

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

cis-Dichlorido(dimethyl sulfoxide- κ S)-(N,N,N',N'-tetramethylguanidine- κ N'')platinum(II)

Ivan I. Eliseev,^a Nadezhda A. Bokach,^a Matti Haukka^b and Irina A. Golenya^c*

^aDepartment of Chemistry, St Petersburg State University, 198504 Petrodvorets, Russian Federation, ^bUniversity of Joensuu, Department of Chemistry, PO Box, 111, FI-80101 Joensuu, Finland, and ^cKiev National Taras Shevchenko University, Department of Chemistry, Volodymyrska Str. 64, 01601 Kiev, Ukraine Correspondence e-mail: igolenya@ua.fm

Received 17 December 2012; accepted 13 January 2013

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (N–C) = 0.007 Å; R factor = 0.023; wR factor = 0.045; data-to-parameter ratio = 23.1.

In the title compound, cis-[PtCl₂(C₅H₁₃N₃)(C₂H₆OS)], the four-coordinate Pt^{II} atom is bonded to one N atom of the N,N,N',N'-tetramethylguanidine ligand, one dimethyl sulfoxide S atom and two chloride ligands, forming a cis-square-planar geometry. The bond lengths and angles of the N-Pt-Cl functionality are typical for imine dichloridoplatinum(II) complexes. The H atom of the imino group is oriented towards the O atom of the sulfoxide group of a neighboring molecule and forms an N-H···O hydrogen bond.

Related literature

For guanidines serving as nucleophiles towards metal-activated nitriles at Pt^{II} and Pt^{IV} atoms, see: Gushchin *et al.* (2007, 2008); Tyan *et al.* (2008). For related structures, see: Bokach *et al.* (2003); Fairlie *et al.* (1997); Gonzalez *et al.* (2002); Makarycheva-Mikhailova *et al.* (2003). For a description of the Cambridge Structural Database, see: Allen (2002). For standard bond lengths, see: Allen *et al.* (1987).

 $V = 1469.51 (11) \text{ Å}^3$

 $0.24 \times 0.13 \times 0.12 \text{ mm}$

12560 measured reflections

3280 independent reflections

3044 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation $\mu = 10.04 \text{ mm}^{-1}$

Z = 4

T = 120 K

 $R_{\rm int} = 0.041$

Experimental

Crystal data

[PtCl₂(C₅H₁₃N₃)(C₂H₆OS)] $M_r = 459.30$ Monoclinic, Cc a = 10.1577 (5) Å b = 19.1711 (8) Å c = 8.6536 (3) Å $\beta = 119.304$ (2)°

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (*DENZO/SCALEPACK*; Otwinowski & Minor, 1997) $T_{min} = 0.151, T_{max} = 0.299$

Refinement

H-atom parameters constrained
$\Delta \rho_{\rm max} = 1.49 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -1.64 \text{ e } \text{\AA}^{-3}$
Absolute structure: Flack (1983),
1598 Friedel pairs
Flack parameter: 0.008 (6)

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1-H1N\cdotsO1^{i}$	0.86	2.21	3.021 (5)	159
Symmetry code: (i) x	-v. 7 + 1			

Symmetry code: (i) $x, -y, z + \frac{1}{2}$.

Data collection: *COLLECT* (Nonius, 1998); cell refinement: *DENZO/SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO/SCALEPACK*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 2007); software used to prepare material for publication: *SHELXL97*.

This work was supported by the State Fund for Fundamental Research of Ukraine (grant No. 11–03–90417), the Russian Foundation for Basic Research (grant Nos. 11-03-00483, 12-03-33071 and 12-03-31040), Saint Petersburg State University (for a research grant 2011–2013; 12.37.133.2011 and a grant for applied research 2012–2013; 12.39.1050.2012). Financial support from the State Fund for Fundamental Researches of Ukraine (grant No. GP/F36/032) is also gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5281).

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bokach, N. A., Pakhomova, T. B., Kukushkin, V. Yu., Haukka, M. & Pombeiro, A. J. L. (2003). *Inorg. Chem.* 42, 7560–7568.
- Brandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Fairlie, D. P., Jackson, W. G., Skelton, B. W., Wen, H., White, A. H., Wickramasinghe, W. A., Woon, T. C. & Taube, H. (1997). *Inorg. Chem.* 36, 1020–1026.

Flack, H. D. (1983). Acta Cryst. A39, 876–881.

- Gonzalez, A. M., Cini, R., Intini, F. P., Pacifico, C. & Natile, G. (2002). Inorg. Chem. 41, 470–479.
- Gushchin, P. V., Bokach, N. A., Luzyanin, K. V., Nazarov, A. A., Haukka, M. & Kukushkin, V. Yu. (2007). *Inorg. Chem.* 46, 1684–1693.
- Gushchin, P. V., Tyan, M. R., Bokach, N. A., Revenco, M. D., Haukka, M., Wang, M.-J., Lai, C.-H., Chou, P.-T. & Kukushkin, V. Yu. (2008). *Inorg. Chem.* 47, 11487–11500.
- Makarycheva-Mikhailova, A. V., Bokach, N. A., Kukushkin, V. Yu., Kelly, P. F., Gilby, L. M., Kuznetsov, M. L., Holmes, K. E., Haukka, M., Parr, J., Stonehouse, J. M., Elsegood, M. R. J. & Pombeiro, A. J. L. (2003). *Inorg. Chem.* 42, 301–309.
- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tyan, M. R., Bokach, N. A., Wang, M.-J., Haukka, M., Kuznetsov, M. L. & Kukushkin, V. Yu. (2008). *Dalton Trans.* pp. 5178–5188.

supplementary materials

Acta Cryst. (2013). E69, m117-m118 [doi:10.1107/S160053681300130X]

cis-Dichlorido(dimethyl sulfoxide- κS)(N, N, N', N'-tetramethylguanidine- $\kappa N''$)platinum(II)

Ivan I. Eliseev, Nadezhda A. Bokach, Matti Haukka and Irina A. Golenya

Comment

As a part of our ongoing investigations on structural features of platinum complexes with guanidines (Gushchin *et al.*, 2007; Gushchin *et al.*, 2008) a new compound, (I), having PtII-bound N,N,N',N'-tetramethylguanidine, has been prepared and herein we report its X-ray crystal and molecular structures.

In the compound, the four-coordinate Pt atom has a distorted cis-square planar geometry where the Pt atom is bonded by one N atom of the N,N,N',N'-tetramethylguanidine ligand and one S atom of the dimethyl sulfoxide and two chlorides in the *cis*-position (Fig. 1 and Table 1). The values of the Pt–Cl bond distances (2.3214 (13) and 2.327 (2) Å) agree well with those of previously characterized platinum(II) chloride compounds (Makarycheva-Mikhailova *et al.*, 2003; Gonzalez *et al.*, 2002). The Pt–N bonds [2.013 (4) Å for Pt–N_{imine}] are in accord with those found in *cis-/trans*-[Pt(NH₃)₂{NH=C(NH₂)NMe₂}] (2.031 (9)/2.020 (3) Å), (Tyan *et al.*, 2008), [Pt{NH=C(NH₂)NMe₂}(dien)]

[SO₃CF₃]₂ (2.018 (7) Å), (Fairlie *et al.*, 1997) and [PtCl₄{NH=C(NMe₂)OC(NMe₂)=NH}] (2.015 (5) Å) (Bokach *et al.*, 2003).

The C=N bond length (C(1)–N(1) 1.316 (6) Å) is equal, within 3σ , to the average C=N double bond distance (1.31 Å) obtained from the Cambridge Crystal Structural Database (Version 5.27; Allen, 2002). The bond lengths C(1)–N(2) and C(1)–N(3) [1.342 (7) and 1.352 (6) Å, respectively] have values closer to a typical C–N single bond [Nsp²–Csp² in amides 1.346 (11) Å] (Allen, 1987). In addition, the C=N bond length (1.316 (6) Å) and the C–N bonds lengths (C(1)–N(2) 1.342 (7), C(1)–N(3) 1.352 (6) Å) exhibit values typical, within 3σ , for the (amidine)₂Pt^{II} complexes, viz. [Pt{NH=C(NH₂)NMe₂}(dien)]²⁺, (1.31 (1), 1.394 (8) and 1.33 (1) Å) (Fairlie *et al.*, 1997), and *cis-/trans*-[Pt(NH₃)₂{NH=C(NH₂)NMe₂}] (1.284 (14)/1.288 (5), 1.364 (14)/1.352 (5) and 1.364 (14)/1.341 (5) Å), (Tyan *et al.*, 2008). The H atom of the imino function is oriented towards the O atom of the sulfoxide group of the neighboring molecule forming the intermolecular hydrogen bond (Figure 2, Table 2).

Experimental

N,N,N',N'-Tetramethylguanidine (13.8 g, 0.12 mmol) was added to K[PtCl₃(DMSO)] (50.0 mg, 0.12 mmol) in water (1 mL) and the reaction mixture was kept at room temperature for 2 h. The yellow crystalline precipitate were mechanically separated and subjected to the X-ray study. IR (KBr, selected bands, cm–1): 3008 (m, N–H), 1616 (s, C=N), 1134 (s, S=O); 1H NMR (CDCl3, δ , p.p.m.): 4.40 (s, br, 1H, =NH), 3,40 (s, 6H, Me2SO), 3.00 (s, br, 12H, Me2N–); Analyses calculated for C₇H₁₉N₃Cl₂OPtS: C 18.31, H 4.17, N 9.15%; found: C 18.05, H 4.15, N 8.59%.

Refinement

The NH hydrogen atoms was located from the difference Fourier map but constrained to ride on it's parent atom, with $U_{iso} = 1.5 U_{eq}$ (parent atom). Other hydrogen atoms were positioned geometrically and were also constrained to ride on their

parent atoms, with C—H = 0.98 Å, and U_{iso} = 1.5 U_{eq} (parent atom). The highest peak is located 1.49 Å from atom H4B and the deepest hole is located 0.87 Å from atom Pt1.

Computing details

Data collection: *COLLECT* (Nonius, 1998); cell refinement: *DENZO/SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO/SCALEPACK* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 2007); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008).

Figure 1

Molecular structure of (I), showing the atom-numbering scheme with displacement ellipsoids drawn at the 50% probability level.

Figure 2

Molecular structure of (I), showing the intermolecular hydrogen bond.

cis-Dichlorido(dimethyl sulfoxide- κ S)(N,N,N',N'- tetramethylguanidine)platinum(II)

Crystal data	
$[PtCl_2(C_5H_{13}N_3)(C_2H_6OS)]$	F(000) = 872
$M_r = 459.30$	$D_{\rm x} = 2.076 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, Cc	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: C -2yc	Cell parameters from 6239 reflections
a = 10.1577 (5) Å	$\theta = 1.0-27.5^{\circ}$
b = 19.1711 (8) Å	$\mu = 10.04 \text{ mm}^{-1}$
c = 8.6536 (3) Å	T = 120 K
$\beta = 119.304 \ (2)^{\circ}$	Block, pale yellow
$V = 1469.51 (11) Å^3$	$0.24 \times 0.13 \times 0.12 \text{ mm}$
Z = 4	

Data collection

Nonius KappaCCD diffractometer	$T_{\min} = 0.151, T_{\max} = 0.299$ 12560 measured reflections
Radiation source: fine-focus sealed tube	3280 independent reflections
Horizontally mounted graphite crystal monochromator	3044 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.041$
Detector resolution: 9 pixels mm ⁻¹	$\theta_{\rm max} = 27.5^\circ, \ \theta_{\rm min} = 3.4^\circ$
φ scans and ω scans with κ offset	$h = -13 \rightarrow 13$
Absorption correction: multi-scan	$k = -24 \rightarrow 24$
(<i>DENZO/SCALEPACK</i> ; Otwinowski & Minor, 1997)	$l = -11 \rightarrow 11$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.023$	Hydrogen site location: mixed
$wR(F^2) = 0.045$	H-atom parameters constrained
S = 1.03	$w = 1/[\sigma^2(F_o^2) + (0.P)^2]$
3280 reflections	where $P = (F_o^2 + 2F_c^2)/3$
142 parameters	$(\Delta/\sigma)_{\rm max} = 0.002$
2 restraints	$\Delta \rho_{\rm max} = 1.49 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm min} = -1.64 \text{ e} \text{ Å}^{-3}$
direct methods	Absolute structure: Flack (1983), 1598 Friedel pairs
	Flack parameter: 0.008 (6)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Pt1	0.96648 (6)	0.110788 (7)	1.03671 (6)	0.01299 (6)	
Cl1	1.20421 (15)	0.15985 (7)	1.14273 (16)	0.0221 (3)	
C12	0.9945 (3)	0.11372 (8)	1.3201 (3)	0.0229 (6)	
S1	0.9352 (2)	0.10943 (7)	0.7678 (3)	0.0133 (5)	
01	0.7956 (4)	0.07948 (18)	0.6268 (4)	0.0197 (7)	
N1	0.7691 (5)	0.0608 (2)	0.9550 (5)	0.0172 (9)	
H1N	0.7766	0.0172	0.9792	0.026*	
N2	0.5880 (5)	0.1425 (2)	0.7857 (6)	0.0201 (9)	
N3	0.5363 (5)	0.0249 (2)	0.7283 (5)	0.0170 (9)	
C1	0.6341 (6)	0.0760 (3)	0.8237 (6)	0.0162 (10)	
C2	0.6478 (7)	0.1974 (3)	0.9182 (7)	0.0281 (12)	
H2A	0.6875	0.1769	1.0365	0.042*	
H2B	0.5671	0.2305	0.8972	0.042*	
H2C	0.7291	0.2218	0.9105	0.042*	

C3	0.4915 (7)	0.1652 (3)	0.6032 (7)	0.0329 (13)
H3A	0.4858	0.1281	0.5220	0.049*
H3B	0.5340	0.2074	0.5807	0.049*
H3C	0.3901	0.1752	0.5843	0.049*
C4	0.5856 (6)	-0.0446 (2)	0.7127 (6)	0.0201 (11)
H4A	0.6924	-0.0432	0.7446	0.030*
H4B	0.5253	-0.0610	0.5904	0.030*
H4C	0.5723	-0.0764	0.7926	0.030*
C5	0.3737 (6)	0.0318 (3)	0.6638 (8)	0.0300 (13)
H5A	0.3546	0.0749	0.7105	0.045*
H5B	0.3384	-0.0082	0.7039	0.045*
H5C	0.3197	0.0334	0.5340	0.045*
C6	0.9526 (7)	0.1948 (3)	0.7012 (7)	0.0250 (12)
H6A	0.9526	0.1926	0.5880	0.038*
H6B	1.0473	0.2157	0.7914	0.038*
H6C	0.8674	0.2234	0.6872	0.038*
C7	1.0888 (6)	0.0668 (3)	0.7656 (6)	0.0189 (11)
H7A	1.0886	0.0174	0.7943	0.028*
H7B	1.1836	0.0884	0.8537	0.028*
H7C	1.0791	0.0711	0.6477	0.028*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pt1	0.01236 (9)	0.01404 (8)	0.01011 (8)	-0.00112 (17)	0.00359 (6)	-0.00035 (14)
Cl1	0.0163 (6)	0.0239 (6)	0.0214 (6)	-0.0052 (5)	0.0056 (5)	-0.0047 (5)
Cl2	0.0297 (13)	0.0281 (12)	0.0108 (10)	-0.0039 (8)	0.0099 (9)	-0.0004 (6)
S 1	0.0130 (10)	0.0138 (10)	0.0105 (9)	0.0002 (6)	0.0037 (8)	0.0016 (6)
01	0.018 (2)	0.0257 (19)	0.0129 (17)	0.0000 (15)	0.0058 (15)	-0.0009 (14)
N1	0.021 (2)	0.016 (2)	0.013 (2)	-0.0045 (17)	0.0072 (18)	0.0003 (16)
N2	0.016 (2)	0.018 (2)	0.022 (2)	0.0048 (18)	0.0057 (19)	0.0029 (18)
N3	0.010 (2)	0.019 (2)	0.020 (2)	-0.0008 (17)	0.0053 (18)	-0.0029 (17)
C1	0.013 (3)	0.022 (3)	0.016 (2)	-0.001 (2)	0.009 (2)	0.002 (2)
C2	0.027 (3)	0.021 (3)	0.030 (3)	0.005 (2)	0.008 (3)	-0.002(2)
C3	0.026 (3)	0.029 (3)	0.026 (3)	0.002 (3)	-0.001 (3)	0.006 (2)
C4	0.019 (3)	0.019 (3)	0.017 (2)	0.000 (2)	0.006 (2)	-0.006 (2)
C5	0.014 (3)	0.032 (3)	0.044 (4)	-0.003 (2)	0.014 (3)	-0.010 (3)
C6	0.029 (3)	0.021 (3)	0.021 (3)	0.001 (2)	0.009 (2)	0.005 (2)
C7	0.016 (3)	0.019 (3)	0.017 (2)	0.004 (2)	0.004 (2)	-0.002 (2)

Geometric parameters (Å, °)

Pt1—N1	2.013 (4)	C2—H2C	0.9800	
Pt1—S1	2.189 (2)	C3—H3A	0.9800	
Pt1—Cl1	2.3214 (13)	C3—H3B	0.9800	
Pt1—Cl2	2.327 (2)	C3—H3C	0.9800	
S1—O1	1.462 (4)	C4—H4A	0.9800	
S1—C7	1.769 (5)	C4—H4B	0.9800	
S1—C6	1.773 (5)	C4—H4C	0.9800	
N1-C1	1.316 (6)	C5—H5A	0.9800	

supplementary materials

N1—H1N	0.8556	С5—Н5В	0.9800
N2—C1	1.342 (7)	C5—H5C	0.9800
N2—C2	1.452 (7)	С6—Н6А	0.9800
N2—C3	1.459 (7)	С6—Н6В	0.9800
N3—C1	1.352 (6)	С6—Н6С	0.9800
N3—C4	1.451 (6)	C7—H7A	0.9800
N3—C5	1.467 (6)	С7—Н7В	0.9800
C2—H2A	0.9800	C7—H7C	0.9800
C2—H2B	0.9800		
N1—Pt1—S1	91.13 (12)	N2—C3—H3A	109.5
N1—Pt1—Cl1	175.21 (12)	N2—C3—H3B	109.5
S1—Pt1—Cl1	90.38 (7)	НЗА—СЗ—НЗВ	109.5
N1—Pt1—Cl2	88.20 (12)	N2—C3—H3C	109.5
S1—Pt1—Cl2	178.66 (11)	НЗА—СЗ—НЗС	109.5
Cl1—Pt1—Cl2	90.38 (7)	НЗВ—СЗ—НЗС	109.5
O1—S1—C7	108.1 (2)	N3—C4—H4A	109.5
O1—S1—C6	107.6 (3)	N3—C4—H4B	109.5
C7—S1—C6	101.2 (3)	H4A—C4—H4B	109.5
O1—S1—Pt1	117.94 (19)	N3—C4—H4C	109.5
C7—S1—Pt1	110.29 (19)	H4A—C4—H4C	109.5
C6—S1—Pt1	110.4 (2)	H4B—C4—H4C	109.5
C1—N1—Pt1	129.5 (3)	N3—C5—H5A	109.5
C1—N1—H1N	111.0	N3—C5—H5B	109.5
Pt1—N1—H1N	115.1	H5A—C5—H5B	109.5
C1—N2—C2	122.2 (4)	N3—C5—H5C	109.5
C1—N2—C3	121.1 (4)	H5A—C5—H5C	109.5
C2—N2—C3	116.1 (4)	H5B—C5—H5C	109.5
C1—N3—C4	122.5 (4)	S1—C6—H6A	109.5
C1—N3—C5	121.4 (4)	S1—C6—H6B	109.5
C4—N3—C5	115.0 (4)	H6A—C6—H6B	109.5
N1—C1—N2	120.9 (5)	S1—C6—H6C	109.5
N1—C1—N3	120.7 (4)	H6A—C6—H6C	109.5
N2—C1—N3	118.4 (4)	H6B—C6—H6C	109.5
N2—C2—H2A	109.5	S1—C7—H7A	109.5
N2—C2—H2B	109.5	S1—C7—H7B	109.5
H2A—C2—H2B	109.5	H7A—C7—H7B	109.5
N2—C2—H2C	109.5	S1—C7—H7C	109.5
H2A—C2—H2C	109.5	Н7А—С7—Н7С	109.5
H2B—C2—H2C	109.5	Н7В—С7—Н7С	109.5

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1N···O1 ⁱ	0.86	2.21	3.021 (5)	159

Symmetry code: (i) x, -y, z+1/2.