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A B S T R A C T

Although bioactive peptides have traditionally been studied for their health-promoting qualities in the context of
nutrition and medicine, the past twenty years have seen a steady increase in their application to cell culture
media optimization. Complex natural sources of bioactive peptides, such as hydrolysates, offer a sustainable and
cost-effective means of promoting cellular growth, making them an essential component of scaling-up cultivated
meat production. However, the sheer diversity of hydrolysates makes product selection difficult, highlighting the
need for functional characterization. Traditional wet-lab techniques for isolating and estimating peptide
bioactivity cannot keep pace with peptide identification using high-throughput tools such as mass spectrometry,
requiring the development and use of machine learning-based classifiers.
This review provides a comprehensive list of available software tools to evaluate peptide bioactivity, classified

and compared based on the algorithm, training set, functionality, and limitations of the underlying models. We
curated independent test sets to compare the predictive performance of different models based on specific
bioactivity classification relevant to promoting cell culture growth: antioxidant and anti-inflammatory. A
comprehensive screening of all bioactivity classifiers revealed that while there are approximately fifty tools to
elucidate antimicrobial activity and sixteen that predict anti-inflammatory activity, fewer tools are available for
other functionalities related to cell growth — five that predict antioxidant activity and two for growth factor
and/or cell signaling prediction. A thorough evaluation of the available tools revealed significant issues with
sensitivity, specificity, and overall accuracy. Despite the overall interest in estimating peptide bioactivity, our
work highlights key gaps in the broader adoption of existing software for the specific application of cell culture
media optimization in the context of cultivated meat and beyond.

1. Introduction

The production of cultivated meat via cell culture is a developing
technology with the potential to sustainably address increasing world-
wide demand for meat. In contrast to traditional animal sources, culti-
vated meat is projected to emit fewer greenhouse gases and utilize fewer
resources, including energy, land, and water (Tuomisto and Mattos,
2011; Carus et al., 2019). Furthermore, animal-free meat avoids the
ethical concerns surrounding animal rearing, and can address more
recent health concerns over the transmission of animal diseases and
zoonotic epidemics (such as COVID-19) (O’Neill et al., 2021). Despite

these advantages, one of the biggest constraints in the economic feasi-
bility and productivity of cultivated meat lies in the cost and composi-
tion of cell culture media (O’Neill et al., 2021). Cellular proliferation in
vitro is sustained by a complex cocktail of basic macronutrients as well
as other essential components, such as growth factors, vitamins, and
hormones (Chandra et al., 2022; Siemensma et al., 2010). In traditional
mammalian cell culture, these requirements are often met through the
addition of fetal bovine serum (FBS) (Siemensma et al., 2010; Obaidi
et al., 2021), which is not a viable option for true animal-free status.
More broadly, FBS usage as a cell culture media supplement is regarded
as unsustainable due to the risk of microbial contamination, large
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production costs, and high batch-to-batch variability, all of which
compromise product quality and consistency (Ho et al., 2021; Obaidi
et al., 2021). The development and adoption of low-cost, food grade cell
culture media is thus necessary to produce affordable cultivated meat
(Humbird, 2021).

Plant protein hydrolysates have emerged as a cost-effective, ethical,
and potentially more sustainable alternative to conventionally produced
amino acid components and animal serum (Humbird, 2021; Ho et al.,
2021). Hydrolysates were initially developed from meat and microor-
ganism sources such as yeast, but have since expanded to include a
variety of different plant substrates such as cotton, soy, wheat, and rice
(Ho et al., 2021; Obaidi et al., 2021). The diversity in hydrolysate
products makes their compositional and functional characterization key
to efficient media optimization, by mapping the hydrolysate composi-
tion to the unique metabolic requirements of the cell type of interest
(Humbird, 2021). Hydrolysates are primarily peptide-rich products (Ho
et al., 2021; Obaidi et al., 2021; Djemal et al., 2021), many of which are
considered “bioactive”, i.e., believed to play a complex role in cellular
metabolism (Siemensma et al., 2010). Bioactive peptides are peptide
sequences that exert physiological effects as growth factors, antioxi-
dants, signalling molecules, and metal transporters (Ho et al., 2021;
Kumar et al., 2022). Plant hydrolysate peptide bioactivity has tradi-
tionally been studied in the context of human health and nutrition, as
they have been linked to possessing anti-diabetic, anti-cancer,
anti-microbial and anti-hypertensive properties, however, the last
twenty years of research has generated increasing appreciation for the
role of peptide bioactivity in the context of culture media (Dayem et al.,
2023; Spearman et al., 2014).

The identification of novel bioactive peptides remains challenging as
it depends on peptide sequence, structure, and a host of physicochemical
properties (Siemensma et al., 2010; Kumar et al., 2022). Although
experimental validation is the only gold standard for estimating bioac-
tivity (Farias et al., 2023; de Castro and Sato, 2014; Zhang et al., 2023;
Hsieh et al., 2022), it remains prohibitively resource intensive to vali-
date thousands of peptides per hydrolysate product. An alternative
approach that has emerged over the past 15 years is in silico bioactivity
classification, performed primarily using supervised learning models
trained on known bioactive peptides. These models use machine
learning (ML) algorithms to identify complex patterns in the primary

sequence, physiochemical properties and/or structural properties of the
labelled training set to predict the bioactivity of unknown peptides
(Bárcenas et al., 2022).

Bioactivity prediction tools emerged as early as 2010 with the
introduction of the antibacterial peptide (ABP) classifier AntiBP2 (Lata
et al., 2010). This was soon followed by several antimicrobial peptide
(AMP) classifiers, Wang et al. (2011), ANFIS (Fernandes et al., 2012)
and CS-AMPpred (Porto et al., 2012), as well as a general bioactivity
classifier PeptideRanker (Mooney et al., 2012), which were published
between 2011 and 2012. Since then, both the number of classifiers and
bioactivity categories have steadily expanded. Newer models aim to
improve accuracy by using more advanced algorithms, larger and/or
more accurate training sets and superior features. The growing interest
in therapeutic peptides has also led to the rise of classifiers for
anti-inflammatory (Gupta et al., 2017), cell-penetrating (CPP) (Holton
et al., 2013; Pandey et al., 2018; de Oliveira et al., 2021),
anti-hypertensive (Manavalan et al., 2019), and anti-cancer (Saravanan
and Lakshmi, 2015; Schaduangrat et al., 2019; Ahmed et al., 2021)
peptide prediction. This expansion in bioactivity prediction models
complicates model selection, necessitating comparative studies. Xu et al.
(2021) performed an excellent comparison of 28 AMP classifiers using
independent test sets and validation sets but the analysis did not extend
to other categories of classifiers. Independent test sets were also used by
Su et al. (2020) and Manavalan et al. (2022) to objectively evaluate the
predictive performance of CPP and anti-SARS-CoV-2 peptides, respec-
tively. However, to the best of our knowledge, no such independent
comparison has been performed for other important categories more
relevant to cell culture media optimization, including antioxidant and
anti-inflammatory peptide classifiers.

The objectives of this review are twofold: first, to characterize all
classifiers available for the prediction of bioactivity categories relevant
to media optimization (including antioxidant, anti-inflammatory, anti-
microbial, and growth factor); and second, to evaluate classifier per-
formance for bioactivity categories with three or more classifiers using
independent test sets. General characterization is aimed at comparing
classifier properties such as general architecture, e.g., algorithms
employed, features selected, and the size and properties of the training
sets, as well as their functionality, e.g., webserver availability, to assist
classifier selection. Meanwhile, independent evaluation of classifier

Fig. 1. Chronology of anti-inflammatory classifiers.
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performance using common test sets augments general characterization
with a better estimate of accuracy (than possible based on self-reported
statistics) and can serve to guide future application and development.
From this, we aim to identify potential areas of improvement to advance
the use of bioactivity classification for the rational selection of hydro-
lysate products in media optimization.

2. Classifier architecture

2.1. Anti-inflammatory

Anti-inflammatory peptides are seeing increased interest within the
context of peptide-based therapies to combat autoimmune and inflam-
matory illnesses, such as Alzheimer’s and rheumatoid arthritis (Gupta
et al., 2017). These peptides function to lower the release of prosta-
glandins, thromboxane, pro-inflammatory cytokines, etc. by cells, which
leads to reduced swelling and redness (Gupta et al., 2017). Their use also
extends to cell culture studies where they have been shown to lower the
release of reactive oxygen species (ROS), nitric oxide and
pro-inflammatory cytokines when added to lipopolysaccharide stimu-
lated culture of macrophages (Lee et al., 2015) and hepatic cell lines
(Cruz-Chamorro et al., 2022), thereby enhancing cell growth. To help
accelerate the search of novel anti-inflammatory peptides, 16
anti-inflammatory classifiers have been published over the past 8 years
as presented in Fig. 1, with AntiInflam (Gupta et al., 2017) pioneering
this bioactivity class. A summary of these classifiers is shown in Table 1.

While all tools prior to 2021 utilized traditional ML algorithms,
predominantly based on the random forest (RF) methodology, an
increasing number of models have since incorporated deep learning (DL)

algorithms, particularly convolutional neural networks (CNNs). In CNN
models, the input is typically a sequence represented as a one-hot
encoded matrix.1 The model uses filters to extract features from this
input, which are then used to predict the classification output (Xu et al.,
2021). In contrast, RF models are more simplistic, built upon an
ensemble of decision trees applied to user-defined features (Sarker,
2021). Although DL based models are more complex than traditional ML
models, they are not necessarily superior, as they are more susceptible to
overfitting, especially when trained on small datasets, which can
compromise the generalizability and accuracy of the model (Bejani and
Ghatee, 2021).

The datasets used to train the classifiers are generally small, with
most containing only 1000–2000 anti-inflammatory peptides, and
slightly imbalanced, having more negative peptides than positive pep-
tides. Such data imbalances are known to introduce bias towards the
larger category, potentially resulting in an increased number of false
negatives (Lertampaiporn et al., 2021). Several classifiers, AntiIn-
flamPred (Alotaibi et al., 2021), TPpred-ATMV (Yan et al., 2022) and
Peptipedia (Quiroz et al., 2021), did not make their datasets available or

Table 1
Summary of anti-inflammatory classifiers.

Name Reference Algorithm Positive database Positive
peptides

Negative
peptides

Data
availability

Offline
code

Webserver Citations
(all, articles)

AntiInflam Gupta et al.
(2017)

SVM IEDB 1258 1887 No No Inaccessible 89, 66

AIPpred Manavalan
et al. (2018)

RF IEDB 1258 1887 No No Inaccessible 147, 114

PreAIP Khatun et al.
(2019)

RF AIPpred and IEDB 1258 1887 Yes No Yes 88, 68

PEPred-suite Wei et al.
(2019)

RF AIPpred 1258 1887 No No Inaccessible 117, 98

PPTPP Zhang and Zou
(2020)

RF AIPpred 1258 1887 No Yes No 68, 59

AntiFlamPred Alotaibi et al.
(2021)

CNN AIPpred, PreAIP,
PEPred-suite, and IEDB

1911 4240 No No No 4, 4

AIEPred Zhang et al.
(2021a)

RF IEDB and Proinflam 690 1009 Yes Yes No 30, 26

PreTP-EL Guo et al.
(2021)

Ensemble (SVM and
RF)

AIPpred 1258 1887 Yes No Yes 28, 23

Peptipedia Quiroz et al.
(2021)

RF UniProt, LAMP2,
SATPdb, DBAASP,
DRAMP, CAMP, etc.

– – No No Inaccessible 14, 8

AIPStack Deng et al.
(2022)

Ensemble (ET and
RF)

IEDB 1493 2276 Yes Yes No 8, 6

Pep-CNN Zhang and Li
(2022)

CNN AIPpred 1258 1887 Yes Yes No 8, 5

MPMABP Li et al.
(2022b)

CNN and Bi-LSTM MLBP 1342 – Yes Yes No 7, 6

TPpred-
ATMV

Yan et al.
(2022)

AMVTLF AIPpred – – No Yes No 29, 26

MLBP Tang et al.
(2022)

CNN PreAIP 1342 – Yes Yes Yes 31, 25

PreTP-Stack Yan et al.
(2023)

Stacked ensemble
(SVM, RF, LDA, XGB,
and AMV)

AIPpred 1258 1887 Yes No Yes 13, 10

IF-AIP Gaffar et al.
(2024)

RF, LGBM, XGB, ETC,
and CatBoost

AntiInflam and iAIPs 1451 2339 Yes Yes No 4, 3

Algorithm names: random forests, RF; support vector machine, SVM; convolutional neural networks, CNN; bidirectional long short term memory, Bi-LSTM; adaptive
multi-view based on the tensor learning framework, AMVTLF; light gradient boost machine, LGBM; extreme gradient boositing, XGB; extra tree classifier, ETC; linear
discriminant analysis, LDA; auto-weighted multi-view learning, AMV.

1 One-hot encoding is a numerical representation of a protein or peptide
sequence of length m as an m x n matrix, where n represents the total number of
all possible amino acids. Each row represents a residue from the protein or
peptide with the corresponding column matching the residue containing a 1
and all other columns in that row containing a 0.
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use existing datasets. Excepting these, 5354 unique peptides were used
to train the classifiers.2 These peptides ranged in length from 5 to 50
amino acid residues, although most of these were on the shorter side of
this range, with a mode of 15 and average of 16.5 residues. Many of the
training set were found to have considerable overlap due to the fact that
most peptides were derived from the IEDB database (Vita et al., 2019),
with 85% of the peptides found to be shared by two or more classifiers.
As the choice of training set strongly impacts model accurary, this level
of overlap suggests that classifier performance is expected to be similar
across the classifiers, with most differences stemming from choice of
algorithm and features. For instance PreAIP (Khatun et al., 2019),
AIPpred (Manavalan et al., 2018), PPTPP (Zhang and Zou, 2020),
PEPred-Suite (Wei et al., 2019), PreTP-Stack (Yan et al., 2023),
PreTP-EL (Guo et al., 2021), Pep-CNN (Zhang and Li, 2022), and Anti-
Inflam were trained using the same dataset and all but Pep-CNN were
trained using different ML algorithms, all of which resulted in similar
self reported model performance scores. In contrast, AIPStack (Deng
et al., 2022) stands out as it uses one of largest and the most distinct
training set containing 684 unique peptides.

Approximately half of the published studies included a public web-
server, with the rest providing offline source code. Although webservers
appear more popular than offline code (as estimated from the citation
count of the associated journal article), a number of these are no longer
accessible (including all three published before 2020). Indeed, AIPpred
and PEPred-suite are among the most highly cited tools despite the fact
that they are currently unavailable. A summary of the user interface of
the functional webservers is seen in Table 2. Of these, PreTP-Stack
stands out from the rest based on its ability to handle longer peptide
sequences, process more than 1000 sequences per request, accept both
text or file inputs, and download results as a single CSV file.

2.2. Antioxidant

Antioxidant peptides are peptides that neutralize free radicals and
reactive oxygen species (ROS). They have been studied for their thera-
peutic potential in combating ailments that increase oxidative stress
such as diabetes and hypertension (Sun et al., 2021). In cell culture,
increased oxidative stress can lead to cell death and lower cell concen-
trations, with antioxidants typically added to culture media to combat
stress (Halliwell, 2014). The stability and solubility of antioxidant
peptides offer important advantages over traditional additives such as
vitamin E and vitamin C (Halliwell, 2014). Glutathione is just one
example of a tripeptide that is frequently added to culture media in this

capacity (Kwon et al., 2019). All five antioxidant classifiers identified as
part of this review have been published within the last four years:
AnOxPePred (Olsen et al., 2020), MultiPep (Grønning et al., 2021),
Peptipedia, AnOxPP (Qin et al., 2023) and Deep2Pep (Chen et al., 2024).
Of these, AnOxPePred and AnOxPP are dedicated classifiers that only
predict antioxidant activity, while the others are general classifiers that
predict antioxidant activity as just one form of bioactivity. AnOxPePred
further breaks down antioxidant activity into two specific categories —
free radical scavenger and ion chelator. A summary of these classifiers is
shown in Table 3.

All but Peptipedia were constructed using DL algorithms for classi-
fication. The majority of peptides utilized for training these classifiers
were short, with an average length of 6 residues. AnOxPP and AnOx-
PePred impose stringent length restrictions of 19 and 30 residues,
respectively, to align with the maximum length of peptides in their
respective training sets. In contrast, MultiPep has the capability to
classify peptides with lengths of up to 200 residues, despite being
trained on peptides smaller than 60 residues. Of the 1235 total antiox-
idant peptides used to train the classifiers, 431 were common to all.
AnOxPP used the largest dataset, comprising of 1060 antioxidant pep-
tides to train the classifier while the others used fewer than 700. No
overlap was observed with the negative datasets, but it should be noted
that we observed 244 contradictory peptides labelled as negative by
AnOxPePred but positive by AnOxPP and/or MultiPep. This is likely
because AnOxPePred sourced antioxidant peptides solely from BIOPEP-
UWM (Minkiewicz et al., 2019) while AnOxPP and MultiPep used
additional newer databases such as DFBP (Qin et al., 2022) and DBAASP
(Pirtskhalava et al., 2021), respectively. As these databases are inde-
pendently curated from peptides published in literature at different time
periods, and newer databases additionally contain antioxidant peptides
that were recently discovered. Moreover, AnOxPePred built a negative
dataset using a random peptide generation approach, where proteins
that are not known to function as antioxidants are obtained from Uni-
Prot and peptides are randomly generated from these protein sequences.
As parent protein function is not a reliable indicator of peptide function,
this may lead to these “non-antioxidant” peptides actually exhibiting
antioxidant activity. For example, the peptide AGTTCLFTPLALPYDYSH,
which was randomly generated by AnOxPePred, is not listed as an
antioxidant from the BIOPEP-UWM database and was consequently
labelled as negative by AnOxPePred, but is listed as an antioxidant in the
DFBP database and was thus labelled as positive by AnOxPP. This
observation reinforces the need for accurate negative dataset selection
as a key consideration in classifier development.

AnOxPePred, AnOxPP and MultiPep are all currently available as
functional accessible webservers (Table 4), but differ considerably in the
number of input peptides classified per request — AnOxPePred allows
20 peptides, AnOxPP 200 peptides, and MultiPep 500 peptides. While
none of the tools provide an API for processing large requests, MultiPep
is additionally available as a command-line Python tool. Despite its
limitations, the most popular tool appears to be AnOxPePred, with 75
citations to date. Its popularity can likely be attributed to its status as the
pioneering antioxidant classifier as well as a number of distinctive fea-
tures. Not only does it predict two antioxidant categories, but it also
possesses the capability to predict antioxidant peptides from parent
proteins both exhaustively and with common digestion enzymes such as
trypsin.

2.3. Antimicrobial

The most popular category of peptide bioactivity classification is
AMP prediction, with 50 tools published over the course of the past 15
years. This popularity is due in part to the potential of AMPs as drugs,
since they are well tolerated by humans and are less susceptible to
antimicrobial resistance (Xu et al., 2021). AMPs can also find use in cell
culture media formulations as the nutrient rich culture medium is a
fertile breeding ground for microorganisms which leads to

Table 2
Summary of user interface of functional anti-inflammatory webservers.

Name Input type Maximum
input

Results
download

Additional options

PreAIP FASTA
sequences

– No Can retrieve results
using jobID

MLBP FASTA
sequences or
FASTA file

1000
sequences

CSV Email notification

PreTP-
EL

FASTA
sequences or
FASTA file

1000
sequences

ZIP (text
file)

Email notification
and user determined
threshold

PreTP-
Stack

FASTA
sequences or
FASTA file

– CSV Email notification
and user determined
threshold

2 Analyzing the training set peptides revealed a discrepancy: 521 peptides
had contradictory labels as they were labelled as positive anti-inflammatory
peptides by some classifiers and negative by others. This discrepancy can be
partially attributed to databases growing over time as new peptides are
discovered and the tendency for classifiers to use peptides with unknown
function as their negative set.
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contamination of the cell culture (Mahmood and Ali, 2017). AMP is an
umbrella term that generally includes antibacterial, antiviral, anti-
fungal, and antiparasitic peptides (Zhang et al., 2021b; Benfield and
Henriques, 2020). While some classifiers distinguish between these
antimicrobial categories, others aim to predict broad spectrum antimi-
crobial activity (Bárcenas et al., 2022). AMPs vary in their mode of ac-
tion, with some acting directly and specifically against the microbe and
others stimulating and amplifying the immune response (Benfield and
Henriques, 2020). Cationic AMPs, for instance, increase the perme-
ability of and disrupt the negatively charged bacterial cell membrane
(Zhang et al., 2021b). Other AMPs specifically interrupt microbial
metabolic processes by, for example, inhibiting key protein synthesis,
DNA transcription and/or translation, enzyme activity and cell wall
synthesis (Zhang et al., 2021b; Benfield and Henriques, 2020). Very few
of the existing classifiers focus on classifying a specific class of AMPs,
such as cationic AMPs, and none currently aim to predict their mode of
action.

2.3.1. Broad spectrum antimicrobial
To date, 34 classifiers have been published that predict broad spec-

trum AMP bioactivity (Fig. 2), a summary of which is shown in Table 5.
While these classifiers claim to detect broad spectrum AMPs, many were
trained using datasets with a large number of ABPs over other categories
of AMPs. For example, iAMPpred (Meher et al., 2017) was trained using
3417 anti-bacterial peptides (ABPs) but only 739 anti-viral peptides
(AVPs). Such data imbalances can lead to these broad-spectrum classi-
fiers being biased towards specific sub-categories, such as ABPs, and
thus caution should be exercised while utilizing them for predicting
other categories such as AVPs. Two of these classifiers, DefPred (Kaur
et al., 2021) and Prediction of Linear Cationic AMPs (Ümmü et al., 2022)
are more specific in the type of AMP they predict, with the former
predicting defensins (host defense proteins found in plants and animals)
and the latter linear cationic AMPs (which work to disrupt the microbial
cell wall).

A majority (73%) of the tools are based on traditional ML algorithms,
with RF and SVM being most popular, and the rest on more recent DL
algorithms, such as CNN. The most cited models include iAMPpred,
AmPEP (Bhadra et al., 2018), and Deep-AmPEP30 (Yan et al., 2020), all
of which released an accompanying webserver. As noted earlier, the
convenience of webserver access is somewhat offset by the need for
continuous maintenance, with only 8 out of 19 AMP webservers still
accessible as of this writing.

Xu et al. (2021) evaluated the performance of 28 AMP classifiers
using an independent test set with 1536 AMPs and 1536 non-AMPs and
found that amPEPpy (Lawrence et al., 2021), an RF classifier, performed
the best with the highest area under the receiver operating characteristic
curve (AUC) score of 0.742. This performance was attributed to the
classifier’s large and diverse training set of 3268 AMP and non-AMP
peptides (Xu et al., 2021; Lawrence et al., 2021). The main drawbacks
identified in existing AMP classifiers is a high false positive rate (Xu
et al., 2021). This may be due to the fact that while positive peptides are
usually obtained from similar databases of peptides with known
experimentally validated bioactivity, negative peptides are less consis-
tent, as it is unusual to see experimental validation of non-bioactivity
(Bárcenas et al., 2022). These peptides are typically obtained from
UniProt with no AMP or related annotation (Bárcenas et al., 2022).
However, this approach generally fails to capture the full breadth of
non-bioactive peptides and can result in poor performance outside of
specific test cases (Sidorczuk et al., 2022).

2.3.2. Specific antimicrobial
Among 22 specific AMP classifiers (Fig. 3), six only predict ABPs,

with four of these additionally able to discriminate between gram-
positive and gram-negative ABPs. The remaining classifiers predict
multiple categories of AMPs, including ABPs, AVPs, antifungal peptides
(AFPs), and antiparasitic peptides (APPs). A summary of these classifiers
is shown in Table 6. While some earlier tools predicting AVPs, such as
ClassAMP (Joseph et al., 2012), used a small training set with only 54
AVPs, newer tools like AMPfun (Chung et al., 2020) utilize much larger
datasets, e.g., 1400 AVPs. Of all 22 AMP classifiers, 18 have developed
web servers, with 10 still operational. The most highly cited classifiers
include ones published first like iAMP-2L (Xiao et al., 2013), a multiple
classifier, and more recent ones such as Antimicrobial Peptide Scanner
vr.2 (Veltri et al., 2018), which predicts peptides targeting both
gram-positive and gram-negative bacteria. The Antimicrobial Peptide
Scanner vr.2 webserver is particularly notable for its ability to process
up to 50,000 sequences per request, with loose length constraints of
10–200 residues, likely contributing to its increased use.

2.4. Other categories

Beyond the bioactivity classifications discussed thus far, some pep-
tides are believed to promote cell growth by functioning as growth
factors, signal peptides and hormones. However, the prediction of these

Table 3
Summary of antioxidant classifiers.

Name Reference Algorithm Positive database Positive
peptides

Negative
peptides

Data
availability

Offline
code

Webserver Citations (all,
articles)

AnOxPePred Olsen et al.
(2020)

CNN BIOPEP-UWM 696 218 Yes Yes Yes 75, 59

Peptipedia Quiroz et al.
(2021)

RF DFBP and BIOPEP-UWM – – No No Inaccessible 14, 8

MultiPep Grønning et al.
(2021)

CNN BIOPEP-UWM, APD3, LAMP2,
DBAASP, etc

540 – Yes Yes Yes 15, 11

AnOxPP Qin et al.
(2023)

BiLSTM UniProt, APD, AHTPDB, DFBP,
BIOPEP-UWM and BGI-marine

848 848 Yes No Yes 7, 3

Deep2Pep Chen et al.
(2024)

BiLSTM UniProt, LAMP2, SATPdb,
DBAASP, DRAMP, CAMP, etc.

– – No No No 0, 0

Algorithm names: random forest, RF, convolutional neural networks, CNN; bidirectional long short term memory, Bi-LSTM.

Table 4
Summary of user interface of functional antioxidant webservers.

Name Sequence length Input type Maximum input Results download Additional options

AnOxPePred 2–30 FASTA sequences or FASTA file 50 sequences CSV Modes: peptide, protein exhaustive and enzymatic digestion
MultiPep 2–200 List of sequences 500 sequences CSV Outputs average or maximum of all models
AnOxPP 2–19 FASTA sequences or FASTA file 200 sequences FASTA file 

K.S. Isaac et al. Current Research in Food Science 9 (2024) 100842 

5 



functions is currently limited to only two tools: Peptipedia andMultiPep,
of which only MultiPep remains available. The models implemented by
MultiPep were trained using a relatively large dataset with 3760
cytokines/growth-factors and 6943 hormones and had a self reported
sensitivity of approximately 0.76 for both categories (Grønning et al.,
2021).

3. Classifier validation

With the sheer number of tools available for each category of peptide
bioactivity and the diversity in training and validation sets, establishing
an accurate assessment of predictive performance requires the use of a
standardized framework. As antimicrobial classification has already
been thoroughly analyzed by Xu et al. (2021), we chose to focus on
anti-inflammatory and antioxidant classification for this review.

3.1. Independent test sets

To assess the performance of anti-inflammatory and antioxidant
classifiers, we created two independent test sets for each classifier. In-
dependent test set I was constructed by gathering all peptides used to
train other classifiers within the same category and then excluding the
peptides used to train the classifier being evaluated. Technically, this
resulted in a set of test sets, with each classifier assessed using a slightly
different variant. Under this strategy, each classifier was essentially
tested using the training sets of other classifiers, excluding the peptides
that it was originally trained on. The goal of this independent test set
was to get a sense of classifier performance by using high confidence
peptides. Since anti-inflammatory tools were typically trained on data
from the IEDB database and antioxidant tools from the BIOPEP-UWM
database, but utilized different sets of peptides, our goal was to eval-
uate these tools using peptides that were reliable enough to have been
part of the training dataset of at least one tool. Furthermore, we
excluded 521 anti-inflammatory peptides and 244 antioxidant peptides
with contradictory labels from all test sets to ensure the reliability of the
evaluations (see sections 2.1 and 2.2). This resulted in a unique inde-
pendent test set for each classifier, with the peptide breakdown shown in
Table 7.

Independent test set II was developed as a truly common external

dataset. For anti-inflammatory classifiers, this set of peptides was ob-
tained from Peptipedia, BIOPEP-UWM, and MDPDB (Yang et al., 2023)
databases, containing known anti-inflammatory peptides. Negative
anti-inflammatory peptides were sourced from UniProt, ensuring that
none of the peptides were annotated with GO terms indicating
anti-inflammatory properties. Similarly, the peptides for testing the
antioxidant classifiers utilized positive peptides from AODB (Deng et al.,
2023), an antioxidant peptide database, and Peptipedia, while negative
peptides were sourced from UniProt, ensuring absence of
antioxidant-related GO annotations such as “antioxidant” and “scav-
enger”. For both the positive and negative datasets for each class, pep-
tides that were used to train the classifiers were filtered out along with
any peptide with non-standard amino acid residues. Subsequently,
peptides were filtered by length to comply with the most stringent
length constraints accepted by all classifiers. For anti-inflammatory
classifiers, this meant a length range of 5–50 residues, while for anti-
oxidant classifiers, it was 2–19 residues. As this resulted in more nega-
tive peptides than positive, an equal number of negative peptides were
randomly sampled to balance the length distribution between positive
and negative sets. This resulted in 350 positive and negative peptides
each to evaluate the anti-inflammatory classifiers and 496 positive and
negative peptides each to evaluate antioxidant classifiers. All indepen-
dent test sets are available at https://doi.org/10.5281/zenodo
.11402692.

Tested classifiers were limited to those that were available as func-
tional webservers or as functional stand-alone tools. Stand-alone tools
were excluded if we were unable to achieve results on a trivial example
within 6 h of installation (which may not have been possible due to
missing documentation or occasional bugs). Of the 16 anti-inflammatory
tools, seven were released as webservers but only four remain func-
tional. Although eight provided their model code as a GitHub repository,
all were excluded due to insufficient documentation. Of the five released
antioxidant classifiers, only three are available as functional webservers.
Of these three, MultiPep is also available as a functional stand-alone
command-line interface Python tool, which was used in lieu of the
webserver to process large requests. As AnOxPePred outputs both free
radical scavenger and ion chelation activities, these were evaluated
separately as AnOxPePred-Scavenger and AnOxPePred-Chelator,
respectively.

Fig. 2. Chronology of broad spectrum antimicrobial classifiers.
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Table 5
Summary of broad spectrum antimicrobial classifiers.

Name Reference Algorithm Positive database Positive
peptides

Negative
peptides

Data
availability

Offline
code

Webserver Citations
(all, articles)

Wang et al. (2011) Wang et al. (2011) kNN CAMP 2752 10014 No No Inaccessible 182, 143
ANFIS Fernandes et al.

(2012)
ANFIS APD2 115

clusters
116 clusters No No No 34, 22

CS-AMPpred Porto et al. (2012) SVM PDB 310 310 No Yes No 76, 54
DBAASP Gogoladze et al.

(2014)
Physicochemical PubMed 1083 – No No Inaccessible 86, 49

MLAMP Lin and Xu (2016) SMOTE iAMP-2L 879 2405 No No Inaccessible 77, 56
iAMPpred Meher et al. (2017) SVM CAMP, APD3 and AntiBP2,

AVPpred, and LAMP
5652 3261 No No Inaccessible 311, 253

AmPEP Bhadra et al.
(2018)

RF APD3, CAMPR, and LAMP 3268 166791 Yes No Yes 165, 116

MAMPs Pred Lin et al. (2019) RF APD 2618 4371 No No No 34, 22
AMAP Gull et al. (2019) SVM APD3 2704 5156 No No Inaccessible 53, 34
APIN Su et al. (2019) DNN DAMP, AntiBP2, AIPpred, and

APD3
6168 13861 Yes Yes No 56, 37

AmpGram Burdukiewicz et al.
(2020)

RF dbAMP 2463 2463 Yes Yes Yes 49, 35

Deep-AmPEP30 Yan et al. (2020) CNN AmPEP 1529 1529 Yes Yes Yes 172, 93
ACEP Fu et al. (2020) DNN AMPScanner  0 Yes Yes No 28, 18
ampir Fingerhut et al.

(2020)
SVM UniProt – – Yes Yes Yes 22, 17

IAMPE Kavousi et al.
(2020)

Ensemble CAMP, LAMP, ADAM, and
AntiBP

2667 1390 No No Inaccessible 50, 33

Macrel Santos-Júnior et al.
(2020)

RF ADP3, CAMPR3, and LAMP 1197 1197–60000 Yes Yes Yes 30, 22

amPEPpy Lawrence et al.
(2021)

RF APD3, CAMPR, and LAMP 3268 3268 Yes Yes No 45, 28

AI4AMP Lin et al. (2021) DNN APD3, LAMP, CAMP3, and
DRAMP

3528 3528 Yes Yes Inaccessible 31, 21

DefPred Kaur et al. (2021) SVM DRAMP2.0, and CAMPR3 1036 1036 Yes Yes Yes 4, 1
AniAMPpred Sharma et al.

(2021a)
SVM NCBI and starPepDB 6657 6773 No No Inaccessible 34, 22

Co-AMPpred Singh et al. (2021) Ensemble Deep-AmPEP30 1529 1529 Yes Yes No 17, 13
Ensemble-AMPPred Lertampaiporn

et al. (2021)
Ensemble APD, BACTIBASE, BAGEL3,

CAMP, DRAMO, DBAASP,
BIOPEP-UWM, etc

1800 1800 No No No 21, 13

sAMP-PFPDeep Hussain (2022) DNN ADAM 1529 1529 Yes Yes No 28, 18
MultiPep Grønning et al.

(2021)
CNN APD3, BioDADPep, BIOPEP-

UWM, CAMPR3, DBAASP,
LAMP2, PeptideDB, and
SATPdb

14362 – Yes Yes Yes 15, 11

Peptipedia Quiroz et al. (2021) RF UniProt, LAMP2, SATPdb,
DBAASP, DRAMP, CAMP, etc.

– – No No Inaccessible 14, 8

MLBP Tang et al. (2022) CNN PreAIP, mAHTPred,
BioDADPep, AntiCP 2.0, and
AMPfun

1342 – Yes Yes Yes 31, 25

Prediction of Linear
Cationic
Antimicrobial
Peptides

Ümmü et al. (2022) RF DBAASP 396 308 No No No 11, 7

AMP0 Gull and Minhas
(2022)

SVM DBAASP vr. 2 5710 – No No Inaccessible 53, 34

AMPlify Li et al. (2022a) BiLSTM APD3 and DADP 3338 3338 Yes Yes No 56, 37
AMPpred-EL Lv et al. (2022) Ensemble SATPdb, ADAM, AMPfun,

APD3, CAMP, LAMP, DRAMP
and dbAMP

3268 3268 No No No 34, 22

MPMABP Li et al. (2022b) CNN and
BiLSTM

MLBP 2409 – Yes Yes No 7, 6

TPpred-ATMV Yan et al. (2022) AMVTLF AntiBP and AVPpred – – No Yes No 29, 26
AMP-GSM (Gülsüm Söylemez

et al., 2023)
RF DBAASP, APD vr.3 and AIPpred 1258 1887 No No No 2, 2

CAMPR4 (Gawde et al.,
2023)|

RF, SVM or ANN NCBI protein, PDB, PubMed 3920 3920 No No Inaccessible 45, 27

Algorithm names: random forest, RF; support vector machine, SVM; convolutional neural networks, CNN; bidirectional long short term memory, Bi-LSTM; adaptive
multi-view based on the tensor learning framework, AMVTLF; adaptive neuro-fuzzy inference system, ANFIS; synthetic minority over-sampling technique, SMOTE;
deep neural networks, DNN; k nearest neighbor, kNN.
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Model performance was assessed using receiver operating charac-
teristic (ROC) curves, with the AUC serving as the performance metric.
Additionally, classifier performance was evaluated using standard
metrics, including sensitivity, specificity, and error rate.3 As these
metrics require the definition of a threshold for classification, evalua-
tions were conducted using both the default threshold (set by the clas-
sifier) and the optimal threshold. Classifiers PreAIP, AnOxPePred,
AnOxPP and MultiPep output a score between 0 and 1, with the default
being 0.5. PreTP-Stack and PreTP-EL, on the other hand, provide the
predicted category, positive or negative, and a corresponding score for
between 0 and 1 for the predicted category. To account for this, if the
predicted class was negative, the score was modified to be negative so
higher negative scores indicate stronger non-anti-inflammatory activity
with 0 separating the two. Finally, MLBP (Tang et al., 2022) does not
output a probability but merely a binary category, which was catego-
rized as 0 or 1 with no threshold (which meant that assessment using
ROC curves was not meaningful, so it was excluded for this classifier).
The optimal threshold, that allows for maximum discriminatory power
between positive and negative peptides, was determined as the value
that maximizes the F1-score, providing a balanced measure between
precision and sensitivity.

3.2. Anti-inflammatory

Anti-inflammatory classification validation was limited to PreAIP,
PreTP-EL, PreTP-Stack, and MLBP. Results from independent test set I
indicate that PreAIP, PreTP-EL, and PreTP-Stack all performed well,
achieving AUC values over 0.75 (Fig. 4A). At the default threshold,
PreAIP and PreTP-Stack demonstrated both sensitivity and specificity
greater than 50%, with error rates slightly above 25% (Fig. 4B). As these
three classifiers were trained on the same dataset, independent set I
serves as a common benchmark for comparison (see Table 7). Of the
three, PreAIP performed the best, with the highest AUC score of 0.833
and lowest error rate. Despite being trained on the same dataset, the

classifiers use different algorithms, which accounts for their perfor-
mance differences. PreAIP is an RF classifier, while PreTP-EL and PreTP-
Stack are ensemble classifiers. PreTP-EL combines RF and SVM, whereas
PreTP-Stack integrates SVM, RF, linear discriminant analysis (LDA),
extreme gradient boosting (XGB), and adaptive majority voting (AMV).
In contrast, MLBP performed no better than a random classifier, with an
AUC of 0.505 and an error rate close to 50%.

However, classifier performance was much worse when tested with
independent test set II. ROC curves showed that all tools had predictions
only slightly better than random, with curves close to the random 45-de-
gree line (Fig. 4C). PreTP-Stack and PreAIP had similar AUC values of
approximately 0.570 followed by PreTP-EL with an AUC of 0.495.
Despite the overall poor performance, PreAIP, PreTP-EL, and MLBP
demonstrated relatively high specificity at their default thresholds,
indicating a lower rate of false positives relative to true negatives
(Fig. 4D). However, their low sensitivity indicates a high false negative
rate, meaning bioactive peptides are more likely to be misclassified than
non-bioactive peptides. This high false negative rate may result from the
classifiers not being general enough to recognize all bioactive peptides,
possibly due to the small size of the training database. To further
investigate performance, we grouped peptides in the second indepen-
dent test dataset based on peptide length. Given that most peptides used
to train the classifiers were 15–25 amino acids long, we aimed to assess
if peptide length impacted the results. Indeed, PreTP-Stack and MLBP
displayed higher error rates with longer peptides, while the other clas-
sifiers displayed lower error rates (Fig. 4F), further highlighting the
important of large training sets.

3.3. Antioxidant

Antioxidant classification validation was limited to AnOxPP, AnOx-
PePred (including both Scavenger and Chelator) and MultiPep. In
contrast to anti-inflammatory classifiers, the results from independent
test set I indicate that all classifiers failed to perform better than a
random classifier, with ROC curves close to the 45◦ line (Fig. 5A).
MultiPep with the highest AUC score of 0.600, has the best discrimi-
natory power. While the sensitivity is low for AnOxPePred-Scavenger,
AnOxPePred-Chelator and MultiPep, the specificity is high, being close
to 100%, which indicates that the ratio of false positives to true

Fig. 3. Chronology of specific antimicrobial classifiers.

3 Sensitivity is defined as the ratio of true positives to all positives; specificity
is the ratio of true negatives to all negatives; error rate is the ratio of number of
peptides classified incorrectly to total number of peptides in the test set.
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negatives is low (Fig. 5B). AnOxPP did not perform as well as the others
with sensitivity, specificity and error rate at 50%. Results from inde-
pendent test set II were better (Fig. 5C–F). MultiPep was again found to
have the highest AUC of 0.852 followed by AnOxPePred-Chelator with
0.602. At the default threshold, AnOxPePred-Scavenger, AnOxPePred-
Chelator and MultiPep had a high specificity but low sensitivity, indi-
cating that these classifiers have problems with false negatives.
Lowering the threshold can lower the number of false negatives and
increase sensitivity, but this comes at the cost of increasing the number
of false positives, thereby decreasing specificity. Taken together, all
models have an error rate just under 50% suggesting that they are only

Table 6
Summary of specific antimicrobial classifiers.

Name Reference Algorithm Positive database Positive
peptides

Negative
peptides

Data
availability

Offline
code

Webserver Citations
(all,
articles)

AntiBP2 Lata et al. (2010) SVM APD 999 999 No No Yes 196, 139
ClassAMP Joseph et al. (2012) SVM or RF CAMP AVP(54),

ABP(454),
AFP(61)

AVP(108),
ABP(908),
AFP(122)

No No Yes 112, 81

iAMP-2L Xiao et al. (2013) kNN APD 1486 2405 No No Inaccessible 441, 355
DBAASP Gogoladze et al.

(2014)
Physicochemical PubMed 1083 – No No Inaccessible 86, 49

Antimicrobial
Peptide
Scanner vr.1

Veltri (2015) RF APD 115 116 No No Yes 10,

Antimicrobial
Peptide
Scanner vr.2

Veltri et al. (2018) DNN APD3 712 712 No No Yes 265, 199

MAMPs Pred Lin et al. (2019) RF APD 2618 4371 No No No 34, 22
AMAP Gull et al. (2019) SVM APD3 2704 5156 No No Inaccessible 53, 34
PEPred-suite Wei et al. (2019) RF AntiBP and

AVPpred
1258 1887 No No Inaccessible 117, 98

AMPfun Chung et al. (2020) RF, SVM APD3, ADAM,
ParaPep, AVPdb,
CancerPPD,
MLACP, AntiCP,
AntiFP, and
DRAMP

AVP(1400),
APP(140),
ABP(1930,
1931), AFP
(1912)

AVP(2451),
APP(700),
ABP(1624,
1634), AFP
(1261)

Yes No Yes 0, 0

PPTPP Zhang and Zou
(2020)

RF AntiBP and
AVPpred

AVP(544),
ABP(800)

AVP(405),
ABP(800)

No Yes No 68, 59

iAMP-Ca2L Xiao et al. (2021) CNN-BiLSTM-
SVM

APD3, AMPer, and
ADAM

3594 3925 Yes Yes Inaccessible 36, 29

AMP Discover Pinacho-Castellanos
et al. (2021)

RF starPepDB 9781 9767 No No Yes 25, 22

Deep-ABPpred Sharma et al. (2021b) BiLSTM APD, DRAMP, and
MilkAMP

1635 1485 Yes No Inaccessible 49, 42

MultiPep Grønning et al. (2021) CNN APD3, BioDADPep,
BIOPEP-UWM,
CAMPR3, DBAASP,
PeptideDB,
SATPdb, etc

14362,
(13538 ABP)

– Yes Yes Yes 15, 11

Peptipedia Quiroz et al. (2021) RF UniProt, LAMP2,
SATPdb, DBAASP,
DRAMP, CAMP,
etc.

– – No No Inaccessible 14, 8

PreTP-EL Guo et al. (2021) Ensemble AntiBP and
AVPpred

AVP(544),
ABP(800)

AVP(405),
ABP(800)

Yes No Yes 28, 23

StaBle-ABPpred Singh et al. (2022) BiLSTM APD, DRAMP, and
MilkAMP

652 7284 Yes No Inaccessible 24, 19

Pep-CNN Zhang and Li (2022) CNN AntiBP and
AVPpred

AVP(544),
ABP(800)

AVP(405),
ABP(800)

Yes Yes No 8, 5

TPpred-ATMV Yan et al. (2022) AMVTLF AntiBP and
AVPpred

– – No Yes No 29, 26

PreTP-Stack Yan et al. (2023) Ensemble AntiBP and
AVPpred

AVP(544),
ABP(800)

AVP(405),
ABP(800)

Yes No Yes 13, 10

AntiBP3 Bajiya et al. (2024) RF APD3, AntiBP2,
dbAMP 2.0,
CAMPR3, DRAMP,
and ABP-Finder

744 g
positive,
1164 g
negative,
1797 g
variable

– Yes Yes Yes 0, 0

Algorithm names: random forests, RF; support vector machine, SVM; convolutional neural networks, CNN; bidirectional long short term memory, Bi-LSTM; adaptive
multi-view based on the tensor learning framework, AMVTLF; deep neural networks, DNN; k nearest neighbor, kNN.

Table 7
Number of peptides used to test each classifier.

Bioactivity category Classifier name Positive peptides Negative peptides

Anti-inflammatory MLBP 2867 515
Anti-inflammatory PreTP-EL 1118 892
Anti-inflammatory PreAIP 1118 892
Anti-inflammatory PreTP-Stack 1118 892
Antioxidant AnOxPP 136 46
Antioxidant AnOxPePred 362 1057
Antioxidant MultiPep 387 1103
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Fig. 4. Results from anti-inflammatory classifier evaluation. (A) ROC curves and the corresponding AUC values of classifiers evaluated with independent test set I.
(B) sensitivity, specificity and error rate of classifiers evaluated with independent test set I. (C) ROC curves and the corresponding AUC values of classifiers evaluated
with independent test set II. (D) sensitivity, specificity and error rate of classifiers evaluated with independent test set II. (E) ROC curves for peptides of classifiers
grouped by peptide length of independent test set II. (F) sensitivity, specificity and error rate of classifiers grouped by peptide length of independent test set II. Note:
for the bar plots, dotted lines indicate the optimal threshold, whereas solid lines represent the default threshold.
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Fig. 5. Results from antioxidant classifier evaluation. (A) ROC curves and the corresponding AUC values of classifiers evaluated with independent test set I. (B)
sensitivity, specificity and error rate of classifiers evaluated with independent test set I. (C) ROC curves and the corresponding AUC values of classifiers evaluated
with independent test set II. (D) sensitivity, specificity and error rate of classifiers evaluated with independent test set II. (E) ROC curves for peptides of classifiers
grouped by peptide length of independent test set II. (F) sensitivity, specificity and error rate of classifiers grouped by peptide length of independent test set II. Note:
for the bar plots, dotted lines indicate the optimal threshold, whereas solid lines represent the default threshold.
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slightly better than a random classifier. No major differences in results
were observed when the peptide validation set was split by peptide
length, with the exception of error rate, which was much higher for
small peptides with 2–5 residues.

4. Conclusions

The peptides that make up hydrolysate products are more than just
the sum of their amino acids, and peptide bioactivity classification
serves as an important (if small) step towards predicting the impact that
any given hydrolysate product will have in cell culture. Accurate clas-
sification of, for example, anti-oxidant or anti-microbial activity in hy-
drolysate products can not only guide product selection, but lead to the
development of new and more potent hydrolysate formulations. Despite
the large number of published classifiers, however, serious gaps remain
in the application of bioactivity prediction in media optimization. First
and foremost, the vast majority of published classifiers have focused on
AMP prediction, and relatively few have been developed for predicting
antioxidant peptides, growth factor peptides, or peptide hormones. A
greater emphasis on the latter categories will be essential for media
optimization applications. Second is the issue of reproducibility.
Although classifiers available as a webserver garnered significantly
higher research interest, webserver maintenance remains a challenge,
with almost half of published servers currently non-functional. Among
the tools offered offline, many could not be used as a result of bugs or
insufficient documentation. A greater focus on accessibility and usabil-
ity will no doubt aid the adoption of bioactivity classification tools.
Third is the issue of generalizability. Despite relatively good perfor-
mance on test sets similar to training sets, the evaluation of anti-
inflammatory and antioxidant classifiers using independent test sets
revealed that current models generally suffer from low accuracy, with
AUC scores and error rates close to 50%. This suggests that existing ML
based approaches cannot be solely relied upon to identify novel pep-
tides. Moreover, the low sensitivity and specificity observed by many
classifiers indicate that these tools are not effective for preliminary
screening of peptides, as many potential bioactive peptides will likely be
lost in the process and non-bioactive peptides retained. Some of this
poor performance is likely a consequence of the limited size of the
training sets used to construct the classifiers. Another cause is the lack of
reliable databases for peptides confirmed to be non-bioactive, with
peptides assumed to be non-bioactive later identified to have bioactive
properties. Despite the challenges, none of the issues identified in this
review are insurmountable — continued interest in peptide bioactivity
will no doubt lead to more standardized tools and the development of
comprehensive peptide repositories, and with them, the promise of more
rational media design.
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