CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 1 March 2016
Accepted 13 March 2016

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; one-dimensional coordination polymer; orientational disorder; acetylacetonate complexes; cobalt(II); DABCO; magnetic behaviour.

CCDC reference: 1454848

Supporting information: this article has supporting information at journals.iucr.org/e

Orientational disorder in the one-dimensional coordination polymer catena-poly[[bis(acetyl-acetonato- $\left.\kappa^{2} O, O^{\prime}\right)$ cobalt(II) $]-\mu$-1,4-diaza-bicyclo[2.2.2]octane- $\left.\kappa^{2} N^{1}: N^{4}\right]$

Florina Dumitru, ${ }^{\text {a }}$ Ulli Englert ${ }^{\text {b }}$ and Beatrice Braun ${ }^{\mathrm{c} *}$

${ }^{\text {a }}$ Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Polizu 1, RO-011061 Bucharest, Romania, ${ }^{\mathbf{b}}$ Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany, and ${ }^{\text {c Institute of Chemistry, Humboldt University of Berlin, Brook-Taylor-Strasse 2, D-12489 Berlin, Germany. }}$ *Correspondence e-mail: beatrice.braun@hu-berlin.de

The title compound, $\left[\mathrm{Co}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\right]_{n}$, was obtained as a onedimensional coordination polymer from bis(acetylacetonato)diaquacobalt(II), $\left[\mathrm{Co}(\mathrm{acac})_{2}\left(\mathrm{OH}_{2}\right)_{2}\right]$, and 1,4-diazabicyclo[2.2.2]octane (DABCO), a diamine with good bridging ability and rod-like spacer function. In the chain complex that extends along the c axis, the $\mathrm{Co}^{\mathrm{II}}$ atom is six-coordinated, the O -donor atoms of the chelating acac ligands occupying the equatorial positions and the bridging DABCO ligands being in trans-axial positions. In the crystal structure, the DABCO ligand is conformationally disordered in a 50:50 manner as a result of its location across a crystallographic mirror plane. The metal-metal distance is very close to that in a related compound exhibiting weak antiferromagnetic exchange between the $\mathrm{Co}^{\mathrm{II}}$ ions, and the title compound can thus be useful for obtaining more information about the contribution of different bridges to the magnetic coupling between paramagnetic ions.

1. Chemical context

Self-assembly of coordination polymers from simple building blocks is of considerable interest due to their diverse architectures and potential applications in catalysis and advanced materials, such as magnetic, optic and electronic materials.

In this paper, two simple building blocks, namely 1,4 -diazabicyclo[2.2.2]octane (DABCO), a diamine with good bridging ability and rod-like spacer function, and the unsaturated square-planar metal complex bis(acetylaceto-nato- $\left.\kappa^{2} O, O^{\prime}\right) \operatorname{cobalt}(\mathrm{II}),\left[\mathrm{Co}(\mathrm{acac})_{2}\right]$, have been chosen to design a one-dimensional coordination polymer in which the paramagnetic $\mathrm{Co}^{\mathrm{II}}$ ions are separated by a distance of 7.2328 (7) \AA. This metal-metal distance is very close to the distance of 7.267 (3) \AA reported by Ma et al. (2001) for the

Figure 1
A section of the coordination polymer of (I). Only one of the 50:50 DABCO disorder forms and one orientation of the disordered acac methyl groups are shown. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented by circles. [Symmetry codes: $(a)-x,-y,-z ;(c) x, y,-z+1 ;(d)-x,-y,-z+1$.]
structurally related $\left[\mathrm{Co}(\mathrm{acac})_{2}(\text { pyrazine })\right]_{n}$ compound which exhibits weak antiferromagnetic exchange between the $\mathrm{Co}^{\mathrm{II}}$ ions.

Within this context, the title compound catena-poly[[bis-(acetylacetonato- $\kappa^{2} O, O^{\prime}$)cobalt(II)]- μ-1,4-diazabicyclo[2.2.2]-octane- $\left.\kappa^{2} N^{1}: N^{4}\right],\left[\mathrm{Co}(\mathrm{acac})_{2}(\mathrm{DABCO})\right]_{n},(\mathrm{I})$, can serve for a comparative investigation of the magnetic behaviour of analogous compounds and, thus, allow more information about the contribution of different bridges to the magnetic coupling between paramagnetic ions to be obtained.

2. Structural commentary

In the crystalline state, the title compound, (I), represents a one-dimensional coordination polymer self-assembled from bis(acetylacetonato)cobalt(II) units as metal-complex connectors and 1,4-diazabicyclo[2.2.2]octane (DABCO) as linkers.

The acetylacetonate (acac) ligand, which is the deprotonated form of acetylacetone (pentane-2,4-dione, acacH), is a well-known mononegative O, O^{\prime}-chelating donor agent and its metal coordination chemistry is well documented [for reviews

Figure 2
The molecular packing of the coordination polymer chains.
on the coordination chemistry of acac ligands, see: Aromí et al. (2008); Bray et al. (2007); Vigato et al. (2009)]. For DABCO, the bridging coordination behaviour is most exploited for the generation of coordination polymers and metal-organic frameworks (MOFs), with Zn^{2+} being the most common metal ion used in these structures [for representative examples, see: Furukawa et al. (2009); Uemura et al. (2007)].

The complex crystallizes in the orthorhombic Pnnm space group with the metal atom on a special position with site symmetry .. $2 / m$. The $\mathrm{Co}^{\mathrm{II}}$ atom shows an octahedral environment defined by four equatorial acac O atoms on a mirror plane, with bond lengths ranging from 2.0299 (10) to 2.0411 (10) \AA, and with two N atoms of bridging DABCO groups on a twofold rotation axis in the axial positions at distances of 2.3071 (12) A (Fig. 1).

3. Supramolecular features

The centrosymmetric DABCO ligand is bonded to two $\left[\mathrm{Co}(\mathrm{acac})_{2}\right]$ units, which gives rise to the formation of chains extending along the c axis (Fig. 2). The individual chains run parallel in the crystal and do not interact with each other. This polymer is essentially a one-dimensional coordination polymer, the only structural motif that is present being based on the $\mathrm{Co}^{\mathrm{II}}$ coordination requirements.

4. Database survey

Although some polymeric complexes of the form $\left[\mathrm{Co}(\mathrm{acac})_{2}(\mu \text {-diamine })\right]_{n}$ [diamine $=\mathrm{NH}_{2}-R-\mathrm{NH}_{2}$, with $R=$ $\mathrm{C}_{y} \mathrm{H}_{2 y+1}(y=6,11,12$; Fine, 1973), piperazine (Pellacani et al., 1973), 2,5-dimethylpyrazine (Blake \& Hatfield, 1978), and 1,2-bis(4-pyridyl)ethane and trans-1,2-bis(4-pyridyl)ethylene (Atienza et al., 2008)] have been synthesized over the years, their structures were elucidated only on the basis of spectroscopic and magnetic analyses. $\left[\mathrm{Co}(\mathrm{acac})_{2}(\mu \text {-diamine })\right]_{n}$ complexes similar in structure to the title compound, with square-planar $\left[\mathrm{Co}(\mathrm{acac})_{2}\right]$ units connected by bridging diamine ligands into infinite linear chains, were retrieved from the Cambridge Structural Database (CSD, Version 5.36 of November 2014; Groom \& Allen, 2014), viz. [Co(acac) ${ }_{2}\{\mu-1,3-$ bis(pyridin-4-yl)propane) $]_{n}$ (Lennartson \& Håkansson, 2009), $\left[\mathrm{Co}(\mathrm{acac})_{2}(\text { pyrazine })\right]_{n}$ and $\left[\mathrm{Co}(\mathrm{acac})_{2}\left(4,4^{\prime} \text {-bipyridine }\right)\right]_{n}(\mathrm{Ma}$ et al., 2001).

5. Synthesis and crystallization

$\left[\mathrm{Co}(\mathrm{acac})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ was prepared by precipitation of $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ with aqueous ammonia, followed by solubilization and complexation with acetylacetone. Elemental analysis calculated for $\left[\mathrm{Co}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ (\%): C 40.96, H 6.14; found: C 40.94, H 6.19.
$\left[\mathrm{Co}(\mathrm{acac})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \quad(293 \mathrm{mg}, \quad 1 \mathrm{mmol})$ and 1,4-diazabicyclo[2.2.2]octane (DABCO) ($112 \mathrm{mg}, 1 \mathrm{mmol}$) were stirred in $\mathrm{CH}_{3} \mathrm{OH}(15 \mathrm{ml})$ at 333 K for 1 h . The pink precipitate which formed was collected by filtration and redissolved in dimethyl sulfoxide (DMSO, 5 ml). Elemental analysis calculated for

Figure 3
Difference-density Fourier synthesis in the $a b$ plane through three DABCO C atoms before assignment of the DABCO H -atom positions; contour lines are drawn at $0.2 \mathrm{e} \mathrm{A}^{-3}$ intervals.
$\left[\mathrm{Co}(\mathrm{acac})_{2}(\mathrm{DABCO})\right](\%): \mathrm{C} 52.04$, H 7.05, N 7.59; found: C 51.63, H 7.39, N 7.41. Layering the solution of the complex in DMSO with $\mathrm{CH}_{3} \mathrm{OH}$ at 293 K gave pale-pink crystals suitable for X-ray single-crystal analysis.

Elemental analyses were carried out on a Heraeus CHNO Rapid apparatus (Institute of Inorganic Chemistry, RWTH Aachen University).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. Space filling more symmetric than atom positions leads to pronounced orientational disorder (Herberich et al., 1993) for the DABCO ligand over two positions due to mirror symmetry. As a result, the site occupancies of the C atoms are constrained to 0.5 . In principle, the same should be true for the associated H atoms, their alternative positions for the different C positions overlap very closely, thus forming the hexagon of local residual electrondensity maxima about the C-atom scaffold shown in Fig. 3. These maxima can be freely refined as H atoms with reasonable $\mathrm{C}-\mathrm{H}$ geometry and displacement parameters.

H atoms attached to C atoms were calculated, introduced in their idealized positions and treated as riding, with $\mathrm{C}-\mathrm{H}=$ $0.95 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ otherwise. For consistency, we opted to calculate the positions of the DABCO H atoms and fix them in their idealized positions. Due to the fact that the acac ligand lies on a mirror plane, the acac methyl groups are therefore equally disordered over two orientations.

Table 1
Experimental details.
Crystal data
Chemical formula
$M_{\text {r }}$
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections
$R_{\text {int }}$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S \quad 0.020,0.055,1.09$
No. of reflections
No. of parameters
H -atom treatment
$\Delta \rho_{\max }, \Delta \rho_{\min }\left(\mathrm{e} \AA^{-3}\right)$

1045
$\left[\mathrm{Co}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\right]$
369.32
Orthorhombic, Pnnm
100
$7.7468(3), 15.1573$ (4), 7.2328 (7)
$849.28(9)$
2
$\mathrm{Mo} \mathrm{K} \mathrm{\alpha}$
1.03
$0.48 \times 0.10 \times 0.04$

Stoe IPDS 2T
Multi-scan (MULABS in PLATON; Spek, 2003)
0.637, 0.960

11457, 1045, 944
0.045
0.649

81
H-atom parameters constrained $0.25,-0.39$

Computer programs: X-AREA (Stoe \& Cie, 2002), X-RED (Stoe \& Cie, 2002), SHELXS2013 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), DIAMOND (Brandenburg, 1999), Mercury (Macrae et al., 2006), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

References

Aromí, G., Gamez, P. \& Reedijk, J. (2008). Coord. Chem. Rev. 252, 964-989.
Atienza, J., Gutiérrez, A., Felisa Perpiñán, M. \& Sánchez, A. E. (2008). Eur. J. Inorg. Chem. pp. 5524-5531.

Blake, A. B. \& Hatfield, W. E. (1978). J. Chem. Soc. Dalton Trans. pp. 868-871.
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bray, D. J., Clegg, J. K., Lindoy, L. F. \& Schilter, D. (2007). Adv. Inorg. Chem. 59, 1-37.
Fine, D. A. (1973). J. Inorg. Nucl. Chem. 35, 4023-4028.
Furukawa, S., Hirai, K., Nakagawa, K., Takashima, Y., Matsuda, R., Tsuruoka, T., Kondo, M., Haruki, R., Tanaka, D., Sakamoto, H., Shimomura, S., Sakata, O. \& Kitagawa, S. (2009). Angew. Chem. Int. Ed. 48, 1766-1770.
Groom, C. R. \& Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662671.

Herberich, G. E., Wesemann, L. \& Englert, U. (1993). Struct. Chem. 4, 199-202.
Lennartson, A. \& Håkansson, M. (2009). Acta Cryst. C65, m325m327.
Ma, B.-Q., Gao, S., Yi, T. \& Xu, G.-X. (2001). Polyhedron, 20, 12551261.

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.
Pellacani, G. C., Battistuzzi, R. \& Marcotrigiano, G. (1973). J. Inorg. Nucl. Chem. 35, 2243-2247.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

research communications

Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Stoe \& Cie (2002). X-AREA and X-RED. Stoe \& Cie, Darmstadt, Germany.
Uemura, K., Yamasaki, Y., Komagawa, Y., Tanaka, K. \& Kita, H. (2007). Angew. Chem. Int. Ed. 46, 6662-6665.

Vigato, P. A., Peruzzo, V. \& Tamburini, S. (2009). Coord. Chem. Rev. 253, 1099-1201.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Orientational disorder in the one-dimensional coordination polymer catena-poly[[bis(acetylacetonato- $\left.\kappa^{2} O, O^{\prime}\right)$ cobalt(II)]- $\mu-1,4$-diazabicyclo[2.2.2]octane$\left.\kappa^{2} N^{1}: N^{4}\right]$

Florina Dumitru, Ulli Englert and Beatrice Braun

Computing details

Data collection: $X-A R E A$ (Stoe \& Cie, 2002); cell refinement: $X-A R E A$ (Stoe \& Cie, 2002); data reduction: X-RED (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 1999) and Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).
catena-Poly[[bis(acetylacetonato- $\left.\kappa^{2} O, O^{\prime}\right)$ cobalt(II)]- μ-1,4-diazabicyclo[2.2.2]octane- $\left.\kappa^{2} N^{1}: N^{4}\right]$

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\right]$
$M_{r}=369.32$
Orthorhombic, Pnnm
$a=7.7468$ (3) \AA
$b=15.1573$ (4) \AA
$c=7.2328$ (7) \AA
$V=849.28(9) \AA^{3}$
$Z=2$
$F(000)=390$

Data collection

Stoe IPDS 2T
diffractometer
Radiation source: sealed X-ray tube, 12×0.4 mm long-fine focus
Plane graphite monochromator
Detector resolution: 6.67 pixels mm^{-1}
rotation method scans
Absorption correction: multi-scan
(MULABS in PLATON; Spek, 2003)

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.020$
$w R\left(F^{2}\right)=0.055$
$S=1.09$
1045 reflections
81 parameters
0 restraints
$D_{\mathrm{x}}=1.444 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 16455 reflections
$\theta=3.8-29.5^{\circ}$
$\mu=1.03 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Elongated plate, pale pink
$0.48 \times 0.10 \times 0.04 \mathrm{~mm}$
$T_{\text {min }}=0.637, T_{\text {max }}=0.960$
11457 measured reflections
1045 independent reflections
944 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.045$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=3.8^{\circ}$
$h=-10 \rightarrow 10$
$k=-19 \rightarrow 19$
$l=-8 \rightarrow 9$

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0389 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.25 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.39 \mathrm{e}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$	Occ. (<1)
Co1	0.0000	0.0000	0.0000	$0.00790(10)$	
O1	$0.24789(12)$	$0.04561(6)$	0.0000	$0.0122(2)$	
O2	$-0.08057(13)$	$0.12744(7)$	0.0000	$0.0173(2)$	
N1	0.0000	0.0000	$0.31898(17)$	$0.0106(3)$	
C1	$0.29942(18)$	$0.12455(10)$	0.0000	$0.0134(3)$	
C2	$0.19083(19)$	$0.19922(9)$	0.0000	$0.0148(3)$	
H2	0.2442	0.2557	0.0000	0.018^{*}	
C3	$0.01048(18)$	$0.19635(10)$	0.0000	$0.0127(3)$	
C4	$-0.0887(2)$	$0.28217(9)$	0.0000	$0.0196(3)$	0.5
H4A	-0.1733	0.2817	0.1008	0.029^{*}	0.5
H4B	-0.1488	0.2891	-0.1184	0.029^{*}	0.5
H4C	-0.0085	0.3314	0.0176	0.029^{*}	$0.0228(3)$
C5	$0.49196(18)$	$0.13858(12)$	0.0000	0.034^{*}	0.5
H5A	0.5190	0.1944	-0.0619	0.034^{*}	0.5
H5B	0.5481	0.0899	-0.0659	0.034^{*}	0.5
H5C	0.5340	0.1405	0.1277	$0.0167(4)$	0.5
C6	$0.1745(3)$	$-0.02067(16)$	$0.3932(3)$	0.020^{*}	0.5
H6A	0.2582	0.0237	0.3477	0.020^{*}	0.5
H6B	0.2115	-0.0793	0.3477	$0.0155(4)$	0.5
C7	$-0.1237(3)$	$-0.06034(13)$	$0.3934(3)$	0.019^{*}	0.5
H7A	-0.0975	-0.1206	0.3484	0.019^{*}	0.5
H7B	-0.2402	-0.0442	0.3484	$0.0142(4)$	0.5
C8	$-0.0438(3)$	$0.09127(13)$	$0.3934(3)$	0.017^{*}	0.5
H8A	-0.1589	0.1093	0.3477		
H8B	0.0420	0.1345			017^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Co1	$0.01008(15)$	$0.00601(15)$	$0.00760(15)$	$-0.00078(8)$	0.000	0.000
O1	$0.0133(5)$	$0.0109(5)$	$0.0122(5)$	$-0.0013(4)$	0.000	0.000
O2	$0.0147(5)$	$0.0089(5)$	$0.0282(6)$	$-0.0001(4)$	0.000	0.000
N1	$0.0122(6)$	$0.0114(6)$	$0.0081(5)$	$0.0000(4)$	0.000	0.000
C1	$0.0158(7)$	$0.0143(7)$	$0.0102(6)$	$-0.0041(5)$	0.000	0.000
C2	$0.0195(7)$	$0.0093(6)$	$0.0156(6)$	$-0.0036(5)$	0.000	0.000
C3	$0.0202(7)$	$0.0089(7)$	$0.0089(6)$	$0.0004(5)$	0.000	0.000
C4	$0.0238(8)$	$0.0106(6)$	$0.0243(8)$	$0.0022(5)$	0.000	0.000
C5	$0.0151(7)$	$0.0177(8)$	$0.0355(9)$	$-0.0031(5)$	0.000	0.000
C6	$0.0143(9)$	$0.0269(10)$	$0.0090(9)$	$0.0046(8)$	$0.0003(8)$	$0.0007(8)$

supporting information

C7	$0.0219(10)$	$0.0169(9)$	$0.0079(9)$	$-0.0109(8)$	$0.0005(8)$	$-0.0015(7)$
C8	$0.0252(10)$	$0.0099(9)$	$0.0075(9)$	$0.0030(7)$	$-0.0007(8)$	$0.0006(7)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

Col-O2 ${ }^{\text {i }}$	2.0299 (10)	C2-H2	0.9500
Col-O2	2.0299 (10)	C3-C4	1.511 (2)
Co1-O1	2.0410 (10)	C4-H4A	0.9800
Col-O1 ${ }^{\text {i }}$	2.0411 (10)	C4-H4B	0.9800
Co1-N1	2.3071 (12)	C4-H4C	0.9800
Col-N1 ${ }^{\text {i }}$	2.3071 (12)	C5-H5A	0.9800
$\mathrm{O} 1-\mathrm{C} 1$	1.2612 (18)	C5-H5B	0.9800
O2-C3	1.2603 (18)	C5-H5C	0.9800
N1-C7ii	1.4299 (19)	C6- $\mathrm{C}^{\text {iii }}$	1.545 (4)
N1-C7	1.4299 (19)	C6-H6A	0.9900
N1-C6	1.488 (2)	C6-H6B	0.9900
N1-C6 ${ }^{\text {ii }}$	1.488 (2)	$\mathrm{C} 7-\mathrm{C} 7^{\text {iii }}$	1.542 (4)
N1-C8	1.523 (2)	C7-H7A	0.9900
N1-C8 ${ }^{\text {ii }}$	1.523 (2)	C7-H7B	0.9900
C1-C2	1.410 (2)	C8-C8 $8^{\text {iii }}$	1.541 (4)
C1-C5	1.5067 (19)	C8-H8A	0.9900
C2-C3	1.398 (2)	C8-H8B	0.9900
$\mathrm{O} 2 \mathrm{i}-\mathrm{Co} 1-\mathrm{O} 2$	180.0	O1-C1-C5	116.56 (13)
$\mathrm{O} 2{ }^{\text {i }}-\mathrm{Col}-\mathrm{O} 1$	91.89 (4)	C2- $\mathrm{C} 1-\mathrm{C} 5$	118.50 (14)
$\mathrm{O} 2-\mathrm{Co} 1-\mathrm{O} 1$	88.11 (4)	C3-C2-C1	124.83 (14)
$\mathrm{O} 2{ }^{\text {i }}-\mathrm{Co} 1-\mathrm{Ol}^{\mathrm{i}}$	88.11 (4)	C3-C2-H2	117.6
$\mathrm{O} 2-\mathrm{Co} 1-\mathrm{O} 1^{\mathrm{i}}$	91.89 (4)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	117.6
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{O} 1^{\text {i }}$	180.0	$\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 2$	125.82 (14)
$\mathrm{O} 2{ }^{\text {i }}$ - $\mathrm{Co} 1-\mathrm{N} 1$	90.0	$\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 4$	115.39 (13)
$\mathrm{O} 2-\mathrm{Co} 1-\mathrm{N} 1$	90.0	C2-C3-C4	118.79 (14)
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 1$	90.0	C3-C4-H4A	109.5
$\mathrm{O} 1-\mathrm{Co1-N1}$	90.0	C3-C4-H4B	109.5
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{N} 1^{\mathrm{i}}$	90.0	H4A-C4-H4B	109.5
$\mathrm{O} 2-\mathrm{Co} 1-\mathrm{N} 1^{\text {i }}$	90.0	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	109.5
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 1^{\text {i }}$	90.0	H4A-C4- 44 C	109.5
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Col}-\mathrm{N} 1^{\mathrm{i}}$	90.0	H4B-C4-H4C	109.5
$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 1^{\text {i }}$	180.0	C1-C5-H5A	109.5
C1-O1-Col	128.25 (9)	C1-C5-H5B	109.5
C3-O2-Col	128.06 (9)	H5A-C5-H5B	109.5
$\mathrm{C} 7{ }^{\text {ii- }}$ - $1-\mathrm{C} 7$	135.78 (17)	$\mathrm{C} 1-\mathrm{C} 5-\mathrm{H} 5 \mathrm{C}$	109.5
C7ii-N1-C6	52.41 (12)	H5A-C5- H 5 C	109.5
C7-N1-C6	109.78 (13)	H5B-C5-H5C	109.5
$\mathrm{C} 7{ }^{\mathrm{ii}}-\mathrm{N} 1-6^{\text {ii }}$	109.78 (13)	N1-C6- $\mathrm{C}^{\text {iiii }}$	111.15 (9)
C7-N1- $\mathrm{C}^{\text {ii }}$	52.41 (12)	N1-C6-H6A	109.4
C6-N1-C6 ${ }^{\text {ii }}$	137.70 (17)	C6 ${ }^{\text {iiii- }}$ - $6-\mathrm{H} 6 \mathrm{~A}$	109.4
C7 ${ }^{\text {ii- }}$-N1-C8	55.60 (12)	N1-C6-H6B	109.4
C7-N1-C8	107.38 (12)	C6 ${ }^{\text {iiii- }}$ C6-H6B	109.4

C6-N1-C8	105.43 (13)
C6i-N1-C8	58.58 (12)
C7ii- 1 1- $\mathrm{C}^{\text {ii }}$	107.38 (12)
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8^{\mathrm{ii}}$	55.60 (12)
C6-N1-C8 ${ }^{\text {ii }}$	58.58 (12)
$\mathrm{C} 6^{\mathrm{ii}}-\mathrm{N} 1-\mathrm{C} 8^{\text {ii }}$	105.43 (13)
$\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 8^{\text {ii }}$	138.58 (17)
C7ii-N1-Col	112.11 (9)
C7-N1-Col	112.11 (9)
C6-N1-Col	111.15 (9)
C6 ${ }^{\text {iii }}$ - 1 1- Col	111.15 (9)
C8-N1-Col	110.71 (8)
C 8 ii $-\mathrm{N} 1-\mathrm{Col}$	110.71 (8)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	124.93 (13)
Co1-O1-C1-C2	0.0
$\mathrm{Co1-O1-C1-C5}$	180.0
O1-C1-C2-C3	0.0
C5-C1-C2-C3	180.0
$\mathrm{Co} 1-\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 2$	0.0
$\mathrm{Co} 1-\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 4$	180.0
C1-C2-C3-O2	0.0
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	180.0
$\mathrm{C} 7{ }^{\text {iii }}-\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 6{ }^{\text {iii }}$	77.79 (11)
C7-N1-C6-C6 ${ }^{\text {iii }}$	-55.39 (11)
C6 ${ }^{\text {iii }}$ - $\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 6^{\text {iii }}$	-0.002 (1)
C8-N1-C6-C6 ${ }^{\text {iii }}$	59.99 (10)
	-77.99 (10)

H6A-C6-H6B	108.0
N1-C7-C7 ${ }^{\text {iii }}$	112.11 (9)
N1-C7-H7A	109.2
C7iii-C7-H7A	109.2
N1-C7-H7B	109.2
C7 ${ }^{\text {iiii }}$ - $\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B}$	109.2
H7A-C7-H7B	107.9
N1-C8-C8 ${ }^{\text {iii }}$	110.71 (8)
N1-C8-H8A	109.5
C88ii- ${ }^{\text {iii }} 8-\mathrm{H8A}$	109.5
N1-C8-H8B	109.5
C8 ${ }^{\text {iiii }}$ - $\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	109.5
H8A-C8-H8B	108.1

Co1-N1-C6-C6iii	179.998 (1)
$\mathrm{C} 7{ }^{\text {ii }}-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 7{ }^{\text {iii }}$	-0.002 (1)
C6-N1-C7-C7 ${ }^{\text {iii }}$	55.94 (12)
C6 ${ }^{\text {ii }}-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 7{ }^{\text {iii }}$	-79.70 (11)
C8-N1-C7-C7 ${ }^{\text {iii }}$	-58.19 (11)
$\mathrm{C} 8^{\text {iii- }}$ - $1-\mathrm{C} 7-\mathrm{C} 7{ }^{\text {iii }}$	79.37 (10)
$\mathrm{Co1-N1-C7-C7}{ }^{\text {iii }}$	179.998 (1)
$\mathrm{C} 7^{\text {ii }}-\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 8{ }^{\text {iii }}$	-76.77 (11)
C7-N1-C8-C8 ${ }^{\text {iii }}$	57.32 (11)
C6-N1-C8-C8 ${ }^{\text {iii }}$	-59.70 (11)
C6 ${ }^{\text {iii }}-\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 8^{\text {iii }}$	77.23 (10)
$\mathrm{C} 8^{\text {ii }}-\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 8^{\text {iii }}$	0.000 (1)
$\mathrm{Co} 1-\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 8{ }^{\text {iii }}$	180.000 (1)

Symmetry codes: (i) $-x,-y,-z$; (ii) $-x,-y, z$; (iii) $x, y,-z+1$.

