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Background: Lymph node metastasis (LNM) is the most common route of metastasis for lung cancer, and 
it is an independent risk factor for long-term survival and recurrence in patients with non-small cell lung 
cancer (NSCLC). The purpose of this study was to explore the value of preoperative computed tomography 
(CT) semantic features in the differential diagnosis of LNM in part-solid nodules (PSNs) of NSCLC.
Methods: A total of 955 patients with NSCLC confirmed by postoperative pathology were retrospectively 
enrolled from January 2019 to March 2023. The clinical, pathological data and preoperative CT images 
of these patients were investigated and statistically analyzed in order to identify the risk factors for LNM. 
Multivariate logistic regression was used to select independent risk factors and establish different prediction 
models. Ten-fold cross-validation was used for model training and validation. The area under the curve (AUC) 
of the receiver operating characteristic (ROC) curve was calculated, and the Delong test was used to compare 
the predictive performance between the models.
Results: LNM occurred in 68 of 955 patients. After univariate analysis and adjustment for confounding 
factors, smoking history, pulmonary disease, solid component proportion, pleural contact type, and mean 
diameter were identified as the independent risk factors for LNM. The image predictors model established 
by the four independent factors of CT semantic features, except smoking history, showed a good diagnostic 
efficacy for LNM. The AUC in the validation group was 0.857, and the sensitivity, specificity, and accuracy 
of the model were all 77.6%.
Conclusions: Preoperative CT semantic features have good diagnostic value for the LNM of NSCLC. 
The image predictors model based on pulmonary disease, solid component proportion, pleural contact type, 
and mean diameter demonstrated excellent diagnostic efficacy and can provide non-invasive evaluation in 
clinical practice.
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Introduction

Lung cancer remains the malignant tumor type with the 
highest morbidity and mortality in the world, of which 
non-small cell lung cancer (NSCLC) accounts for about 
85% of all afflicted patients (1-4). Lymph node metastasis 
(LNM) is a common route of metastasis in lung cancer, and 
it is an independent risk factor for long-term survival and 
recurrence of patients with NSCLC: the 5-year survival rate 
is 49% for N1 disease, 36% for N2 disease, and 20% for 
N3 disease (5-7). Preoperative prediction of LNM directly 
informs the method of intraoperative lymph node dissection 
that is selected. These methods include systematic lymph 
node dissection, specific lymph node dissection, systematic 
lymph node sampling, and lymph node sampling, among 
others (8,9). The appropriate selection of method according 
to accurate the tumor node metastasis (TNM) staging of 
lymph node dissection can maximize the removal of tumor 
cells and avoid excessive dissection.

Computed tomography (CT), as a noninvasive and 
repeatable imaging examination method, is the most widely 
applied and commonly used lymph node assessment tool in 
clinical practice. With the popularization of low-dose CT 
screening technology, early lung cancer is being discovered 
in patients with increasing frequency, allowing for timely 
treatment by surgery (10,11). Pulmonary nodules are 
classified as solid, pure ground-glass, and part-solid nodules 
(PSNs) based on CT phenotyping (12). PSNs are defined as 
nodules containing both ground-glass opacity (GGO) and 
a solid portion (13). The Fleischner Society indicated in its 
2017 report that from a therapeutic point of view, pure and 
part-solid ground-glass nodules should be considered as a 
category separate from purely solid lesions (14). 

Pathological examination is the gold standard for the 
diagnosis of LNM in NSCLC, but its reproducibility is 
quite different, and invasive operation may induce adverse 
effects, such as tumor cell spread, bleeding, infection, etc. 
(15-17). The metastasis rate of lymph nodes in PSNs has 
been known to be low, which makes the intraoperative 
evaluation of lymph nodes a controversial issue (18). 
Therefore, a noninvasive method to accurately determine 

the status of lymph nodes before operation is necessary and 
urgently needed. Therefore, the purpose of this study was 
to identify the risk factors of LNM among the preoperative 
CT semantic features of patients with NSCLC manifesting 
as PSNs and to establish a predictive model with application 
value. We present this article in accordance with the 
STARD reporting checklist (available at https://qims.
amegroups.com/article/view/10.21037/qims-23-1631/rc).

Methods

Patients

This retrospective study was conducted in accordance with 
the Declaration of Helsinki (as revised in 2013) and was 
approved by the respective ethics committees of Tongde 
Hospital of Zhejiang Province (approval No. 2022-029-JY), 
Taizhou Municipal Hospital (approval No. LWYJ2023059), 
and The First Affiliated Hospital of Bengbu Medical 
University (approval No. 2021-292). The requirement for 
individual informed consent for this retrospective analysis 
was waived. 

On the premise that the diagnosis and treatment 
practices are generally consistent across centers, we used 
the hospital electronic medical record systems from three 
centers (Tongde Hospital of Zhejiang Province, Taizhou 
Municipal Hospital and The First Affiliated Hospital of 
Bengbu Medical University) and retrieved the files of all 
consecutive patients with a pathologic diagnosis of primary 
NSCLC surgically resected from January 2019 to March 
2023. A total of 955 patients were enrolled according to 
the following inclusion criteria: (I) radical surgery and 
lymph node dissection were performed, and NSCLC 
was confirmed via postoperative pathology; (II) patients 
underwent unenhanced chest CT scan within 2 weeks 
before operation; (III) CT images were satisfactory for 
analysis; and (IV) the lesion appeared as a PSN. Meanwhile, 
the exclusion criteria were as follows: (I) patients received 
radiotherapy or chemotherapy before surgery, (II) the 
CT scan thickness was more than 2 mm, (III) clinical and 
pathological data could not be found or were incomplete, 
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and (IV) patients had a history of malignant tumor. 
According to the presence or absence of LNM, the patients 
were divided into an LNM group and non-LNM (N-LNM) 
group (Figure 1). Clinical information including age, gender, 
smoking history, surgery history, and clinical basic disease 
was obtained through a search of the medical records.

CT image acquisition

Nonenhanced chest CT scans were performed with seven 
CT scanners (SOMATOM Definition Flash, FORCE CT, 
Sensation 16, Definition AS 40, Siemens Healthineers, 
Erlangen, Germany; Revolution, Optima 680, LightSpeed 
VCT XT, GE Healthcare, Chicago, IL, USA), and 
all images were reconstructed with a slice thickness of  
0.625–2 mm. All patients were scanned in the supine position, 
held their arms up and head advanced, performed breath-
holding at the end of a deep inhalation, and were scanned 
from the level of the thoracic entrance to that of the adrenal 
gland. The scanning parameters are as follows: tube voltage; 
120 kV; automatic tube current modulation technology; 
collimation, 0.625 mm; pitch, 0.98; helical scanning speed, 
0.6–0.8 s/r; image matrix, 512×512; and field of view (FOV) 
under 400 mm × 400 mm. The width of the lung window was 

1,500 Hounsfield units (HU), the window level was −400 HU,  
the width of the mediastinal window was 400 HU, and the 
window level was 40 HU. After scanning, the data were 
transmitted to the workstation of the picture archiving and 
communication system (PACS) system.

Imaging evaluation

Blinded to the clinicopathologic data, two senior thoracic 
imaging diagnostic physicians independently interpreted 
the following CT features: the location, shape, and 
solid component proportion of the nodules; lobulation; 
spiculation; air cavity; pulmonary disease; air bronchogram 
type; and pleural contact type. Lobulation involves the 
irregular undulation of the nodule margin (19). Spiculation 
is defined as linear strands extending from the nodule 
surface into the lung parenchyma without reaching a pleural 
surface (20) that is caused by the contraction and traction 
of the surrounding interlobular septum when the tumor 
cells invade and extend outward. In this study, according 
to the shape and size of the air cavity appearing inside 
the nodule, the air cavity was classified into three types: 
vacuole, cavity, and cavum. A bubble small than 5 mm was 
considered to be a vacuole, while a thin-walled air cavity 

Patients with pathologically confirmed non-small cell lung 

cancer and CT showing as solitary pulmonary nodule 

from January 2019 to March 2023 (n=2,893)

Radical resection of lung cancer and lymph node 

dissection were performed (n=2,355)

Excluded:

• Chest CT images more than 2 weeks before 

operation (n=63)

• The images could not be evaluated due to poor 

image quality (n=70)

• Previous history of radiotherapy or chemotherapy 

(n=90)

• CT scan thickness >2 mm (n=188)

• Had a history of malignant tumor (n=102)

• Pure ground glass and solid nodules (n=648)

• Incomplete clinical and pathological data (n=239)

LNM group (n=68) and non-LNM group (n=887)

Figure 1 Flowchart of patient selection. CT, computed tomography; LNM, lymph node metastasis.
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with a diameter ≥5 mm was considered to be a cavity. The 
cavum was the thick-walled air cavity. Pulmonary disease 
included emphysema, bullae, and ventilation-perfusion 
imbalance. Air bronchogram types were classified into 
bronchial nondeformation, bronchial deformation, and 
adjacent bronchiectasis. Pleural contact types included 
direct contact and pleural traction by tags with indentation 
or not. A pleural tag was defined as a line or lines extending 
from a nodule to the pleural surface due to thickening of 
the interlobular septum (21). Mean diameter was measured 
with the average of the long and short diameters. To avoid 
areas of blood vessels, calcification, or cystic degeneration, 
we delineated the region of interest (ROI) on the highest 
visible attenuation of lesions and measured the mean of CT 
attenuation as the CTmean value. All measurements of lesions 
in this study were performed in the axial plane, and any 
disagreement in describing semantic features was resolved 
by a consensus read (Figure 2).

Training and validation of the prediction model

The included patients were divided into a training group 
and validation group via random10-fold cross-validation. 
The data of the in the LNM group and N-LNM group 
were then analyzed and compared to ascertain if there 
were any significant differences. Combined Model 1 was 

developed based on factors that were significantly different 
in the results of univariate analysis. Combined Model 2 
included all the independent risk factors from multivariate 
analysis, and the imaging predictors among the independent 
factors were separately fused into another model, the image 
predictor model. Each independent imaging factor was also 
used in an individual model, which was then compared to 
the three combined models.

Statistical analysis

All statistical analyses were performed using the SPSS 
version 25.0.0 software (64-bit; IBM Corp., Armonk, NY, 
USA) and R software version 4.2.2 (The R Foundation for 
Statistical Computing; https://www.r-project.org). The 
normality of data was determined using the Kolmogorov-
Smirnov test. In the univariate difference analysis, the 
quantitative data conforming to a normal distribution 
are expressed as the mean ± standard deviation and were 
compared using the independent samples t-test; the 
quantitative data not conforming to a normal distribution 
are expressed as the median with interquartile range and 
were compared using the Mann-Whitney test; the Chi-
square test and Fisher exact probability test were used to 
compare the differences of the qualitative data. Multivariate 
logistic regression was used to adjust the variables with 

A B

Figure 2 Cases of image evaluation. (A) Image from a 58-year-old male patient with lung adenocarcinoma, with the pathological results 
indicating no lymph node metastasis. The axial CT scans show an irregular part-solid nodule (long diameter of 19 mm, short diameter 
of 15 mm) located in the left upper lung. The nodule has superficial lobulation and spiculation at the margin and is pulling the pleura 
without indentation. A total of 20 negative lymph nodes were detected during the operation, including 2 at stations 2–4, 4 at stations 5–6, 
1 at stations 7–9, and 13 at stations 10–14. (B) Image from a 67-year-old male patient with lung adenocarcinoma, with pathological results 
indicating lymph node metastasis. The axial CT scans show an irregular part-solid nodule (long diameter of 42 mm, short diameter of  
34 mm) located in the left upper lung directly in contact with the interlobar fissure pleura; the patient also had emphysema. A total of 30 
lymph nodes were detected during the operation (7 at stations 2–4, 5 at stations 7–9, and 18 at stations 10–14), among which 1 cancerous 
lymph node was located at stations 2–4. CT, computed tomography.

https://www.r-project.org
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differences in the univariate difference analysis to eliminate 
confounding factors, the independent risk factors were 
then screened out, and different prediction models were 
established. Ten-fold cross-validation was used for model 
training and validation. The efficacy of each model was 
evaluated using receiver operating characteristic (ROC) 
curves, and the area under the curve (AUC) was also 
calculated. The Delong test was used to compare the 
differences between the models. A P value of less than 0.05 
was considered to indicate statistical significance.

Results

Clinical characteristics of patients in the training group

Among the 799 cases patients in the training group, 58 (7.3%) 

had pathological LNM (mean age 60.9±9.4 years; age range 
41–91 years; 34 females and 24 males), including 56 cases 
of adenocarcinoma and 2 cases of squamous carcinoma; 
the remaining 741 cases (92.7%) had N-LNM (mean age 
60.7±9.7 years; age range 18–86 years; 476 females and 
265 males), including 738 cases of adenocarcinoma and  
3 cases of adenosquamous carcinoma. A total of 9,702 
lymph nodes were detected in postoperative samples from 
the 799 patients, including 9,478 (97.7%) negative lymph 
nodes and 224 (2.3%) cancerous lymph nodes (Figure 3).

In the univariate difference analysis, there was a 
significant difference in the distribution of smoking status 
between the two groups (P=0.021), and it was found to 
be an independent risk factor for LNM after multivariate 
logistic regression (P=0.049). There was no significant 

Figure 3 Lymph nodal status of patients in training group. (A) Schematic representation of pulmonary lymph nodes. (B) Distribution of 
detected lymph nodes in patients with and without lymph node metastasis. (C) The number of lymph nodes at each station. LN, lymph node.
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difference in the distribution of gender, age, surgical history, 
or clinical basic disease between the LNM group and 
N-LNM group (P>0.05). The analytical results of clinical 
data for all patients are summarized in Table 1.

CT semantic features of patients

In the univariate analysis of CT semantic features, there 
were differences pulmonary disease, solid component 
proportion, spiculation, air cavity, air bronchogram 
type, pleural contact type, mean diameter, and CTmean 
value between the LNM group and N-LNM group 
(P<0.05); however, there were no differences in location, 
shape, or lobulation between the two groups (P>0.05). 
After adjustment for confounding factors were made 
via multivariate logistic regression, pulmonary disease 
(P=0.011), solid component proportion (P<0.001), pleural 

contact type (P=0.026), and mean diameter (P<0.001) were 
found to be independent predictors of LNM (Table 2).

Development and comparison of the prediction models

Combined model 1 was established based on the 9 risk 
factors that were statistically different in the univariate 
analysis, while combined model 2 included all independent 
risk factors.  Pulmonary disease,  solid component 
proportion, pleural contact type, and mean diameter 
were incorporated as CT semantic features among the 
independent predictors into the third combined model, 
named the image predictor model.  Regarding the 
performance of the three combined models and individual 
models (Table 3), in the training group, the combined model 
1 yielded an AUC of 0.880 [95% confidence interval (CI): 
0.777–0.891], with a sensitivity of 81.2%, a specificity of 

Table 1 Baseline clinical characteristics of patients 

Variable

Univariate Multivariate

Training group Validation group
P value P value

N-LNM LNM P value N-LNM LNM P value

Total cases 741 (92.7) 58 (7.3) 146 (93.6) 10 (6.4)

Gender 0.391 0.458 >0.99 NA

Female 476 (64.2) 34 (58.6) 92 (63.0) 8 (80.0)

Male 265 (35.8) 24 (41.4) 54 (37.0) 2 (20.0)

Age (years)* 60.7±9.7 60.9±9.4 0.878 61.1±10.7 60.9±9.2 0.964 0.741 NA

Smoker 0.021 >0.99 0.61 0.049

No 662 (89.3) 46 (79.3) 127 (87.0) 9 (90.0)

Yes 79 (10.7) 12 (20.7) 19 (13.0) 1 (10.0)

Surgery history 0.109 0.348 <0.001 NA

No 542 (73.1) 48 (82.8) 74 (50.7) 3 (30.0)

Yes 199 (26.9) 10 (17.2) 72 (49.3) 7 (70.0)

Clinical basic disease 0.913 0.084 <0.001 NA

No 454 (61.3) 36 (62.1) 79 (54.1) 4 (40.0)

HTN/HLD/DM 138 (18.6) 10 (17.2) 30 (20.5) 3 (30.0)

Other1 77 (10.4) 5 (8.6) 13 (8.9) 3 (30.0)

Mixed2 72 (9.7) 7 (12.1) 24 (16.4) 0 (0.0)

*, data are the mean ± standard deviation, and the statistical values are the results of the independent samples t-test. Unless otherwise 
indicated, the data are qualitative variables, the number of patients are outside the parentheses, the percentages are inside the 
parentheses, and the statistical values are results of the Chi-square test. 1, other clinical basis diseases except HTN, HLD, and DM; 2, two 
or more of HTN, HLD, or DM and other clinical basic diseases. N-LNM, non-lymph node metastasis; LNM, lymph node metastasis; NA, 
not applicable; HTN, hypertension; HLD, hyperlipidemia; DM, diabetes. 
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Table 2 CT semantic features of patients 

Variable

Univariate Multivariate

Training group Validation group
P value P value

N-LNM LNM P value N-LNM LNM P value

Total cases 741 (92.7) 58 (7.3) 146 (93.6) 10 (6.4)

Pulmonary disease <0.001** 0.311** <0.001** 0.011

No 544 (73.4) 46 (79.3) 110 (75.3) 6 (60.0)

Emphysema/bullae 57 (7.7) 9 (15.5) 18 (12.3) 2 (20.0)

VPI 118 (15.9) 0 (0.0) 12 (8.2) 1 (10.0)

Mixed 22 (3.0) 3 (5.2) 6 (4.1) 1 (10.0)

Solid component proportion <0.001 <0.001** 0.063 <0.001

≤25% 442 (59.6) 6 (10.3) 72 (49.3) 0 (0.0)

≤50% 109 (14.7) 6 (10.3) 22 (15.1) 1 (10.0)

≤75% 95 (12.8) 14 (24.1) 23 (15.8) 1 (10.0)

<100% 95 (12.8) 32 (55.2) 29 (19.9) 8 (80.0)

Location 0.260 0.846** 0.044 NA

Right upper lobe 233 (31.4) 20 (34.5) 59 (40.4) 6 (60.0)

Right middle lobe 64 (8.6) 4 (6.9) 13 (8.9) 0 (0.0)

Right lower lobe 156 (21.1) 6 (10.3) 27 (18.5) 1 (10.0)

Left upper lobe 196 (26.5) 21 (36.2) 25 (17.1) 2 (20.0)

Left lower lobe 92 (12.4) 7 (12.1) 22 (15.1) 1 (10.0)

Shape >0.99** >0.99** 0.231 NA

Round 8 (1.1) 0 (0.0) 1 (0.7) 0 (0.0)

Oval 34 (4.6) 2 (3.4) 12 (8.2) 0 (0.0)

Irregular 699 (94.3) 56 (96.6) 133 (91.1) 10 (100.0)

Lobulation 0.935 0.018 <0.001 NA

No 118 (15.9) 9 (15.5) 79 (54.1) 1 (10.0)

Yes 623 (84.1) 49 (84.5) 67 (45.9) 9 (90.0)

Spiculation <0.001 0.241 <0.001 0.133

No 397 (53.6) 16 (27.6) 118 (80.8) 6 (60.0)

Yes 344 (46.4) 42 (72.4) 28 (19.2) 4 (40.0)

Air cavity 0.002** 0.071** 0.278** 0.504

No 573 (77.3) 38 (65.5) 107 (73.3) 5 (50.0)

Vacuole 104 (14.0) 13 (22.4) 27 (18.5) 5 (50.0)

Cavity 62 (8.4) 4 (6.9) 12 (8.2) 0 (0.0)

Cavum 2 (0.3) 3 (5.2) 0 (0.0) 0 (0.0)

Table 2 (continued)
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Table 2 (continued)

Variable

Univariate Multivariate

Training group Validation group
P value P value

N-LNM LNM P value N-LNM LNM P value

Air bronchogram type 0.014** 0.162** <0.001 0.312

No 546 (73.7) 37 (63.8) 102 (69.9) 6 (60.0)

Without BD 27 (3.6) 8 (13.8) 20 (13.7) 0 (0.0)

With BD 128 (17.3) 10 (17.2) 23 (15.8) 4 (40.0)

Adjacent bronchiectasis 40 (5.4) 3 (5.2) 1 (0.7) 0 (0.0)

Pleural contact type <0.001 0.058** <0.001 0.026

No contact 172 (23.2) 6 (10.3) 35 (24.0) 0 (0.0)

Direct contact 341 (46.0) 17 (29.3) 38 (26.0) 4 (40.0)

Pleural traction without 
indentation

130 (17.5) 5 (8.6) 32 (21.9) 1 (10.0)

Pleural traction with 
indentation

32 (4.3) 14 (24.1) 14 (9.6) 0 (0.0)

Direct contact and traction 66 (8.9) 16 (27.6) 27 (18.5) 5 (50.0)

Mean diameter*** 16.0 (12.0, 20.5) 23.2 (16.2, 30.6) <0.001 15.0 (11.0, 22.1) 31.7 (22.4, 37.6) <0.001 0.475 <0.001

CTmean value 19.3±98.3 50.6±26.1 <0.001* 34.6 (17.4, 60.6) 32.1 (21.5, 44.6) 0.764*** 0.003* 0.522

*, data are the mean ± standard deviation, and the statistical values are the results of the independent samples t-test; **, the statistical 
values are the results of the Fisher exact probability test; ***, data do not conform to normal distribution, the median are outside 
parentheses, the lower quartile and the upper quartile are in parentheses, and the statistical values are the results of the Mann-Whitney 
test. Unless otherwise indicated, the data are qualitative variables, the number of patients are outside the parentheses, the percentages 
are inside the parentheses, and the statistical values are the results of the Chi-square test. CT, computed tomography; N-LNM, non-lymph 
node metastasis; LNM, lymph node metastasis; VPI, ventilation-perfusion imbalance; BD, bronchial deformation; CTmean, mean of CT 
attenuation.

78.5%, and an accuracy of 78.7%; combined model 2 had 
an AUC of 0.876 (95% CI: 0.796–0.892), with a sensitivity 
of 77.0%, a specificity of 77.6%, and an accuracy of 77.5%; 
the image predictor model yielded an AUC of 0.868 (95% 
CI: 0.807–0.889), with a sensitivity of 80.4%, a specificity 
of 78.4%, and an accuracy of 78.6%. Solid component 
proportion was the single-feature model with the best ROC 
among the four individual models, with an AUC of 0.815 
(95% CI: 0.734–0.844), and a sensitivity, specificity, and 
accuracy of 80.9%, 72.7%, and 73.3%, respectively; in the 
validation group, combined model 1 yielded an AUC of 
0.853 (95% CI: 0.777–0.891), and a sensitivity, specificity, 
and accuracy of 72.9%, 77.8%, and 77.5%, respectively; 
combined model 2 had an AUC of 0.861 (95% CI: 0.796–
0.893), with a sensitivity of 76.0% and a specificity and 
accuracy of 77.2%; the image predictor model yielded an 

AUC of 0.857 (95% CI: 0.807–0.888), and the sensitivity, 
specificity, and accuracy were all 77.6%. The results of the 
Delong test showed that there was no significant difference 
in diagnostic efficacy between the three combined models 
(all P values >0.05), but the solid component proportion had 
a significantly different performance to those of the three 
combined models (all P values <0.01). The ROC curves of 
the seven models in the training and validation groups are 
displayed in Figure 4.

Discussion

In this retrospective study, we analyzed the risk factors of 
LNM in 955 patients with NSCLC from multiple centers 
whose disease manifest as PSNs on CT findings. Of all the 
lymph nodes detected [9,702] in the training group, only 
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Table 3 Comparison of the diagnostic efficacy of the models

Model type Threshold AUC (95% CI) Sensitivity (%) Specificity (%) Accuracy (%) P value

Training group

Combined model 1 0.532 0.880 (0.777–0.891) 81.2 78.5 78.7 NA

Combined model 2 0.462 0.876 (0.796–0.892) 77.0 77.6 77.5 NA

Image predictor model 0.462 0.868 (0.807–0.889) 80.4 78.4 78.6 NA

Pulmonary disease 0.480 0.521 (0.423–0.557) 76.5 26.3 29.8 NA

Solid component proportion 0.607 0.815 (0.734–0.844) 80.9 72.7 73.3 NA

Pleural contact type 0.653 0.687 (0.654–0.714) 60.3 66.0 65.6 NA

Mean diameter 0.531 0.736 (0.725–0.737) 61.1 78.4 73.8 NA

Validation group

Combined model 1 0.563 0.853 (0.777–0.891) 72.9 77.8 77.5 0.2334*

Combined model 2 0.554 0.861 (0.796–0.893) 76.0 77.2 77.2 0.5177**

Image predictor model 0.575 0.857 (0.807–0.888) 77.6 77.6 77.6 0.7995***

Pulmonary disease 0.799 0.521 (0.423–0.557) 76.4 26.3 29.8 0.0026#

Solid component proportion 0.504 0.814 (0.788–0.835) 81.0 72.7 73.3 0.0006#

Pleural contact type 0.622 0.713 (0.674–0.753) 59.3 66.0 65.7 0.0032#

Mean diameter 0.577 0.736 (0.721–0.747) 63.3 74.1 73.3 NA

*, data are the results of Delong test between combined model 1 and combined model 2; **, data are the results of Delong test between 
combined model 2 and image predictor model; ***, data are the results of Delong test between image predictors model and combined 
model 1; #, data are the results of Delong test of solid component proportion and combined model 1, combined model 2, and image 
predictor model. Combined model 1 was established using 9 factors that were statistically different in the univariate analysis; combined 
model 2 included all independent risk factors from multivariate analysis; image predictor model involved all independent imaging 
predictors (pulmonary disease, solid component proportion, pleural contact, and mean diameter). AUC, area under the curve; CI, 
confidence interval; NA, not applicable.
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Figure 4 Graph of the area under the receiver operating characteristic curve of different models in the training and validation groups.
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224 (2.3%) were cancerous, indicating a low incidence of 
LNM in part-solid NSCLC. According to the distribution 
of the examined lymph nodes in each station, we found 
that LNM occurred at stations 2–4 (superior mediastinal) 
with the highest probability, followed by the lung 
parenchyma, and no LNM occurred in the supraclavicular 
region in station 1; for N-LNM, the lymph nodes were 
mainly located in the N1 region, followed by the superior 
mediastinal region, and few lymph nodes were detected in 
the supraclavicular region and aortic region.

Regarding CT semantic features, the solid component 
proportion was an independent risk factor for LNM. The 
ratio of solid component of nodule to tumor in the LNM 
group was usually higher than 60% (32/53); therefore, 
the solid component of nodule was an adverse factor for 
LNM, which also been confirmed in other studies (22,23). 
Moreover, the CTmean in the LNM group (50.6±26.1) 
was significantly higher than that in the N-LNM group 
(19.3±98.3), and this may be related to the solid component 
proportion of nodules; there was a positive correlation 
between the solid component and CT attenuation 
value, and most nodules in the LNM group had a larger 
proportion of solid component. Perhaps, this was one of 
reasons why the mean value of CT lost its significance in 
multivariate logistic regression. Regarding pleural contact 
type, a study of 478 patients peripheral solid NSCLC with 
a largest short diameter >5 mm found that type II pleural 
involvement (a linear or cord-like pleural tag or tumor 
abutting to the pleura with a broad base observed on both 
lung and mediastinal window images) was an independent 
predictor of occult LNM (24). Similarly, in our study, 
nodules were more likely to come into direct contact with 
the pleural than show no contact, both in patients with 
LNM and N-LNM. However, for patients with LNM, 
pleural tags were more likely to cause indentation, and the 
probability of direct contact with the pleural concomitant 
with pleural tags was also higher than that in patients with 
N-LNM (27.6% vs. 8.9%). There are abundant lymphatic 
vessels on the surface of the subpleural lymphatic plexus (25); 
we can thus infer that when the lesion is in contact with 
the pleura, the tumor cells first enter the lymphatic vessels, 
proliferate with lymph fluid in the lymphatic circulation, 
and enter the lymph node station to complete the invasion. 

Emphysema is characterized pathologically by the 
presence of diffuse chronic inflammation of the lung 
parenchyma, oxidative stress, and lung destruction (26). 
A previous study reported (27) emphysema to be an 

independent risk factor for lung cancer, with a greater 
severity of emphysema being associated with a higher 
incidence of lung cancer; our study also examined the 
correlation between emphysema and LNM and found that 
as it pertains to pulmonary disease, the patients with LNM 
were more likely experience concomitant emphysema or 
bullae than were patients with N-LNM. Some studies 
have reported (28,29) that a longer mean diameter is 
an independent risk factor for LNM. DuComb et al. 
retrospectively studied 332 patients with T1 NSCLC and 
found that among patients with LNM, the most common 
pathological type is adenocarcinoma, which is consistent 
with the results of our study (56/58). In addition, they 
found that neither tumor diameter nor location was a risk 
factor for LNM (30). In our study, location was also not 
found to be a significant factor for metastases, while mean 
diameter was found to be an independent risk factor for the 
occurrence of LNM, which is possibly due to the different 
inclusion and exclusion criteria applied: our study included 
no restriction on tumor size, while that by DuComb et al. 
enrolled patients with T1 (8–30 mm).

Research also indicates that model-based schemes can 
make better utilize radiographic information to predict 
lymph node diseases (31-33). Das et al. integrated clinical 
parameters and radiomics features extracted from three 
ROIs of gross tumor volume (GTV), peritumoral volume 
(PTV), and LNs using different methods to create a 
variety of nomograms for predicting preoperative LNM 
in adenocarcinoma, and the compared the predictive 
efficacy of each model (34). The results showed that the 
AUC of radiological features based on GTV, PTV, and 
LN in the external verification cohort were 0.74,0.72, and 
0.64, respectively, while the AUC of the integrated GTV 
and PTV (GPTV) was 0.75 in the external validation 
cohort. GPTV combined with LN yielded an AUC of 
0.76, and the strongest predictive power was achieved 
by the integrated nomogram of clinical parameters and 
CT radiomics information from GTV, PTV, and LN, 
with an AUC of 0.79 (95% CI: 0.66–0.93). Our study 
evaluated the predictive ability of three combined models in 
identifying LNM. The results showed that compared with 
combined model 1 (including 9 risk factors) and combined 
model 2 (including all independent factors), the image 
predictor model incorporating pulmonary disease, solid 
component proportion, pleural contact type, and mean 
diameter had the highest diagnostic accuracy in validation 
group; moreover, its efficacy was better than that of any 
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of the single-feature models. The image predictor model 
only incorporated the CT semantic features among the 
significant independent factors identified via multivariate 
logistic regression; this model included fewer fusion factors 
but demonstrated higher predictive ability, which may have 
profound implications: CT semantic features have a good 
ability to predict LNM in patients with NSCLC and can 
provide preoperative guidance for clinical practice. Due 
to the poor image quality caused by respiratory movement 
and heartbeat, the prediction of LNM is limited in lung 
magnetic resonance imaging (35). Positron emission 
tomography (PET) is another imaging method for 
mediastinal staging, but its high cost, relatively low rate of 
lymph node involvement, and high false-negative rate have 
hinder its routine implementation (36). Martinez-Zayas 
et al. conducted a multicenter prospective validation of two 
retrospectively developed diagnostic models, called HAL and 
HOMER. In their study, they included 1,799 patients with 
NSCLC who underwent endobronchial ultrasound-guided 
transbronchial fine needle aspiration staging and PET-CT 
scans. HOMER was used to predict N0, N1, or N2–3 (three 
classifier), while HAL was used to predict N2/3 or N0/1 (two 
classifier). Their results showed that HAL and HOMER had 
good multicenter discrimination: HAL had an AUC of 0.873, 
while HOMER yielded an AUC of 0.837 for predicting 
N1–3 and AUC of 0.876 for predicting N2–3 (37).

Several potential limitations of this study merit 
comment. (I) Given the retrospective design of this study, 
potential selection bias may hinder the comparability 
and reproducibility of the results. (II) In the evaluation 
of CT image features, this study mainly focused on the 
characteristics of nodules. The image evaluation of lymph 
nodes may be considered in subsequent research for more 
in-depth exploration. (III) As we analyzed image features 
based on subjective description and measurement, there 
might have been inconsistency in the models related to 
the semantic features. In addition, these models were only 
preliminarily evaluated and validated in this study, and the 
performance of the models will be further improved and 
externally validated in future research. The development 
of radiomics has made it possible to transform images 
into image quantitative feature data, and this may allow 
for tumor characteristics to be more objectively and 
quantitatively described. Therefore, studies examining the 
prognostic prediction and survival analysis of patients with 
LNM via radiomics are anticipated.

Conclusions

Smoking history, pulmonary disease, solid component 
proportion, pleural contact type, and mean diameter were 
found to be independent risk factors for LNM in patients 
with NSLCLC consisting of PSNs. Furthermore, the 
image predictor model proposed in this study demonstrated 
encouraging diagnostic efficacy for LNM, indicating that 
CT semantic features can guide clinical practice to some 
extent before operation and has promising application 
value.
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