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Purpose:With the development and application of targeted therapies like tyrosine kinase
inhibitors (TKIs) and immune checkpoint inhibitors (ICIs), non-small cell lung cancer
(NSCLC) patients have achieved remarkable survival benefits in recent years. However,
epidermal growth factor receptor (EGFR) wild-type and low expression of programmed
death-ligand 1 (PD-L1) NSCLCs remain unmanageable. Few treatments for these patients
exist, and more side effects with combination therapies have been observed. We intended
to generate a metabolic gene signature that could successfully identify high-risk patients
and reveal its underlying molecular immunology characteristics.

Methods: By identifying the bottom 50%PD-L1 expression level as PD-L1 low expression
and removing EGFR mutant samples, a total of 640 lung adenocarcinoma (LUAD) and lung
squamous carcinoma (LUSC) tumor samples and 93 adjacent non-tumor samples were
finally extracted from The Cancer Genome Atlas (TCGA). We identified differentially
expressed metabolic genes (DEMGs) by R package limma and the prognostic genes by
Univariate Cox proportional hazards regression analyses. The intersect genes between
DEMGs and prognostic genes were put into the least absolute shrinkage and selection
operator (LASSO) penalty Cox regression analysis. The metabolic gene signature
contained 18 metabolic genes generated and successfully stratified LUAD and LUSC
patients into the high-risk and low-risk groups, which was also validated by the Gene
Expression Omnibus (GEO) database. Its accuracy was proved by the time-dependent
Receiver Operating Characteristic (ROC) curve, Principal Components Analysis (PCA), and
nomogram. Furthermore, the Single-sample Gene Set Enrichment Analysis (ssGSEA) and
diverse acknowledgedmethods include XCELL, TIMER, QUANTISEQ, MCPcounter, EPIC,
CIBERSORT-ABS, and CIBERSORT revealed its underlying antitumor immunosuppressive
September 2021 | Volume 11 | Article 6435031

https://www.frontiersin.org/articles/10.3389/fonc.2021.643503/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.643503/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.643503/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.643503/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.643503/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:maelie@126.com
https://doi.org/10.3389/fonc.2021.643503
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2021.643503
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2021.643503&domain=pdf&date_stamp=2021-09-14


Zhu et al. Metabolic Signature For Lung Cancer

Frontiers in Oncology | www.frontiersin.org
status. Besides, its relationship with somatic copy number alterations (SCNAs) and tumor
mutational burden (TMB) was also discussed.

Results: It is noteworthy that metabolism reprogramming is associated with the survival
of the double-negative LUAD and LUSC patients. The SCNAs and TMB of critical
metabolic genes can inhibit the antitumor immune process, which might be a promising
therapeutic target.
Keywords: epidermal growth factor receptor (EGFR) wild-type, low expression of programmed death-ligand 1
(PD-L1), lung adenocarcinoma, lung squamous carcinoma, The Cancer Genome Atlas Program (TCGA), GEO
INTRODUCTION

Tyrosine kinase inhibitors (TKIs), as a milestone treatment
against lung cancer, have demonstrated remarkable therapeutic
effects in NSCLC. TKIs reversibly binds to the intracellular
tyrosine kinase domain of the epidermal growth factor
receptor (EGFR) by competing with ATP and inhibit
activation of downstream signaling (1). Although in EGFR
mutation-positive patients, erlotinib, gefitinib, and afatinib
have achieved better progression-free survival (PFS) and
overall survival (OS), most patients inevitably acquired
resistance to TKIs within 12 months (2). Moreover, they are
not always beneficial for EGFR mutation-negative patients.
Programmed death-ligand 1 (PD-L1) is expressed on multiple
malignant tissues and up-regulated within the tumor
microenvironment, resulting in T-cell immunity resistance (3).
Antibodies of PD-L1 can restore T cell function and enhance
antitumor immunity (4).

For patients with EGFRmutation-negative and overexpressing
PD-L1, T cell-based immunotherapies, which have been called
immune checkpoint inhibitors (ICIs), were used as a choice
because of their remarkable clinical response (5, 6).
Immunotherapy is the first-line treatment of advanced-stage
NSCLC patients harboring EGFR/ALK (ALK receptor tyrosine
kinase) wild type with PD-L1 expression ≥ 50% and second-line
treatment when PD-L1 expression ranges between 1 and 50% (7).
When the expression of PD-L1 ranges between 1-50%, ICIs is still
a second-line treatment option along with chemotherapy (5, 6).
However, low expression of PD-L1, EGFR wild-type NSCLCs
showed less therapeutic benefit and more adverse events.
Therapies combined PD-L1 blockade and chemotherapy have
achieved modest response rates but at the expense of more
adverse effects (8–10). Considering that the carcinogenic
mechanism and molecular basis of EGFR wild-type and low
expression of PD-L1 NSCLC remain elusive, exploring an
optimal treatment regimen is still ambiguous.

Accumulating evidence has suggested that metabolic
reprogramming contributes to tumorigenesis and impacts the
tumor microenvironment (11). Metabolic gene alterations and
their prognostic roles have been observed in several tumor types
like thyroid cancer, neuroblastoma, and melanoma, which
indicate that altered metabolic genome may serve as novel
tumor targets for therapies (12–14). However, it remains
unknown whether metabolism-associated genes could mediate
2

a key mechanism in EGFR wild-type and low expression of PD-
L1 NSCLC.

We conducted comprehensive analyses integrating multiple
sources in the present work, including gene transcriptome,
somatic copy number alterations (SCNAs), mutations, and
clinical parameters to uncover the impacts of metabolic genes
in the double-negative (EGFR wild-type and low expression of
PD-L1) LUAD and LUSC patients. The multiple platforms
utilized in this study contain the Cancer Genome Atlas
(TCGA), the Gene Expression Omnibus (GEO) database, and
website resources like the cBioPortal platform and TIMER. The
critical prognostic metabolic genes and a risk predict signature
was generated to discuss specific immune status further.
MATERIALS AND METHODS

Sample Datasets and Data Availability
Publicly gene expression and mutation format files of lung
adenocarcinoma (LUAD) and lung squamous carcinoma
(LUSC) with corresponding clinical data were downloaded
from The Cancer Genome Atlas (TCGA) on 1 September
2020, which comprised of 904 EGFR wild type samples and 93
adjacent non-tumor samples. The definition of TMB refers to the
number of somatic mutations, coding mutations, base
replacement mutations, and insertion mutations per megabase
in the genome. We calculated TMB as the number of all
mutations/exon length (38 million) for each sample. By
identifying the bottom 50% PD-L1 expression level as PD-L1
low expression and removing EGFR mutant samples, 640 tumor
samples were finally extracted. The LUAD and LUSC expression
dataset in Gene Expression Omnibus (GEO) were included as the
validation cohorts. GSE3141 contained gene expression profile of
111 primary lung tumor samples and corresponding prognostic
data. GSE14814 included 133 NSCLC samples with clinical data
and microarray data.

Gene Expression Data Analysis
The metabolism-related genes were obtained from the Molecular
Signatures Database (MSigDB) of the gene set enrichment
analysis (GSEA) website. 944 genes in the KEGG (Kyoto
Encyclopedia of Genes and Genomes) gene sets that correlated
with the metabolism pathway were identified and extracted.
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Differentially expressed metabolic genes (DEMGs) between
tumor and normal tissues were targeted by using the R
package limma. FDR > 0.05 and |log2FoldChange| > 1 were
defined as the thresholds for screening DEMGs to identify
upregulated and downregulated genes. We performed the
Univariate Cox proportional hazards regression analyses to
determine the prognostic genes associated with overall survival
(OS). The intersect genes between DEMGs and prognostic genes
were considered to put into the least absolute shrinkage and
selection operator (LASSO) penalty Cox regression analysis.

Construction of the Prognostic
Metabolic Signatures
The LASSO penalty Cox regression analysis was conducted on
these intersect genes and to generate a metabolic gene signature.
By calculating each subject’s cox regression coefficients, patients
were sub-grouped to the high- and low-risk depending on their
median value of signature scores. The same signature formula was
applied to the GEO validation cohorts. The Kaplan–Meier method
was achieved by the survival and survivalROC packages. The time-
dependent Receiver Operating Characteristic (ROC) curve was
used to predict clinical characteristics’ accuracy and signature. The
R package rms generated the nomograms. The calibration curve
showed the calibration of the nomogram between the predicted
risk and observed outcomes, representing the predicted and actual
3-Year overall survival (OS).

Gene Enrichment Analysis and
Tumor-Infiltrating Cells Analysis
Single-sample Gene Set Enrichment Analysis (ssGSEA) is an
extension of Gene Set Enrichment Analysis (GSEA), which
calculates separate enrichment scores for each pairing of a
sample and gene set. The ssGSEA scores for most immune cell
populations were obtained using the gene sets from Angelova
et al. (15). A total of 29 gene sets representing distinct immune
cell populations were obtained: activated dendritic cells (aDCs),
antigen-presenting cell (APC) co-inhibition, APC co-stimulation,
B cells, CC chemokine receptor (CCR), CD8+ T cells, Check-
point, Cytolytic activity, dendritic cells (DCs), human leukocyte
antigen (HLA), interdigitating dendritic cells (iDCs),
Inflammation-promoting, Macrophages, Mast cells, MHC class
I, Neutrophils, NK cells, Parainflammation, plasmacytoid
dendritic cells (pDCs), T cell-co-inhibition, T cell co-
stimulation, T helper cells, follicular helper T cells (Tfh), Th1
cells, Th2 cells, tumor-infiltrating lymphocytes (TIL), regulatory
T cells (Treg), Type I IFN Response, Type II IFN Response
(16, 17).

The current acknowledged methods such as XCELL (18),
TIMER (19), QUANTISEQ (20), MCPcounter (21), EPIC (22),
CIBERSORT-ABS (23), and CIBERSORT (24) were united to
reveal the immunologic characteristics between groups. Diverse
immune infiltrating cells were estimated by Spearman
correlation analysis and Wilcoxon signed-rank test with risk
scores and risk groups. The estimation files for the TCGA project
calculate the immune infiltration statues were download from
the TIMER website (http://timer.comp-genomics.org). The R
Frontiers in Oncology | www.frontiersin.org 3
packages ggplot2, ggtext, scales, and limma were used in
this procedure.

The Cancer Immunome Atlas
The Cancer Immunome Atlas (TCIA) is an online searchable
database that enables researchers to develop and test hypotheses
on the impact of cancer genome on tumor microenvironment
and immune characteristics, particularly concerning ICIs
treatment response (25). The immunophenotypes of 20 solid
cancers from TCGA are determined by cellular characterization
of the immune infiltrates, showing potential tumor escape
mechanisms. Using the machine learning method, tumor
immunogenicity is identified, and a scoring scheme defined as
immunophenoscore is generated. The immunophenoscore can
be used as a favorable predictor of response to anti-CTLA-4 and
anti-PD-1 antibodies, which were validated in two independent
cohorts. A higher immunophenoscore indicates a better
prognosis and better response to immunotherapy (26).
Through TCIA, we obtained the immunophenoscore of
TCGA-LUAD and TCGA-LUSC and the expression levels of
CTLA-4 and PD-1. Patients were re-grouped according
to the expression of CTLA-4 and PD-1, and then the
immunophenoscore of the high- and low-risk patients were
compared for responses to ICIs treatment.

Function Annotation
By taking the median risk value as the threshold, samples were
divided into the high- and low-risk groups. General differentially
expressed genes (DEGs) were screened between these two risk
levels and were put into the Gene Ontology (GO) function
annotation and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis by R package GOplot.

Statistical Analysis
The student’s t-test compared gene expression data between
tumor samples and adjacent non-tumor samples. The Chi-
square test for parametric distributions or the Wilcoxon test
for nonparametric distributions was used for differences in
proportions. All statistical analyses were performed with
R software (Version 3.6.3) and Graphpad (Version 8.0.2). P-
value < 0.05 was considered statistically significant if there are
not specially mentioned.
RESULTS

Identification and Validation of
the Prognostic DEMGs Signature
in the TCGA Cohort
In 944 metabolism-related genes, 224 DEMGs were identified
between tumor tissues and adjacent nontumorous tissues (73
down-regulated and 151 up-regulated, Figures 1A, B), of which
103 metabolic genes related to OS were extracted by univariate
Cox regression analysis (Figure 1C). After cross-matching, 19
DEMGs correlated with OS were finally generated and were put
in LASSO Cox regression analysis to establish a prognostic
September 2021 | Volume 11 | Article 643503
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FIGURE 1 | (A) The volplot of DEMGs between tumor and normal tissues. The red plots represent up-regulated genes and the green plots represent down-
regulated genes. (B) The heatmap of DEMGs between tumor and normal tissues. N represents normal tissues and T represents tumor tissues. (C) The intersection
of DEMGs and the prognostic genes were generated. A total of 19 intersection genes were identified. (D) The heatmap of the 19 intersection genes. (E) The 19
intersection genes that related to OS were extracted by univariate Cox regression analysis. (F, G) The LASSO Cox regression analysis were performed with the
optimal value of l. (H) The survival analysis revealed the high-risk patients were associated with poor prognosis.
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signature (Figures 1D, E). Based on the optimal value of l
(Figures 1F, G), a signature comprised of 18 DEMGs was
constructed as follows: risk score = ADCY9*-0.1096 +
ACP4*0.4257 + GCLC*0.0124 + ALDOA*0.0196 +
UCK2*0.0106 + PLA2G4B*-0.5342 + TXNRD1*0.0865 +
PGM2*0 .0496 + PTGIS*0 .2946 + LDHA*0.0949 +
PFKP*0.0838 + PTGES*0.0865 + ALDH1A2*-0.1811 +
ISYNA1*-0.1000 + ACP5*-0.1516 + POLR2J3*0.4008 +
ACSM5*-0.2192 + ADA*0.0094.

According to the median cut-off value of risk score, the
patients were divided into the high- and low-risk groups. The
higher risk score was associated with worse OS in survival analysis
(Figure 1H). We used Principal Component Analysis (PCA) to
evaluate the prognostic signature’s effectiveness, which showed
significantly different distribution patterns and suggested that the
DEMGs signature can distinguish the high- and low-risk patients
effectively (Figure 2A). The ROC curve analyses indicated that
the AUC value of the DEMGs signature was higher than all the
other risk factors (Figure 2B), reaching 0.709. A nomogram was
also built to incorporate the clinical parameters and risk score to
predict 3-year OS. The nomogram’s 1-, 3- and 5-year calibrate
curve revealed that the predicted OS was very close to the actual
OS (Figures 2C, D), indicating high accuracy.

The DEMGs signature was tested in cohorts GSE3141 and
GSE14814 for validation. We took the same formula to predict
patients’ survival, of which the Kaplan-Meier plot showed the
patients in the high-risk group had a significantly poor survival
time than those in the low-risk group (Figures 2E, F).

Associations Between the Prognostic
Signature and Clinicopathologic Features
As shown in Figures 3A–L, we further tested the relationship
between the signature and pathological parameters. In younger
or older patients, female and male patients, early- or late-stage
patients, the signature still showed the prognostic ability in the
high- and low-risk groups.

GO Function Annotation for the
Prognostic Signature
Patients were divided into the high- and low-risk groups
depending on the median value of risk scores. The general
DEGs between two risk levels were put into GO and KEGG
functional annotation (Figures 4E, F), which revealed that
diverse immunology processes pathways like humoral immune
response, leukocyte migration, leukocyte chemotaxis, and
leukotriene metabolic process were involved.

Genetic Alterations of the Genes in the
Prognostic Signature
The mutation data of 586 LUAD samples and 501 LUSC samples
are available in the cBioPortal platform (http://www.cbioportal.
org/). As shown in Figure 4D, the 18 signature genes showed
varying levels of mutation in TCGA-LUAD and LUSC samples.
The mutation rates of UCK2 and ACSM5 were significantly
higher than that of other genes.
Frontiers in Oncology | www.frontiersin.org 5
Furthermore, we investigated the impacts of the 18 signature
genes on immune infiltrations via the TIMER database (https://
cistrome.shinyapps.io/timer/), a comprehensive resource for
systematical analysis of immune infiltrates across diverse
cancer types (19). We evaluated the relationship between
somatic copy number alterations (SCNAs) of 14 signature
genes and immune cell infiltration. The SCNAs includes deep
deletion (-2), arm-level deletion (-1), diploid/normal (0), arm-
level gain (1), and high amplification (2). The immune
infiltration level in each category was compared with the
diploid/normal level. A p-value < 0.05 was considered
significant, and a two-sided Wilcoxon rank-sum test was used
between different categories. As shown in Figure 5, differential
SCNAs categories statistically changed the immune cell
infiltration levels, including B cell, CD8+ T cell, CD4+ T cell,
macrophage, neutrophil, and dendritic cell infiltration.

Immune Profile Analysis
We characterized the immunology profile of EGFR wild type lung
cancer samples with low PD-L1 expression by ssGSEA. In 29
immune gene sets, aDCs, B cells, CD8+ T cells, DCs,
Macrophages, Mast cells, Neutrophils, NK cells, pDCs, T helper
cells, Tfh, Th1 cells, Th2 cells, TIL, and Treg were associated with
lower ssGSEA score in the high-risk group (Figure 6A). Similarly,
APC co-inhibition, APC co-stimulation, CCR, Check−point,
Cytolytic activity, HLA, Inflammation−promoting, MHC class I,
Parainflammation, T cell co−inhibition, T cell co−stimulation,
Type I IFN ReSponse, and Type II IFN Response gained lower
ssGSEA score in the high-risk group (Figure 6B). The general
immune cell types and immune response were significantly lower
in high-risk double-negative (with EGFR wild and low PD-L1
expression) LUAD and LUSC, suggesting immunosuppression
statuses in the high-risk patients.

Besides, The Spearman correlation analysis also indicated a
negative relationship between risk score and multiple immune
infiltration cells. As shown in Figure 7, most recognized immune
infiltrating cells were negatively correlated with risk scores,
including diverse T cells, B cells, and Macrophage. The
Wilcoxon signed-rank test also confirmed the analysis of
ssGSEA. In Figure 8, immunosuppression statuses in the high-
risk patients were revealed by the lower levels of extensive
immune infiltration cells such as T cell CD4+ central memory,
T cell CD4+ Th2, T cell CD8+, T cell CD8+ naive, myeloid
dendritic cell, and macrophage.

The Immunologic Landscape of
TMB and Its Correlation With the
Prognostic Signature
The definition of TMB is the number of mutations per DNA
megabases (Mb). TMB has been reported to closely influence the
response to ICIs (27–29) because the highly mutated burdens are
associated with abundant neoantigens and susceptibility to
immune cells (29, 30).

Considering the extensive association between TMB and the
tumor immune microenvironment, we further tested the
September 2021 | Volume 11 | Article 643503
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FIGURE 2 | (A) The PCA plots showed the metabolic gene signature could successfully distinguish the double-negative LUAD and LUSC patients. (B) The ROC
curve analyses indicated that the AUC value (0.709) of the DEMGs signature was higher than all the other risk factors. (C) The nomogram was built to incorporate
the clinical parameters and risk score to predict 1-,2-, and 3-year OS. (D) The nomogram’s 1-,3-, and 5-year calibrate curve revealed that the predicted OS was
very close to the actual OS, indicating high accuracy. (E, F) The Kaplan-Meier plot of GSE3141 and GSE14814 showed the patients in the high-risk group had a
significantly poor survival time than those in the low-risk group.
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immunologic landscape of TMB and its correlation with
the prognostic signature. As shown in Figure 4A, the high-risk
group had a higher TMB level than the low-risk group, indicating
a reverse TMB tendency compared with immunology status in
the high-risk patients.

When TMB alone was used as a prognostic indicator, there
was no significant difference in survival between the low- and
high-TMB groups by taking the median TMB value as cutoff
(Figure 4B). However, when the signature groups were added to
TMB, the prognosis of patients in different subgroups showed
distent survival differences (Figure 4C). Patients with high-TMB
and low-risk had the best prognosis among all the groups.

The proportions of the 22 TILs from each sample were
determined by using the R package CIBERSORT. Gene
expression profiles were transformed into the proportion of 22
TILs, namely: B cells naive, B cells memory, Plasma cells, T cells
CD8, T cells CD4 naive, T cells CD4 memory resting, T cells CD4
memory activated, T cells follicular helper, T cells regulatory
(Tregs), T cells gamma delta, NK cells resting, NK cells activated,
Monocytes, Macrophages M0, Macrophages M1, Macrophages
M2, Dendritic cells resting, Dendritic cells activated, Mast cells
resting, Mast cells activated, Eosinophils, and Neutrophils
(Figure 6C). Significant results (P < 0.05) were selected for
subsequent analysis. Taking the median TMB value as a cutoff,
the relative expression of 22 tumor-infiltrating immune cells in
the low- and high-TMB samples were determined (Figure 6D). B
cells memory, T cells CD8, T cells CD4 memory activated, Tregs,
Macrophages M0, Macrophages M1, and Dendritic cells resting
showed infiltration differences relating to the two TMB levels. It
is worth mentioning that B cells memory, T cells CD8, T cells
CD4 memory activated, and Macrophages M1 play important
roles in pro-inflammatory response while showing lower
infiltration levels in the high-risk groups, which are consistent
with the immunosuppressive status confirmed by ssGSEA.
Assessment of the Immunophenoscore
From The Cancer Immunome Atlas to
Predict the Response to ICIs
The negative correlation between risk score and immune
infiltration cells was validated above. We further confirmed the
relationship between risk score and immunotherapy response by
TCIA. TCIA is a web-based database (https://tcia.at/home) that
provides information on the cellular composition of tumor
infiltrating lymphocytes, informing on response to checkpoint
blocker immunotherapies of 20 solid cancers from TCGA. TCIA
provided a composite score, the immunophenoscore, to reveal
tumor immunologic heterogeneity of 20 valid cancers as an
indication of tumor cell type might be susceptible to ICIs
treatment. Higher immunophenoscores were positively
correlated with better anti-cytotoxic lymphocyte antigen-4
(CTLA-4) and anti-PD-1 treatment response. Depending on the
expression of CTLA-4 and PD-1, patients were divided into four
groups as CTLA-4 positive PD-1 positive, CTLA-4 negative PD-1
positive, CTLA-4 positive PD-1 negative, and CTLA-4
negative PD-1 negative. The low-risk patients showed higher
immunophenoscores in all four subgroups, suggesting a better
A B

C D

E F

G H

I G

K L

M N
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FIGURE 3 | (A–L) The prognostic signature well divided the high- and low-
risk patients for survival in diverse clinical parameters (age, gender, M stage,
N stage, T stage, and pathological stage). (M–P) The low-risk patients
showed higher immunophenoscores in all four subgroups, CTLA-4 positive
PD-1 positive, CTLA-4 negative PD-1 positive, CTLA-4 positive PD-1
negative, and CTLA-4 negative PD-1 negative, suggesting a better response
to immunotherapies regardless of the expression of CTLA-4 and PD-1.
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FIGURE 4 | (A) The high-risk group had a higher TMB level than the low-risk
group, indicating a reverse TMB tendency compared with immunology status
in high-risk patients. (B) There was no difference in survival between the high-
TMB and low-TMB patients. (C) When the signature groups were added to
TMB, the prognosis of patients in different subgroups showed distent survival
differences. Patients with high-TMB and low-risk had best prognosis among
all the groups. (D) The 18 signature genes showed varying levels of mutation
in TCGA-LUAD and LUSC samples. The mutation rates of UCK2 and ACSM5
were significantly higher than that of other genes. (E, F) The barplot of Go
and KEGG functional enrichment analyses. BP indicated biological process;
CC indicated cellular component; MF indicated molecular function.
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response to immunotherapies regardless of the expression of
CTLA-4 and PD-1 (Figures 3M–P).
DISCUSSION

As LUAD and LUSC patients with EGFR wild type can hardly
respond to TKIs treatment, immune checkpoint inhibitors (ICIs)
are the optimal first-line choices for them. For patients with
double-negative, which means “EGFR wild type and low PD-L1
expression,” combing PD-L1 antibody therapy and
chemotherapy can improve outcomes but with more toxicities
(31). Thus, new therapeutic strategies are needed for
better efficacy.

Our study generated a prognostic DEMGs signature by
comprehensive analyses of 640 LUAD and LUSC patients from
TCGA, which were also validated in cohorts of the GEO
database. Previous studies indicated that patients with EGFR
wild type and low PD-L1 expression owned immunosuppressive
status associated with less immune checkpoint protein
expressions and lymphocyte infiltration (32, 33). Meanwhile,
our results showed that the high-risk patients evaluated by the
DEMGs signature also expressed a similar immunosuppression
status. The immune infiltration cell expressions evaluated by
multiple methods were negatively related to risk score, and the
pro-inflammatory factors like B cells memory, T cells CD8, T
cells CD4 memory activated, and Macrophages M1 showed
lower infiltration levels in the high-risk group. CD4+ memory
T cells and B cells are localized and enriched in tertiary lymphoid
structures, showing benefits on tumors’ prognosis (34, 35).
Memory B cells function in both naïve and memory T cell
responses as antigen-presenting cells, thus inducing an
antitumor immune response (36). Besides, we found that
although all the 18 signature genes had relatively stable
mutation status in LUAD and LUSC, diverse forms of SCNAs
in these genes could significantly inhibit immune infiltration in
LUAD and LUSC. These may explain the underlying mechanism
of antitumor immune deficiency in the double-negative high-
risk patients.

Notably, studies reported that TMB could be used as a
genomic biomarker that predicts favorable responses to ICIs.
In a meta-analysis, patients with higher TMB who underwent
ICIs had a better OS and PFS than those who received
chemotherapy alone. While in patients with lower TMB, such
ICI benefits were not statistically significant (37). In advanced
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FIGURE 4 | Continued
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FIGURE 5 | The differential SCNAs categories of the signature genes statistically changed the immune cell infiltration levels, including B cell, CD8+ T cell, CD4+ T
cell, macrophage, neutrophil, and dendritic cell infiltration.
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FIGURE 6 | (A) aDCs, B cells, CD8+ T cells, DCs, Macrophages, Mast cells, Neutrophils, NK cells, pDCs, T helper cells, Tfh, Th1 cells, Th2 cells, TIL, and Treg
were associated with lower ssGSEA score in the high-risk group (B) APC co-inhibition, APC co-stimulation, CCR, Check−point, Cytolytic activity, HLA, Inflammation−
promoting, MHC class I, Parainflammation, T cell co−inhibition, T cell co−stimulation, Type I IFN Reponse, and Type II IFN Response gained lower ssGSEA score in
the high-risk group. (C) Taking the median TMB value as a cutoff, the relative expression of 22 tumor-infiltrating immune cells in the low- and high-TMB samples was
determined. (D) B cells memory, T cells CD8, T cells CD4 memory activated, Tregs, Macrophages M0, Macrophages M1, and Dendritic cells resting showed
infiltration differences between the low- and high-TMB samples. *P < 0.05, **P < 0.01, ***P < 0.001 and ns, no statistical significance.
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NSCLC patients, this association between high-level TMB and
clinical benefit of ICIs was also observed (38). Moreover, higher
TMB has been proved to be associated with a lower proportion of
antitumor immune cells like macrophages M1, CD8 T cells, and
B cells in papillary thyroid carcinoma (39), which was also
confirmed by our result. Extensive analysis showed that
different TMB levels in the double-negative LUAD and LUSC
patients were correlated to variable immune infiltration cells.
Combining the signature with TMB, poor prognostic patients
could be better identified, making our signature a new predictive
biomarker for ICIs benefits in the double-negative LUAD and
LUSC patients.

The biological roles of 18 DEMGs signature genes are not
fully investigated. Some of the signature genes are reported to be
involved in tumor development. For example, ADCY9 encodes
the protein adenyl cyclase type 9, which is related to the
activation of intracellular production of cyclic AMP (40).
ADCY9 has been reported to involve in the development of
tumors. A higher expression level of ADCY9 was found in colon
cancer and was an indicator of a bad prognosis (41). GCLC
encodes a rate-limited enzyme in the GSH biosynthesis (42).
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FIGURE 8 | (A–Z4) The Wilcoxon signed-rank test revealed the lower levels of
extensive immune infiltration cells such as T cell CD4+ central memory, T cell CD4+
Th2, T cell CD8+, T cell CD8+ naive, myeloid dendritic cell, and macrophage.
FIGURE 7 | The risk score was negatively associated with most tumor-
infiltrating immune cells shown by Spearman correlation analysis in current
acknowledged methods such as XCELL, TIMER, QUANTISEQ, MCPcounter,
EPIC, CIBERSORT-ABS, and CIBERSORT.
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Abnormal expression of GCLC was reported in multiple types of
tumors (43, 44). ALDOA is coding genes of Aldolase A that
involves in the glycolysis of cancer cells (45). It is related to the
poor survival of various types of tumors, including pancreatic
cancer, osteosarcoma, and LUSC (46–48). Similarly, TXNRD1 is
also highly expressed in diverse malignancies and promotes
tumor progression (49, 50). UCK2, a type of rate-limiting
enzyme of pyrimidine-nucleotide biosynthesis, is detected to
up-regulate in several types of tumors, including neuroblastoma
and hepatocellular carcinoma (51, 52). Specifically, a high
expression level of UCK2 has also been identified in stage IA
lung cancer related to early recurrence, poor first progression
survival, and short overall survival (53). In previous studies, PFKP
is differentially expressed in glucose metabolic reprogramming
in some cancers (54, 55). Namely, PFKP is lowly expressed in
seminomas and embryonal carcinomas but highly expressed in
human breast tumor cells and lung cancer (56). ISYNA1 is
associated with p53-related apoptosis in cancers like lung
squamous cell carcinoma, bladder cancer, and pancreatic cancer
(57, 58), affecting tumor proliferation and clinical parameters.
ACP5 encodes a metalloprotein enzyme that belongs to the acid
phosphatase family, up-regulated in breast cancer and LUAD,
associated with poor outcomes (59, 60).

In conclusion, metabolic genes play an essential role in risk
evaluation of LUAD and LUSC patients with EGFR wild type,
low PD-L1 expression. Higher TMB and lower antitumor
Frontiers in Oncology | www.frontiersin.org 12
immune infiltration were found in the high-risk group,
indicating poor prognosis in OS. Our related metabolic
signature provides an adaptable way to identify potential
therapeutic targets, especially SCNAs of the signature genes
that could significantly inhibit the immune cells’ infiltration.
More biological roles of these metabolic genes are intended to
explore for extended clinical significance.
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