and associating phenotypic and 
biomolecular concepts found in PubMed abstracts 
(Figure 1). 

 
Figure 1. Overview of NLP and semantic methods for 
relating genes and phenotypes. 

Natural Language Processing 
The BioMedLEE system has been developed to 
automate the integration of phenotypic data contained 
within biomedical literature and genomic databases 
using NLP6. Specifically, it extracts and represents a 
comprehensive set of phenotypes using ontological 
codes and molecular mechanisms, as well as their 
specific relationships as expressed in the natural 
language of the literature. BioMedLEE utilizes six 
ontologies to encode the extracted concepts: Cell 
Type Ontology, Mammalian Phenotype, Mouse 
Anatomy, Gene Ontology (GO), NCBI Taxonomy, 

and the Unified Medical Language System (UMLS).  
In addition, BioMedLEE assigns a semantic type 
(e.g., body location, clinical finding, gene, cellular 
component) to each extracted concept. BioMedLEE 
was utilized to process a corpus of cancer-related 
(determined using a heuristic algorithm) PubMed 
abstracts, from 1990-2007, corresponding to Homo 
sapiens (MeSH: Humans). 
Determining Gene-Phenotype Associations 
After the parsed terms were extracted from the XML 
output of BioMedLEE, a filter was applied to remove 
overly generic terms (e.g., cell, activity, structure, 
disease, etc.). We employed similar methods to those 
used to construct the PhenoGO database7 to associate 
biomolecular and clinical phenotypic concepts from 
the BioMedLEE XML output. That is, utilizing the 
phenotypic and genetic concepts identified by 
BioMedLEE, and the human Gene Ontology 
Annotations (GOA), the following rules were applied 
to determine gene-phenotype relationships: 
1. Gene extracted by BioMedLEE from a given 

abstract must match a PubMed-gene pair found 
in GOA, based upon the abstract’s PubMed ID 
(pmid) and GO code assigned by BioMedLEE. 

2. Phenotype must be in the same BioMedLEE 
relationship (XML block) as the gene (Figure 2). 

3. Phenotype must have a semantic tag (assigned 
by BioMedLEE) corresponding to a body 
function, body location, cellular location, clinical 
finding or problem. 

<genefunc v = "regulation" code = "GO:0050789^regulation of biological process">
<process v = "proliferation"><arg v = "target"></arg>
<cell v = "progenitor cell" code = "UMLS:C0038250^stem cell"></cell></process>
<gene_gproduct v = "MGI:98958^Wnt5a"><arg v = "agent"></arg></gene_gproduct> </genefunc>  

Figure 2. XML output of BioMedLEE for “Wnt5A 
regulates proliferation of progenitor cells.” 

Evaluation Methods 
Precision Evaluation 
We selected four random samples from the corpus of 
pmid-gene-phenotype associations in order to assess 
precision with respect to cell types, anatomy, diseases 
and genes/proteins. These associations were assessed 
based upon the following features: 
1. Semantic parsing and classification: The 

BioMedLEE result was compared with the 
natural language phrase contents to assess the 
accuracy of the assigned semantic type (e.g. if 
the parsed term is “arm” from the phrase “broken 
arm”, is it associated with the semantic type 
“bodyloc”?). 

2. Ontological annotation: If (1) evaluated to a true 
positive (i.e., the phenotype was parsed and 
classified correctly by BioMedLEE), we 
assessed whether or not the ontology code 
assigned by BioMedLEE was correct for the 
parsed term (e.g. for the phrase “increased heart 
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rate” a code for “hypertension” would be 
considered to be a true positive). 

3. Gene-phenotype relationship: If (1) evaluated to 
a true positive, we assessed whether or not the 
gene was correctly associated to the parsed 
phenotype by examining the context of the entire 
sentence from which the concepts were 
extracted. 

Recall Evaluation 
We evaluated four semantic types: genes/proteins, 
cell/cell line, anatomy, and disease (also includes 
clinical problem such as diagnosis or symptom). 
Initially, we chose four independent sets of 50 
sentences at random (one for each semantic type). 
The relevant PubMed abstracts (i.e., from the human 
data set) were subsequently re-sampled to retrieve 
additional sentences until the subject matter expert 
(SME) evaluator noted 50 concepts per semantic 
type. During this process, no sentences were chosen 
more than once per data set, and no abstracts were 
sampled from more than once per data set. For those 
concepts that were part of a complex compositional 
phrase, the entire phrase was utilized for the 
evaluation. To assess how well BioMedLEE parsed 
the concept or compositional phrase that was 
identified by an SME, a score of one assigned to most 
relevant assessment category (see below), and a score 
of zero was assigned otherwise: 
• Correct – exact (true positive – TP): exact match; 
• Correct – different (TP): concept may have been 

assigned a semantic type that is not incorrect, but 
different from that being evaluated; 

• Partial (false positive – FP): some component of 
the concept or compositional phrase was missing 
or incorrect, but part of the concept or 
compositional phrase was parsed correctly; 

• Incorrect (FP): a parsed structure was output by 
BioMedLEE, but was completely incorrect; 

• None (false negative – FN): concept was not 
parsed by BioMedLEE, and a suitable UMLS 
concept exists 

• No code (true negative – TN): concept was not 
parsed by BioMedLEE, but no appropriate UMLS 
concept exists 

For the coding evaluation we assessed the codes that 
were assigned to an SME-identified concept or 
compositional phrase by BioMedLEE. We evaluated 
either the most specific assigned code(s), or all 
component codes for those concepts and 
compositional phrases for which the entire phrase 
was not captured in a single code. Each code 
associated with a particular phrase was evaluated 
independently, but the overall score for each phrase 
totaled one (e.g., if a phrase had two UMLS codes 
assigned to it, each assessment would have a value of 

0.5). The following assessment categories were 
utilized: 
• Correct – exact (TP): exact match; 
• Correct – partial (FP): at least one assigned code 

was only partially correct with respect to the 
complete concept term or compositional phrase;  

• Partial (FP): at least one assigned code was only 
partially incorrect with respect to the complete 
concept term or compositional phrase; 

• Incorrect (FP): at least one assigned code was 
completely incorrect with respect to the concept 
term or compositional phrase; 

• None (FN): no code was assigned to the complete 
concept or compositional phrase, but a correct 
UMLS code exists; 

• No code (TN): no code was assigned to the 
complete concept or compositional phrase, and no 
correct UMLS code exists 

Results 
BioMedLEE’s grammar contains 810 rules, and its 
lexicon contains 830,058 lexical entries and 502,965 
distinct targets. We utilized BioMedLEE to process a 
corpus of 11,407 PubMed abstracts. The XML output 
of BioMedLEE was comprised of 759,026 unique 
textual terms coded in 451,547 distinct concepts. 

Determining Gene-Phenotype Associations 
After applying a script to remove all overly generic 
concepts from the BioMedLEE XML output, the 
resulting data set was comprised of over 200 million 
annotated phenotypes (non-distinct). In addition, over 
100,000 pmid-gene-phenotype associations were 
asserted using the structured relationships in the 
BioMedLEE output and human Gene Ontology 
Annotations (GOA). This data set has now been 
incorporated into the PhenoGO database, which can 
be accessed at: http://www.phenogo.org/.  

 
Figure 3. Summary of parsing precision results. 

Evaluation 
For the precision evaluation, we selected four random 
samples comprised of 50 pmid-gene-phenotype 
associations per semantic class (cellular anatomy, 
supracellular anatomy, finding/morphology/disease, 
gene/protein). The precisions with respect to parsing 
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by BioMedLEE across these semantic types averaged 
93±0.07%, and are summarized in Error! Reference 
source not found.. For the coding evaluation, the 
precisions averaged 77% (maximum: 94% 
[gene/protein]; minimum: 50% [supracellular 
anatomy]) across semantic types. Recall averaged 
85.91% and 70.65% for parsing and coding, 
respectively. The recall results are summarized in 
Table 1 and Figure 4. The overall coding precision for 
the pmid-gene-phenotype relationships was 75%. 

Table 1. Examples from recall (coding) evaluation 
Metric Input Sentence 

(focus concept and phrase) BioMedLEE Code 

Correct (E) 
PTP2C is widely expressed in 
… heart, brain, and skeletal 
muscle. 

MA:0000168 [brain] 
UMLS:C0006104 [brain] 

Correct (P) Inhibition of CXCR4-
dependent HIV-1 infection ... 

UMLS:C0021311 [infection] 
GeneID:7852 [CXCR4] 
(missing code for HIV-1) 

Partial 
… suggest … interfering with 
the CD28 costimulatory 
pathway may … 

GeneID:317783 [CELIAC3] 
GeneID:940 [CD28] 
(CD28 not alias of CELIAC3) 

Incorrect … mRNAs induced in BL 
cells have been cloned …. 

UMLS:C0009013 [clone 
cells] 
(missing UMLS:C0006413 
[Burkitt Lymphoma]) 

None 
… identified … as the gene 
responsible for macular 
corneal dystrophy. 

Missed UMLS:C0024439 
[Macular corneal dystrophy] 

No code 
… region within the candidate 
locus for lethal neonatal 
metabolic syndrome … 

No exact UMLS code 

 
Figure 4. Summary of recall evaluation results. 

Discussion 
The domains of systems biology and medicine 
inherently involve the integration of multiple diverse 
data sets, including the vast amounts of knowledge 
buried within the biomedical literature.  However, the 
burden of manual annotation and the ability to 
perform such integration with the precision and detail 
necessary for hypothesis generation are some of the 
primary limitations to these approaches. To-date, 
there have been several techniques utilized to extract 
and correlate genes and phenotypes based upon the 
information contained in this literature, including 
supervised learning9 and text mining10. In addition, 
Hunter et al.11 and Sam et al.12 have demonstrated the 
use of approaches that integrate NLP techniques with 
biomedical ontologies to predict and discover 

protein-protein interaction networks.  However, to the 
best of our knowledge novel natural language 
processing (NLP) engines, such as BioMedLEE, have 
not previously been applied to automatically extract, 
encode with standard ontologies, and associate 
biomolecular and phenotypic information for the 
generation of integrated reference knowledge sets for 
use in the systems biology and medicine domains. 
Payne, Embi and Sen13 define a translational research 
informatics framework for the design and execution 
of informatics-enabled studies that aim to integrate, 
analyze and disseminate large-scale, heterogeneous 
biomedical datasets, such as those prevalent in 
systems biology. The relatively high precision and 
recall evaluation metrics associated with the use of 
BioMedLEE for annotating and encoding biomedical 
literature, and associating genes/proteins and 
phenotypes indicate that this methodology could be 
utilized to generate integrated data sets that are 
sufficiently precise and timely for generating testable 
hypotheses within such a translational research 
framework. Though others have predicted systems 
medicine properties (e.g., protein-protein 
interactions) from the literature by mining co-
occurrences14, such methodologies are not as precise 
as NLP-based approaches15. However, the 
BioMedLEE-derived ontology-anchored networks 
allow for the generation of relationships between data 
types that are more analogous to the mining of semi-
structured or structured datasets, such as the work 
reported by Hansen, et al16. 
A prototypical biological problem that can serve as 
an exemplary application for an integrated 
biomolecular and phenotype network, such as that 
generated using the methods described in this 
manuscript, is that of adaptive therapy planning for 
chronic lymphocytic leukemia (CLL).  Recent 
publications17 have demonstrated a paucity of 
empirically validated biomolecular markers that 
correlate with treatment outcome in CLL.  Further, 
the same literature demonstrates a lack of systematic 
approaches to the design and execution of studies to 
elucidate such linkages.  By leveraging the network 
generated in this study, it would be possible to 
systematically evaluate novel genotype-phenotype 
relationships in CLL based upon comprehensive 
literature-based knowledge sources in order to design 
such studies and ultimately generate evidence 
capable of supporting adaptive therapy planning. 
Though our results are promising, our study did have 
several limitations, including: (1) the developer of the 
gene-phenotype association algorithm also conducted 
the performance evaluations; (2) the resulting 
integrated gene-phenotype data set is only as accurate 
and timely as the ontologies utilized at the foundation 

9



of the NLP engine; and (3) when calculating the 
accuracy metrics for BioMedLEE, all partially 
correct assessments were considered to be false 
positives, thus deflating the reported values. Our 
future work involves pipelining the methodology 
described in the manuscript with existing knowledge 
and hypothesis discovery tools (e.g., PGSchema, 
PhenoGO, and protein interaction networks) to 
enable scalable and comprehensive integration of the 
annotated biomedical literature, independent research 
databases and existing genomic knowledge sets. We 
are currently completing the processing of PubMed 
abstracts from 1865-2009, and the update of the 
public PhenoGO database. 

Conclusions 
Though the discovery of novel linkages among 
genes, biologic functions and human diseases is 
foundational for the domains of systems biology and 
medicine, one of the primary limitations to such an 
approach is the availability of methodologies for 
adequately integrating the inherently heterogeneous 
datasets. We have developed and evaluated a natural 
language and semantic processing-based approach 
that utilizes the BioMedLEE NLP engine for 
extracting and encoding biomolecular and phenotypic 
concepts from existing published literature and 
biomedical ontologies, and a subset of the PhenoGO 
contextual assignment algorithms to determine 
relationships among these concepts.  The relatively 
high precisions and recalls resulting from the 
subsequent evaluation in the domain of Homo 
sapiens indicate that our methodology has promise 
for the generation of integrated biomolecular and 
phenotypic knowledge sets that are precise enough to 
discover testable systems biology hypotheses.  
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