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Genomic instability finally induces cell death or apoptosis. The tumor suppressor, phos-
phatase and tensin homolog on chromosome 10 (PTEN), is a dual-specificity phosphatase,
which has protein phosphatase activity and lipid phosphatase activity that antagonizes
PI3K activity. Cells that lack PTEN have constitutively higher levels of PIP3 and activated
downstream PI3K/AKT targets. BRCA1, a well-known breast cancer tumor suppressor, is
to associate with breast cancer risk and genetic susceptibility. Many studies have demon-
strated that PTEN, as well as BRCA1, plays a critical role in DNA damage responses. The
BRCA1 functionally cooperates with PTEN and might be an essential blockage in the devel-
opment of several tumors. Actually, the PTEN and BRCA1 genes are recognized as one of
the most frequently deleted and/or mutated in many human cancers. The PI3K/AKT path-
way is constitutively active in BRCA1-defective human cancer cells. Loss or decrease of
these PTEN or BRCA1 function, by either mutation or reduced expression, has a role in
various tumor developments. This review summarizes recent findings of the function of
BRCA1 and PTEN involved in genomic stability and cancer cell signaling.

Keywords: BRCA1, PTEN, genome stability, reactive oxygen species, DNA repair, cell signaling, carcinogenesis

INTRODUCTION
Germline mutations in the breast cancer susceptibility gene 1
(BRCA1) extensively increase the risk of breast and ovarian can-
cers (1, 2). BRCA1-related tumorigenesis may be mainly caused
by increased DNA damage and decreased genome stability that is
a major hallmark of cancer (3). To maintain genomic integrity,
cells are equipped with committed sensors to monitor DNA repair
and/or to impose damaged cells into apoptotic cell death (4).
Although functional roles of BRCA1 may include the regulation
of DNA damage repair, cell cycle progression, and maintenance
of genomic integrity, the precise function of the BRCA1 gene
as a tumor suppressor is still not clear. It has been shown that
BRCA1 deficiency activates the AKT oncogenic signaling pathway
(5). Also, activation of the phosphoinositide 3-kinase (PI3K) is
often associated with the BRCA1-related breast cancers in clini-
cal sample (6). The PI3K/AKT pathway might have an essential
role in the proliferation of malignant tumor cells related to the
BRCA1 functions (Figure 1). BRCA1 can downregulate AKT
activation via the direct physical interaction (5, 7). In addition,
AKT activation inversely correlates with the BRCA1 expression
in human breast cancers (8). Moreover, BRCA1 negatively reg-
ulates the PI3K/AKT pathway in breast cancer cells (9). Phos-
phatase and tensin homolog on chromosome 10 (PTEN) is a dual
protein/lipid phosphatase that inhibits the PI3K/AKT pathway,

Abbreviations: ATM, ataxia telangiectasia mutated; BRCA1, breast cancer suscep-
tibility gene 1; LOH, loss of heterozygosity; MDM2, murine double minute 2;
NLS, nuclear localization signal; PTEN, phosphatase and tensin homolog deleted
on chromosome 10; PIP3, phosphatidylinositol 3,4,5-triphosphate; PIP2, phos-
phatidylinositol 4,5-bisphosphate; PI3K, phosphoinositide-3 kinase; RING, really
interesting new gene finger domain; ROS, reactive oxygen species.

whose inhibition eventually reduces cell growth and cell prolif-
eration (10, 11). The PTEN is also a tumor suppressor molecule
and seems to protect from bad prognosis of several cancers. In
other words, absence of PTEN worsens prognosis in early stages
of cancer (12, 13). Furthermore, germ-line mutations of PTEN
are the cause of PTEN hamartoma tumor syndromes (Cowden
syndrome, Bannayan-Riley-Ruvalcaba syndrome, PTEN -related
Proteus syndrome, Proteus-like syndrome) with increased risk for
the development of cancers (14). The PTEN has been shown to
be involved in an intricate network of interactions with other
molecules (Figure 1). In this review, we summarize the current
research and our view of how PTEN and BRCA1 function with
their partners to transduce signals downstream and what are the
implications for cancer-associated biology.

CHARACTERISTICS OF BRCA1 AND GENOME INSTABILITY
Because BRCA1 may play an essential role in maintaining genome
stability, the mutation of BRCA1 is associated with increased
genomic instability in cells (15), which consequently accelerates
the mutation rate of other critical genes. Actually, studies have
established functional roles for BRCA1 in DNA damage signal-
ing, DNA repair processes, and cell cycle checkpoints (16, 17). In
addition, inherited BRCA1 germline mutation revealed a genetic
susceptibility leading to high risk of breast and ovarian can-
cers (18, 19). It has been identified that common variation in
BRCA1 gene is also associated with prostate cancer (20). Increased
prostate cancer risk and an aggressive clinical course have been
reported for BRCA1 mutation (21). Furthermore, several impor-
tant prostate cancer targets are modulated by BRCA1 (22). BRCA1
cDNA encodes for 1863 amino acids protein with two putative
nuclear localization signals and an amino terminal conserved
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FIGURE 1 | Schematic depiction of the integrative model of tumor
suppressors signaling including PTEN and BRCA1. Examples of
molecules known to act on DNA damage response, cell proliferation, and
cell cycle via the regulatory pathways are shown. Note that some critical
pathways have been omitted for clarity.

RING finger motif, which is the most common motif present
in E3 ubiquitin ligases. The RING finger domain interacts with
E2 ubiquitin ligases and exerts maximal E3 ligase activity (23).
Knock-in mice with deficient BRCA1 RING finger mutant dis-
play diverse genomic instability and tumor-forming phenotypes
(24). The carboxyl-terminal domain of BRCA1 is involved in
association with specific phosphorylated proteins. BRCA1 itself
becomes hyper-phosphorylated after exposure to the DNA dam-
aging agents, and the specific function of BRCA1 seems to be
regulated by the phosphorylation (25, 26). Exon 11 encodes a
largely unstructured region of the BRCA1 protein that is phospho-
rylated by the ATM and Chk2 kinases in a DNA damage-dependent
manner (27, 28). Principally, the main DNA damage recognition
molecule may be the ATM, which is a checkpoint kinase that phos-
phorylates a number of proteins including BRCA1 and p53 in
response to DNA damage (29). Inhibition of DNA repair path-
way seems to block the mechanisms that are also required for cell
survival in the presence of oncogenic mutations.

Several functions of BRCA1 including roles in the DNA repair
may contribute to its tumor suppressor activity. Although BRCA1
gene mutations are rare in sporadic breast and/or ovarian can-
cers, BRCA1 protein expression is often reduced in the sporadic
cancer specimens. The BRCA1 has the important role in concert
with Rad50 and Rad51, a DNA recombinase related to the bacterial
RecA protein, for the genome stability (30). Phosphorylation sta-
tus of BRCA1 in response to DNA damage controls the selectivity
of DNA repair events, and the function of BRCA1 seems to be reg-
ulated by this phosphorylation (30). It has been reported that Chk2
kinase and its downstream target BRCA1 have been functionally
linked to the DNA damage response pathway (31). In addition,
BRCA1 with the Chk2-mediated phosphorylation is also associ-
ated to the cellular spindle formation and chromosomal stability
(31). The DNA repair system strictly maintains genomic fidelity

through the recognition and repair of the damaged nucleotides.
Genetic defects in DNA damage response genes and/or downreg-
ulation of the DNA repair mechanism certainly promote genomic
instability, which can lead to carcinogenesis. Therefore, cells are
equipped with multiple DNA repair mechanisms to the preserva-
tion of genomic stability (32). Basically, the role of BRCA1 in cell
cycle control has been understood by its ability to interact with
various cyclins and various cyclin-dependent kinases (33, 34). The
BRCA1 activates the CDK inhibitor p21WAF1 and the p53 tumor
suppressor protein, which regulates several genes that control cell
cycle checkpoints (33, 34). Given the significant importance of the
BRCA1 network in all proliferating cells, insights into the under-
lying mechanisms of BRCA1 function on chromatin might extend
beyond hereditary cancers. Understanding such mechanisms of
genome maintenance leads to an improved therapies that target
DNA repair deficiency in a variety of malignancies. Hence, the
regulation of DNA repair levels may be an innovative therapeutic
modality in certain cancers. Either survival or apoptosis, which
is determined by the balance between DNA damage and DNA
repair levels, may raise the major problems in cancer therapy at
that time (35).

CHARACTERISTICS OF PTEN AND CANCER
Phosphatase and tensin homolog on chromosome 10 tumor sup-
pressor gene is frequently deleted and mutated in various human
cancers. Such many somatic PTEN mutations and loss of heterozy-
gosity in cancer at the PTEN locus implicate a key role for PTEN
in the etiology of various cancers (36, 37). Human genomic PTEN
gene locus on chromosome 10q23.3 contains 9 exons encoding
a 5.5 kb mRNA that has a 403 amino-acid open reading frame
(38, 39). The PTEN gene is ubiquitously expressed throughout
early embryogenesis in almost mammals (40). The PTEN enzyme
prefers acidic phospholipid substrates such as PIP3 that is the
principal second messenger of the PI3K pathway. The PI3K medi-
ates receptor tyrosine kinase signaling to the survival kinase AKT
(Figure 1). PTEN depressingly regulates the activity of PI3K/AKT
signaling over converting phosphatidylinositol 3,4,5-triphosphate
(PIP3) into phosphatidylinositol 4,5-bisphosphate (PIP2). PTEN
might act as a regulator of keeping basal levels of PIP3 below a
threshold for the signaling pathway activation. The PTEN inacti-
vation is often involved in the carcinogenesis of some cancers (38),
which causes an increase in cellular PIP3 levels. Subsequently, acti-
vated PI3K/AKT signaling causes increased expression of several
genes for cell growth, cell survival, and cell migration, which are
all critical for tumor development (39, 40). Remarkably, some of
rosemary extracts may inhibit PTEN expression in K562 culture
cells (41). PTEN can be controlled by posttranslational regulation
including phosphorylation, acetylation, methylation, oxidation,
and so on (42, 43). Because PTEN may be regulated by ubiquitin-
mediated proteasomal degradation, a common mechanism to
control protein levels, insecurity of PTEN correlated with some
of its mutations has been shown to comprise protein interactions
(44). Casein kinase 2 mediated phosphorylation stabilizes PTEN
protein in an inactive state by inhibiting its proteasomal degrada-
tion (45, 46). Therefore, inhibition of the PTEN phosphorylation
by the Casein kinase 2 results in enhanced PTEN activity and a
subsequent suppression in AKT function (45, 46). Overexpression
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of PTEN induces growth inhibition by supporting cell cycle arrest,
which needs lipid phosphatase activity of PTEN (47, 48). Overex-
pression of PTEN also correlates with decreased levels and nuclear
localization of cyclin D1 (49,50),a key cell cycle molecule regulated
by AKT kinase. One of the mechanisms by which PTEN induces
cell cycle arrest is by regulating AKT function so that levels of the
cell cycle inhibitor p27KIP1 is increased (51, 52). Despite the cen-
tral role of PTEN as a negative regulator of the PI3K pathway has
been revealed, studies have reported that tumor suppressive activ-
ities of PTEN are exerted from within the nucleus, where catalysis
of PIP3 does not seem to be present at least a dominant func-
tion of the enzyme (53, 54). Nuclear localization of PTEN seems
to mediate tumor suppressive activities independent of the AKT
pathway through inhibiting anchorage-independent growth (53,
54). The PTEN activities in nucleus may contain the regulation of
gene expression and genomic stability (53, 54).

Several growth factor-activated AKT signaling pathway pro-
motes progression of cell cycles by acting on downstream factors
involved in controlling the G1/S and/or G2/M transitions (55).
Studies have also implicated AKT kinase in modifying the status
of genome stability and response for DNA damages (55). In addi-
tion, PTEN plays a critical role in damaged DNA repair through its
interaction with ATM-p53 pathways in an AKT-independent man-
ner (56). The upregulation of PTEN represses AKT and MDM2
activity, which enhances the level of p53, thereby inducing G2/M
arrest and apoptosis (57, 58). In addition, it has been suggested that
nuclear PTEN plays a distinctive role to protect cells upon oxidative
damage (59). One mechanism by which reactive oxygen species
(ROS) are thought to employ its effects may be through the regula-
tion of target molecules including several kinases, PI3K, AKT, and
PTEN (60). Actually, the catalytic activity of PTEN can be modu-
lated by the ROS, and cellular PTEN activity is also repressed by the
oxidative stress (60, 61). In addition, endogenous oxidant produc-
tion in macrophages inactivates a fraction of the cellular PTEN (62,
63). It has been reported that ROS levels are increased in the reti-
nal pigment epithelium cells in association with phosphorylation
and inactivation of PTEN (64, 65). Phosphorylated inactivation
of the PTEN and the consequent AKT activation in cells are with-
drawn by antioxidant treatment. ROS mediates PTEN inactivation
but ROS does not affect the PTEN expression. Hence, the uncon-
trolled generation of ROS might contribute to cell proliferation
and tumor growth by inhibiting the PTEN function.

FUNCTIONAL INTERPLAY BETWEEN BRCA1 AND PTEN IN
BREAST CANCER
Several PI3K inhibitors favorably reduce proliferation of BRCA1-
defective breast cancer cells. BEZ235 inhibits not only PI3K/mTOR
but also ATM/ATR and some of DNA-dependent protein kinases
with similar effectiveness in vitro (66, 67). It is possible that ATM
pathways are involved in upregulation of the PI3K/AKT pathway
in BRCA1-defective cancer cells. Perifosine, a PI3K/AKT inhibitor,
prevents translocation of AKT from the cytoplasm to the plasma
membrane by targeting the pleckstrin homology (PH) domain,
thereby preventing phosphorylation of AKT by upstream kinases
(68). Perifosine prevents proliferation of breast cancer cell lines
in a BRCA1-dependent manner (9). Remarkably, combination
of PI3K pathway inhibitors with chemotherapeutic drugs such

as doxorubicin, cisplatin, or topotecan results in enhancing can-
cer cell killing properties in BRCA1-defective breast cancer cells
(69, 70), suggesting that the PI3K/AKT pathway may be acti-
vated in BRCA1-defective breast cancer cells. Hence targeting
this PI3K/AKT pathway in combination with chemotherapeu-
tic agents is a plausible strategy for treatment of certain cancer
cells. Importantly, it has been shown that depletion of AKT sig-
nificantly reduces tumor formation induced by Brca1 deficiency
in the KO mice (8). On the other hand, AKT activation pro-
motes the expression of BRCA1. In addition, phosphorylation of
BRCA1 by AKT increases total BRCA1 protein expression by pre-
venting proteasomal degradation (7). However, it has also been
reported that AKT phosphorylation has an inverse correlation
with BRCA1 expression in human breast cancers (71, 72). Phos-
phorylation site in BRCA1 by AKT is at S694 of BRCA1 (7). AKT
activation also appears to support nuclear localization of BRCA1,
and co-expression of activated AKT with intact BRCA1 decreases
radiation sensitivity (7), suggesting this interaction has functional
consequences for BRCA1 function in DNA repair.

In contrast, BRCA1 may regulate the PI3K/AKT pathway by
acting on upstream kinases of AKT. For example, overexpression
of wild-type BRCA1 could further reduce basal phosphorylation
(S473/T308) of AKT levels in MCF7 cells. Transient expression
of wild-type BRCA1 also abolished the phosphorylation of AKT
(S473/T308) in PTEN negative cells (9, 73). Negative mutations
and/or decreased expression of the BRCA1 gene may thus acti-
vate the PI3K/AKT cancer proliferation pathway (5). In addition,
BRCA1 may directly downregulate the AKT protein either by
ubiquitin-mediated proteasomal degradation or by activating a
protein serine/threonine phosphatase PP2A in breast cancer cells
(5). BRCA1 mutant cells accumulate nuclear phosphor-AKT and
subsequently inactivate the transcriptional activity of FOXO3a,
a central nuclear target of the phosphor-AKT (74, 75). Signifi-
cantly, some of breast cancers with BRCA1 mutations have high
frequencies of PTEN mutations (76), and the resulting PI3K/AKT
activation induces the growth of those cancers (77). PTEN loss is
highly associated with BRCA1 breast cancers, which could result
from genome instability involving homozygous deletions, DNA
double-strand breaks and so on (76). Interestingly, PTEN loss
is not observed in estrogen hormone receptor-positive BRCA1-
associated tumors (76). Loss of PTEN expression might be a start-
ing event in a variety of BRCA1-associated cancers (78). Nuclear
PTEN might affect a variety of biological functions and plays a role
in DNA repair, cell cycle arrest, and genome stability with BRCA1.
In that case, PTEN acts on chromatin and regulates expression
of Rad51, which reduces the incidence of spontaneous double-
strand breaks (79, 80). Several reports have indicated that reduced
levels of PTEN are associated with radioresistance, which can be
suppressed by the ectopic PTEN expression (81, 82).

PERSPECTIVE
Genome stability might be sustained on several tumor sup-
pressors (Figure 2). Loss of PTEN increases cell survival and
reduces DNA repair, which may lead to genomic instability
and may enhance radiosensitivity. In case of cancer cells that
compromise therapeutic success, targeting inhibition of PTEN-
related PI3K/AKT/mTOR pathway has been shown to prevent
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FIGURE 2 | Schematic illustration implying that genome stability is
sustained on several tumor suppressors. Note that some critical other
functions have been omitted for clarity.

tumorigenesis and progression. Indeed, for example, rapamycin,
an mTOR-specific inhibitor, prevents leukemia development in
PTEN-null mouse models (83, 84). However, the effectiveness of
rapamycin may require PTEN deletion or genetic loss of PTEN
function. The presence of wild-type PTEN may compromise the
efficacy of rapamycin (85). In addition, studies show that mTOR
inhibition decreases PTEN transcription and subsequently acti-
vates AKT (85). Further detailed mechanistic understanding of
the roles of PTEN in DNA repair and DNA damage response in
different tissues and cell types will help us fully understand the pre-
cise molecular mechanisms by which PTEN maintains genomic
stability and contributes to tumor suppression and therapeutic
efficacy. PTEN and BRCA1 may be regulated and interact each
other at multiple levels including transcription, protein modula-
tion, and protein stability. Understanding the connection between
tumor suppressor BRCA1 and PTEN would facilitate the devel-
opment of effective agents and strategies to better treatment
against cancer. The PTEN inhibitor has been shown to effec-
tively activate primordial follicles both in neonatal mouse ovaries
and in human ovarian cortical tissues (86, 87). It is important
to investigate the functional linkage between PTEN and BRCA1
in those ovarian samples, and elucidation of interaction-specific
functions may provide insight into regulatory aspects of these
tumor suppressors as well as opportunities for therapeutic inter-
vention. Indeed, the regulation is crucial for the effective design
of novel ovarian cancer therapeutics. Further mechanistic studies
are needed in order to understand the precise molecular mech-
anisms for the effective treatment of cancers with PTEN/BRCA1
signal alterations. Targets within this pathway could provide strate-
gies for modulation of PTEN/BRCA1 proteins, which may prove
therapeutically beneficial for breast, ovarian, and prostate cancer
treatment.
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