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Abstract: This article shows that two extremely important families of fused heterocyclic assemblies,
namely 6-methylbenzo[4,5]imidazo[1,2-a]pyrrolo[2,1-c]pyrazine and 5a-methyl-5a,6-dihydro-5H,12H-
benzo[4,5]imidazo[1,2-a]pyrrolo[1,2-d]pyrazine, can be synthesized from only two available building
blocks (N-allenylpyrrole-2-carbaldehyde and o-phenylenediamine) by controlling only one reaction
parameter (water content of the medium). It should be emphasized that the latter class of com-
pounds (with an a/d arrangement) is previously unknown. If the allene group is introduced not
into the starting compound, but during the reaction (in superbase media), a heterocyclic ensemble,
5-methylbenzo[4,5]imidazo[1,2-a]pyrrolo[2,1-c]pyrazines, with a different position of the methyl
group is formed.

Keywords: aldehydes; allenes; cyclization; heterocycles

1. Introduction

Fused heterocyclic compounds, namely, derivatives of imidazole, benzimidazole, and
pyrazine, exhibit diverse biological activities. Imidazolopyrazines and imidazolopiper-
azines belong to the class of therapeutically efficient fused heterocycles. Imidazolopyrazine
derivatives exert anti-inflammatory and antiviral actions, as well as inhibition MAPK-
activated PK5 [1]. It was reported that imidazolopyrazines act as an effective CXCR3
antagonist (regulation of leukocyte transport) [2], and as a potent IGF-1R inhibitor [3]. The
literature search reveals that the imidazolopiperazine motif is responsible for antimalarial
action of known drugs [4], which can be enhanced via the introduction the pyrrole moiety
in their structure.

Despite a wide applicability of such compounds, facile and straightforward methods
for the synthesis of these biologically active scaffolds still remain limited. Currently, only a
few examples of assembling such systems are documented in the literature. They can be
divided into two groups: intramolecular and intermolecular reactions (Scheme 1). Polyhete-
rocyclic systems are obtained via intramolecular cyclization in the presence of palladium [5]
or copper [6,7] salts as catalysts at high temperatures. Intermolecular cyclizations are also
promoted by catalysts: transition metals [8], salts [9] or acids [10]. All the above reactions
require expensive toxic catalysts, long reaction times or high temperatures, which are
disadvantages from a synthetic point of view.
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N-vinylpyrrole-2-carbaldehydes [11] in ethyl alcohol at room temperature for 16 h 
(Scheme 2). 

 
Scheme 2. Synthesis of 6-methyl-3-phenylbenzo[4,5]imidazo[1,2-a]pyrrolo[2,1-c]pyrazine and 
5a-methyl-3-phenyl-5a,6-dihydro-5H,12H-benzo[4,5]imidazo[1,2-a]pyrrolo[1,2-d]pyrazine. 

In contrast to the work with N-propargylindolecarbaldehyde [8], the allene frag-
ment does not require activation with heavy metal salts (CuI), which opens up more 
possible directions for the reaction. 

Experiments have shown that the reaction leads to a mixture of two products: the 
anticipated benzimidazopyrrolopyrazine 3b and the unexpected dihydrobenzimidaz-
opyrrolopyrazine 4b. The process is influenced by the air humidity and hence by the 
presence of some amount of water in the reaction mixture. Thus, at a higher content of 
water in the air (wet season), the ratio of products 3b and 4b is 1:1 (NMR), while in a drier 
climate in the presence of commercial ethanol, this ratio is 64%:16% (19% of unreacted 
compound 1b). Consequently, we have optimized this reaction by the addition of water 
and varying the solvents in order to direct it selectively to one of the two products (Table 
1). 

  

Scheme 1. Methods for the synthesis of polyheterocyclic systems: previous works.

2. Results

We have developed a strategy for the synthesis of benzimidazopyrrolopyrazines
through the sequential addition of o-phenylenediamine (o-PDA) 2 to N-allenylpyrrole-2-
carbaldehydes 1a–j under mild conditions. Our investigation commenced with the reaction
of 5-(2-phenyl)-N-allenylpyrrole-2-carbaldehyde 1b and o-PDA 2, which proceeded under
conditions developed by us earlier for N-vinylpyrrole-2-carbaldehydes [11] in ethyl alcohol
at room temperature for 16 h (Scheme 2).
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methyl-3-phenyl-5a,6-dihydro-5H,12H-benzo[4,5]imidazo[1,2-a]pyrrolo[1,2-d]pyrazine.

In contrast to the work with N-propargylindolecarbaldehyde [8], the allene fragment
does not require activation with heavy metal salts (CuI), which opens up more possible
directions for the reaction.

Experiments have shown that the reaction leads to a mixture of two products: the
anticipated benzimidazopyrrolopyrazine 3b and the unexpected dihydrobenzimidazopy-
rrolopyrazine 4b. The process is influenced by the air humidity and hence by the presence
of some amount of water in the reaction mixture. Thus, at a higher content of water in the
air (wet season), the ratio of products 3b and 4b is 1:1 (NMR), while in a drier climate in
the presence of commercial ethanol, this ratio is 64%:16% (19% of unreacted compound 1b).
Consequently, we have optimized this reaction by the addition of water and varying the
solvents in order to direct it selectively to one of the two products (Table 1).

Optimization of the reaction conditions has revealed that in commercial DMSO, which
usually contains some water, the process occurs with similar efficiency to that observed
in aqueous ethanol (Entry 2). When the reaction was carried out in DMSO at a higher
temperature (65 ◦C) for a shorter time (1 h), the products were obtained in the same ratio
(Entry 3). However, in this case, the reaction was accompanied by the formation of hardly
identifiable side products and afforded the target products in lower yield. Therefore, we
further used the initial temperature conditions. Subsequently, we carried out experiments
with dried ethanol in an inert atmosphere to avoid the effect of air humidity. In dry
ethanol, a mixture of two products 3b and 4b was formed in a 9:1 ratio. Evidently, the
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dried ethanol contained enough water to trigger a side reaction (Entry 5). In the presence
of ethanol and 10% of water, a mixture of two compounds 3b and 4b was obtained in a
6:4 ratio (Entry 6). At a higher content of water (20%), the product ratio was again 1:1
(Entry 7), which evidenced the clear dependence of this ratio on the amount of water.
However, when the process was implemented in a 1:1 mixture of ethanol-water (Entry
8), the starting compound 1b was completely recovered due to poor solubility of such a
mixture. Replacement of ethanol with methanol, which usually contains much less water,
led to almost selective formation of product 3b (Entry 9). The reaction in commercial
(Entry 10) and dry benzene (Entry 11) also resulted in a higher selectivity with respect to
compound 3b, the conversion in the latter being decreased.

Table 1. Optimization of the reaction conditions a.

Entry Solvent H2O (% from V Solvent) T (◦C) t (h)
Ratio (1H NMR), %

1b 3b 4b

1 b EtOH – 20–25 12 – 50 50
2 c DMSO – 20–25 12 – 50 50
3 c DMSO – 65 1 – 50 50
4 d EtOH – 20–25 12 19 64 16
5 EtOH (dry) – 20–25 12 – 90 10
6 EtOH (dry) 10 20–25 12 – 60 40
7 EtOH (dry) 20 20–25 12 – 50 50
8 EtOH (dry) 50 20–25 12 100 – –
9 MeOH (dry) – 20–25 12 – 96 traces

10 Benzene – 20–25 12 – 85 15
11 Benzene (dry) – 20–25 12 48 48 4

a 1b (0.0011 mol), 2 (0.00121 mol), solvent (2.2 mL), CF3COOH (1%). b The reaction was carried out at high air
humidity in unpressurized conditions (without drying agent). c Resinification. d Common ethanol.

Thus, to selectively synthesize compounds 3, it is most expedient to employ the reac-
tion conditions shown in Entry 9. Under these conditions, a wide series of N-allenylpyrrole-
2-carbaldehydes was involved in the process to selectively afford benzimidazopyrrolopy-
razines 3a–j (Scheme 3).

Molecules 2022, 27, x FOR PEER REVIEW 3 of 19 
 

 

Table 1. Optimization of the reaction conditions a. 

Entry Solvent 
H2O (% from V 

Solvent) T (°C) t (h) 
Ratio (1H NMR), % 
1b 3b 4b 

1 b EtOH – 20–25 12 – 50 50 
2 c DMSO – 20–25 12 – 50 50 
3 c DMSO – 65 1 – 50 50 
4 d EtOH – 20–25 12 19 64 16 
5 EtOH (dry) – 20–25 12 – 90 10 
6 EtOH (dry) 10 20–25 12 – 60 40 
7 EtOH (dry) 20 20–25 12 – 50 50 
8 EtOH (dry) 50 20–25 12 100 – – 
9 MeOH (dry) – 20–25 12 – 96 traces 

10 Benzene – 20–25 12 – 85 15 
11 Benzene (dry) – 20–25 12 48 48 4 

a 1b (0.0011 mol), 2 (0.00121 mol), solvent (2.2 mL), CF3COOH (1%). b The reaction was carried out 
at high air humidity in unpressurized conditions (without drying agent). c Resinification. d Com-
mon ethanol. 

Optimization of the reaction conditions has revealed that in commercial DMSO, 
which usually contains some water, the process occurs with similar efficiency to that 
observed in aqueous ethanol (Entry 2). When the reaction was carried out in DMSO at a 
higher temperature (65 °C) for a shorter time (1 h), the products were obtained in the 
same ratio (Entry 3). However, in this case, the reaction was accompanied by the for-
mation of hardly identifiable side products and afforded the target products in lower 
yield. Therefore, we further used the initial temperature conditions. Subsequently, we 
carried out experiments with dried ethanol in an inert atmosphere to avoid the effect of 
air humidity. In dry ethanol, a mixture of two products 3b and 4b was formed in a 9:1 
ratio. Evidently, the dried ethanol contained enough water to trigger a side reaction (En-
try 5). In the presence of ethanol and 10% of water, a mixture of two compounds 3b and 
4b was obtained in a 6:4 ratio (Entry 6). At a higher content of water (20%), the product 
ratio was again 1:1 (Entry 7), which evidenced the clear dependence of this ratio on the 
amount of water. However, when the process was implemented in a 1:1 mixture of eth-
anol-water (Entry 8), the starting compound 1b was completely recovered due to poor 
solubility of such a mixture. Replacement of ethanol with methanol, which usually con-
tains much less water, led to almost selective formation of product 3b (Entry 9). The re-
action in commercial (Entry 10) and dry benzene (Entry 11) also resulted in a higher se-
lectivity with respect to compound 3b, the conversion in the latter being decreased. 

Thus, to selectively synthesize compounds 3, it is most expedient to employ the re-
action conditions shown in Entry 9. Under these conditions, a wide series of 
N-allenylpyrrole-2-carbaldehydes was involved in the process to selectively afford ben-
zimidazopyrrolopyrazines 3a–j (Scheme 3). 

 
Scheme 3. Synthesis of 6-methylbenzo[4,5]imidazo[1,2-a]pyrrolo[2,1-c]pyrazines. Scheme 3. Synthesis of 6-methylbenzo[4,5]imidazo[1,2-a]pyrrolo[2,1-c]pyrazines.

We failed to selectively direct the reaction toward the formation of products 4. There-
fore, aqueous ethanol (Scheme 2) was used, followed by the isolation of individual com-
pounds by column chromatography. The structures and yields of the products obtained by
both methods are shown in Table 2.
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Table 2. Structures of 6-methylbenzo[4,5]imidazo[1,2-a]pyrrolo[2,1-c]pyrazines and 5a-methyl-5a,6-
dihydro-5H,12H-benzo[4,5]imidazo[1,2-a]pyrrolo[1,2-d]pyrazines.

3 Product Yield (Aqueous
EtOH) a, %

Yield (MeOH
Dry) b, % 4 Product Yield (Aqueous

EtOH) a, %

a
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As can be seen from Table 2, aromatic and heteroaromatic substituents in the α-position
of the pyrrole ring have the same effect on the yield of the reaction products. This is also the
case for donating or accepting substituents in the para position of the phenyl substituent.
A slight decrease in yields for bulky compounds 4h and 4i is due to the steric hindrance.
The decreased yield and incomplete conversion in the case of starting pyrrole 1a bearing
donor alkyl substituents is expected for nucleophilic addition at the carbonyl group, since
the donating substituents compensate the positive charge on the carbonyl carbon.

The structure of benzoimidazopyrrolopyrazines 3 was unambiguously proven by
X-ray diffraction analysis using compound 3e as an example (Figure 1).
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Figure 1. X-ray structure of 3-(3-methoxyphenyl)-6-methylbenzo[4,5]imidazo[1,2-a]pyrrolo[2,1-c].
pyrazine 3e.

The structure of 4 was established by NMR spectroscopy (1H, 13C, including 2D
correlations, Figure 2a,b.
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The formation of products 3 can be tentatively rationalized as follows [12,13]. The
reaction starts with the addition of o-PDA to N-allenylpyrrole-2-carbaldehyde to furnish
Schiff base A. The latter further undergoes intramolecular cyclization to give the benzim-
idazole skeleton B (5-exo-trig). This is a well-known reaction, in which ambient oxygen
can act as an oxidizing agent for the intermediate imidazoline B. The NH-function of the
benzimidazole attacks the central carbon atom (sp) of the allene moiety that leads to a
6-exo-dig cyclization to finally deliver benzimidazopyrrolopyrazines 3 (Scheme 4).
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It is more difficult to explain the formation of product 4. We have proposed two
possible reaction pathways.

Possible pathway 1: The formation of by-product 4 likely also commences with
the addition of o-PDA to N-allenylpyrrole-2-carbaldehyde to produce the Schiff base A.
Afterward, the second amino group is not added to the C=N bond (as in Scheme 4), but at
the central allenic carbon to form a nine-membered ring D (Baldwin’s rule [14–16]). Product
4 contains two more hydrogen atoms than compound A, i.e., some kind of reduction occurs.
Apparently, the intermediate imidazoline B generated during the formation of compound 3
with the hydrogen transfer through the medium can act as a reducing agent. In the reduced
intermediate E, the double bond is activated by the acid of the system to intramolecularly
close the ring and to afford product 4 (Scheme 5).
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a]pyrrolo[1,2-d]pyrazines.

As seen from the above mechanistic schemes, selectivity of the reaction depends on
the behavior of the amino group in intermediate A, which attacks either the C=N or C=C
bond. A possible reason for the effect of water on the reaction direction is assumed to
be the presence of hydrogen bonding between water molecules and the amino group,
which complicates the attack on the more sterically hindered C=N bond thus allowing
an alternative addition at the C=C bond. This scheme is supported by the fact that the
best ratio of products of 3:4 was 1:1 (Table 1, Entry 7); compound 4 cannot be formed
without a reducing agent (intermediate B) delivering product 3. Besides, a further increase
in the water content to direct the reaction selectively to product 4 had no success due to
the reduction of solubility of the starting compound in the water–alcohol mixture (Table 1,
Entry 8).

Possible pathway 2: It can also be assumed that the reaction is triggered by dispro-
portionation of the starting pyrrolecarbaldehyde 1 (the Cannizzaro type reaction [17]) to
furnish carboxylic acid F and alcohol G, which further interact with o-PDA. In the case
of carboxylic acid, the process involves the formation of product 3 similar to the reaction
with aldehyde (such reactions are well known [18–20]). In alcohol G, the substitution
at the hydroxyl group occurs with participation the o-PDA amino group to deliver the
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intermediate H, followed by intramolecular addition of the second amino group at the
allene producing a 9-membered ring I. The latter can undergo intramolecular cyclization
due to the activation of the remaining double bond by the acid of the system to afford
compound 4 (Scheme 6).
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We indirectly proved such direction of the process by involving the separately ob-
tained alcohol in the reaction. Among the reaction products, an intermediate compound
was identified and characterized by NMR spectroscopy (see Supplementary Information).
The obvious disadvantage of such an explanation of the possible mechanism is that upon
disproportionation, the ratio of products should be close to 1:1, but in our case, compound
3 most often predominates. This can be rationalized by the fact that the starting pyrrolecar-
baldehyde 1 is not only disproportionated, but also directly reacts with o-PDA (Scheme 2),
thereby increasing the content of product 3 in the mixture. Probably, water here directly
affects the direction of Cannizzaro reaction and somehow promotes the hydrogen transfer
from the oxidizing site to the reducing one thus enhancing the contribution of Cannizzaro-
type reaction to the overall process. This also explains the impossibility to shift the ratio of
products 3 and 4 by more than 1:1. Similar to the case of pathway 1, a further increase in
the concentration of water decreases solubility of the reactants and worsens the outcome of
the reaction.

Non-conjugated dihydrobenzimidazopyrrolopyrazines 4 represent a rather rare class
of compounds. To the best of our knowledge, chemical databases contain no such structures.
We managed to find a structure with a similar 5/6/5 arrangement at the a/d position, con-
taining only one nitrogen atom and synthesized by the Pauson–Khand reaction [21–23], all
the obtained compounds being considered as promising alkaloids. Meanwhile, these com-
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pounds are expected to exhibit valuable biological properties and can be widely employed
as synthons in organic synthesis.

Often, the relative position of substituents in a molecular backbone and the presence of
free positions suitable for further functionalization are essential for biological applications.
In all disclosed protocols for the assembly of benzimidazopyrrolopyrazines 3, the spacer
between the pyrrole/indole nitrogen and the imidazole ring nitrogen either does not bear
a methyl substituent at all, or contains a methyl moiety in the α-position relative to the
imidazole ring. Synthesis of benzimidazopyrrolopyrazines with the methyl group located
closer to the pyrrole/indole fragment will expand the synthetic potential, which possibly
complements the existing backbones to afford new biological targets.

To address this challenge, we have employed the following synthetic approach based on
our previous research (Scheme 7). At the first stage, a series of NH-pyrrolylbenzimidazoles
5 were prepared via the published procedure [11]. Further, the obtained compounds were
involved in the reaction with propargyl chloride under the conditions reported earlier [24].
The superbase in this reaction has an advantage over the common bases: it catalyzes
not only substitution of the NH-function with propargyl chloride, but also the complete
(quantitative) acetylene-allene isomerization to furnish allene, which is almost always
selectively attacked at the sp atom. Since in compound 5, the NH-function of imidazole
(pKa = 14.4) is more mobile than that of pyrrole (pKa = 23.0), substitution occurs on the
former. Product I undergoes isomerization into intermediate J, the sp atom of which is
subjected to an intramolecular attack by the pyrrole NH-moiety and 6-exo-dig cyclization to
deliver a new series of benzimidazopyrrolopyrazines 6, isomeric to compounds 3, but with
a different disposition of the methyl group. We checked the generality of this strategy on a
series of substrates, and the product yields are shown in Table 3.
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We checked the generality of this strategy on a series of substrates, and the product
yields are shown in Table 3.

The reaction was found to be of general character. It was shown that aromatic and
heteroaromatic substituents did not affect yields of the products (6a–i, k–l). If the p-position
of the phenyl ring contained donating (6d, 90%) or accepting substituents (6g, 96%), the
yields were approximately the same. In the case of a donating substituent in the pyrrole
ring (6l), the yield decreased to moderate.

The structure of the obtained compounds was unambiguously proven by X-ray single-
crystal analysis using 6b as an example (Figure 3). For all the processes described above
(Schemes 2 and 3; Table 3), at each stage of several possible (allowed) directions, according
to Baldwin’s rule, only one is always realized, i.e., all reactions are regeoselective.
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Table 3. Structures of 5-methylbenzo[4,5]imidazo[1,2-a]pyrrolo[2,1-c]pyrazines a.

6 Product Yield, %

k
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3. Materials and Methods
3.1. General Information

All reagents were purchased from a commercial supplier, such as Sigma-Aldrich Co.
LLC (St. Louis, MO, USA). N-Allenylpyrrole-2-carbaldehydes were obtained according
to the procedure [25]. DMSO was used with a water content of 0.1–0.3%, ethyl alcohol
with a water content of 5%. Methyl alcohol used 99.5%. Ethanol and benzene were dried
according to the literature data [26]. Propargyl chloride was purified by simple distillation
(58 ◦C). NMR spectra were recorded from solutions in CDCl3 and DMSO-d6 on Bruker
DPX-400 and AV-400 spectrometers (400.1 MHz for 1H and 100.6 MHz for 13C). Chemical
shifts (δ) are quoted in parts per million (ppm). The residual solvent peak, δH = 7.27 and
δC = 77.16 for CDCl3, δH = 2.50 and δC = 39.52 for DMSO-d6, was used as a reference.
Coupling constants (J) are reported in Hertz (Hz). The multiplicity abbreviations used are:
s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broad signal.

3.2. General Procedures

General procedure for the synthesis products 3 and 4. A mixture of the N-allenylpyrrole-
2-carbaldehyde 1 (0.0011 mol), o-PDA 2 (0.131 g, 0.00121 mol), EtOH (2.2 mL), H2O (0.44 mL)
and CF3COOH (1%) was stirred at r.t. for 16 h. Solvent was evaporated. The resulting
products were separated on a column with Al2O3 using flash chromatography (eluent
hexane then hexan/diethyl ether 1:1).

General procedure for the synthesis products 3. A mixture of the N-allenylpyrrole-
2-carbaldehyde 1 (0.0011 mol), o-PDA 2 (0.131 g, 0.00121 mol), MeOH (dry, 2.2 mL) and
CF3COOH (1%) was stirred at r.t. for 16 h in an inert atmosphere. The resulting precipitate
was collected.

General procedure for synthesis of 5. Compounds 5 were prepared according to
procedure [11]. Compounds 5a, 5c–i, 5l were synthesized for the first time. Product yields
depend on the complexity of the purification of the raw product. A mixture of NH-pyrrole-
2-carbaldehyde (0.002 mol), o-PDA 2 (0.216 g, 0.002 mol) and CF3COOH (1% with respect
to the combined mass of both reagents) in DMSO (2 mL) was stirred at 70–80 ◦C for 1 h
with continuous air bubbling. The reaction mixture was diluted with aq 1% NaHCO3 soln
(8 mL), extracted with Et2O (5 × 5 mL) and the extracts were dried (K2CO3). The solvent
was evaporated, and the crude product was passed through a neutral alumina column
(eluent hexane, then hexane/diethyl ether (1:1)) to give 5.

General procedure for synthesis of 6. A mixture of 5 (0.0011 mol), KOH pellets (0.286 g,
0.0044 mol) and DMSO (water content < 0.2%) (2.2 mL) was stirred at r.t. for 45 min.
Subsequently, freshly distilled propargyl chloride (0.164 g, 0.0022 mol) was added over
10 min, while keeping the internal temperature between 28 and 30 ◦C (exothermic reaction).
A further amount of KOH pellets (0.858 g, 0.0132 mol) was added, while heating between
35 and 40 ◦C for 20 min, and then the reaction mixture was poured into H2O under efficient
stirring. The formed precipitate was filtered off.

3.3. Characterization Data of Products 3,4,5 and 6

3-Butyl-6-methyl-2-propylbenzo[4,5]imidazo[1,2-a]pyrrolo[2,1-c]pyrazine (3a). White
powder (0.078 g, 30% yield; 0.147 g, 42% yield). 1H NMR (400 MHz, CDCl3) δ 7.86–7.83
(m, 2H, Ph), 7.36 (t, J = 7.6 Hz, 1H, Ph), 7.21 (t, J = 7.7 Hz, 1H, Ph), 7.13 (s, 1H, CH), 6.92 (s,
1H, pyrrole), 2.83 (s, 3H, CH3), 2.79 (t, J = 7.6 Hz, 2H, CH2), 2.57 (t, J = 7.5 Hz, 2H, CH2),
1.71–1.66 (m, 2H, CH2), 1.61–1.56 (m, 2H, CH2), 1.44–1.39 (m, 2H, CH2), 1.01–0.95 (m, 6H,
CH3). 13C NMR (100 MHz, CDCl3): δ 144.8, 143.5, 131.2, 126.9, 125.6, 123.6, 121.3, 119.7,
119.3, 118.7, 112.5, 107.1, 105.6, 31.3, 28.3, 24.1, 23.8, 22.7, 18.1, 14.1, 14.0. Elemental analysis
calcd (%) for C21H25N3: C 78.96, H 7.89, N 13.15; found: C 79.12; H 7.93; N 13.28.

6-Methyl-3-phenylbenzo[4,5]imidazo[1,2-a]pyrrolo[2,1-c]pyrazine (3b). White powder
(0.111 g, 34% yield; 0.284 g, 87% yield). 1H NMR (400 MHz, CDCl3) δ 7.87 (d, J = 7.8 Hz,
1H, Ph), 7.82 (d, J = 8.3 Hz, 1H, Ph), 7.54–7.47 (m, 4H, Ph), 7.42–7.38 (m, 1H, Ph), 7.37–7.35
(m, 1H, Ph), 7.33 (d, J = 4.0 Hz, 1H, pyrrole), 7.24 (s, 1H, CH), 7.22–7.18 (m, 1H, Ph), 6.72
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(d, J = 4.0 Hz, 1H, pyrrole), 2.73 (s, 3H, CH3). 13C NMR (100 MHz, CDCl3): δ 144.8, 143.5,
131.5, 131.2, 130.8, 129.1 (2C), 128.7 (2C), 128.1, 123.9, 121.9, 121.4, 120.9, 119.6, 112.9, 112.6,
107.5, 106.3, 18.0. Elemental analysis calcd (%) for C20H15N3: C 80.78, H 5.08, N 14.13;
found: C 80.81, H 5.12, N 14.17.

6-Methyl-3-(p-tolyl)benzo[4,5]imidazo[1,2-a]pyrrolo[2,1-c]pyrazine (3c). White pow-
der (0.109 g, 32% yield; 0.29 g, 85% yield). 1H NMR (400 MHz, CDCl3) δ 7.89 (d, J = 8.1 Hz,
1H, Ph), 7.86 (d, J = 8.4 Hz, 1H, Ph), 7.46 (d, J = 8.0 Hz, 2H, Ph), 7.40–7.38 (m, 1H, Ph),
7.36–7.35 (m, 1H, Ph), 7.34–7.31 (m, 2H, Ph, pyrrole), 7.26–7.22 (m, 2H, Ph, CH), 6.71 (d,
J = 3.9 Hz, 1H, pyrrole), 2.77 (s, 3H, CH3), 2.44 (s, 3H, CH3). 13C NMR (100 MHz, CDCl3): δ
144.7, 143.5, 138.1, 131.2, 130.9, 129.8 (2C), 128.6 (2C), 128.5, 123.8, 121.8, 121.1, 120.7, 119.6,
112.6, 112.6, 107.6, 106.3, 21.4, 18.0. Elemental analysis calcd (%) for C21H17N3: C 81.00, H
5.50, N, 13.49; found: C 81.09, H 5.56, N 13.54.

3-(4-Methoxyphenyl)-6-methylbenzo[4,5]imidazo[1,2-a]pyrrolo[2,1-c]pyrazine (3d).
Pink powder (0.144 g, 40% yield; 0.324 g, 90% yield). 1H NMR (400 MHz, CDCl3) δ 7.90–7.87
(m, 2H, Ph), 7.49 (d, J = 8.7 Hz, 2H, Ph), 7.39 (t, J = 7.8 Hz, 1H, Ph), 7.35 (d, J = 3.9 Hz, 1H,
pyrrole), 7.28–7.24 (m, 2H, CH, Ph), 7.06 (d, J = 8.7 Hz, 2H, Ph), 6.69 (d, J = 3.9 Hz, 1H,
pyrrole), 3.89 (s, 3H, CH3), 2.81 (s, 3H, CH3). 13C NMR (100 MHz, CDCl3): δ 159.4, 144.5,
143.3, 130.9, 130.4, 129.8 (2C), 123.6, 121.6, 120.6, 120.5, 119.2, 114.4 (2C), 112.4, 112.2, 107.3,
105.9, 55.3, 17.8. Elemental analysis calcd (%) for C21H17N3O: C 77.04, H 5.23, N 12.84;
found: C 77.08, H 5.27, N 12.87.

3-(3-Methoxyphenyl)-6-methylbenzo[4,5]imidazo[1,2-a]pyrrolo[2,1-c]pyrazine (3e).
White powder (0.137 g, 38% yield; 0.32 g, 89% yield). 1H NMR (400 MHz, CDCl3) δ

7.90 (m, 2H, Ph), 7.45–7.40 (m, 2H, Ph), 7.38–7.33 (m, 2H, pyrrole, Ph), 7.28–7.25 (m, 1H,
CH), 7.16–7.14 (m, 1H, Ph), 7.10 (s, 1H, Ph), 6.99–6.96 (m, 1H, Ph), 6.76 (d, J = 3.9 Hz, 1H,
pyrrole), 3.88 (s, 3H, CH3), 2.81 (s, 3H, CH3). 13C NMR (100 MHz, CDCl3): δ 160.1, 144.8,
143.4, 132.7, 131.2, 130.6, 130.1, 123.9, 121.9, 121.4, 120.99, 120.90, 119.6, 114.5, 113.4, 112.9,
112.6, 107.6, 106.3, 55.5, 18.0. Elemental analysis calcd (%) for C21H17N3O: C 77.04, H 5.23,
N 12.84; found: C 77.06, H 5.25, N 12.86.

3-(4-Chlorophenyl)-6-methylbenzo[4,5]imidazo[1,2-a]pyrrolo[2,1-c]pyrazine (3f). White
powder (0.124 g, 34% yield; 0.299 g, 82% yield). 1H NMR (400 MHz, CDCl3) δ 7.90 (d,
J = 8.1 Hz, 1H, Ph), 7.86 (d, J = 8.4 Hz, 1H, Ph), 7.49 (s, 4H, Ph), 7.39 (t, J = 7.6 Hz, 1H, Ph),
7.35 (d, J = 4.0 Hz, 1H, pyrrole), 7.27–7.25 (m, 1H, Ph), 7.20 (s, 1H, CH), 6.72 (d, J = 4.0 Hz,
1H, pyrrole), 2.79 (s, 3H, CH3). 13C NMR (100 MHz, CDCl3): δ 144.8, 143.3, 134.1, 131.2,
129.98, 129.94 (2C), 129.5, 129.4 (2C), 124.0, 122.0, 121.7, 121.2, 119.7, 113.2, 112.6, 107.3,
106.4, 18.1. Elemental analysis calcd (%) for C20H14ClN3: C 72.40, H 4.25, N 12.66; found: C
72.47, H 4.29, N 12.67.

3-(4-Bromophenyl)-6-methylbenzo[4,5]imidazo[1,2-a]pyrrolo[2,1-c]pyrazine (3g). White
powder (0.153 g, 37% yield; 0.347 g; 84% yield). 1H NMR (400 MHz, CDCl3) δ 7.90 (d,
J = 8.1 Hz, 1H, Ph), 7.87 (d, J = 8.3 Hz, 1H, Ph) 7.65 (d, J = 8.3 Hz, 2H, Ph), 7.43 (d, J = 8.4 Hz,
2H, Ph), 7.39–7.34 (m, 2H, pyrrole, Ph), 7.27–7.26 (m, 1H, Ph), 7.20 (s, 1H, CH), 6.73 (d,
J = 3.9 Hz, 1H, pyrrole), 2.79 (s, 3H, CH3). 13C NMR (100 MHz, CDCl3): δ 144.7, 143.3, 132.3
(2C), 131.2, 130.4, 130.1 (2C), 129.5, 124.0, 122.2, 122.0, 121.7, 121.2, 119.7, 113.1, 112.6, 107.2,
106.5, 18.0. Elemental analysis calcd (%) for C20H14BrN3: C 63.84, H 3.75, N 11.17; found,
%: C 63.91, H 3.82, N 11.20.

6-Methyl-3-(naphthalen-2-yl)benzo[4,5]imidazo[1,2-a]pyrrolo[2,1-c]pyrazine (3h). White
powder (0.107 g, 28% yield; 0.302 g, 79% yield). 1H NMR (400 MHz, CDCl3) δ 8.02–7.97 (m,
2H, Ph), 7.92–7.88 (m, 4H, Ph), 7.68–7.66 (m, 1H, Ph), 7.57–7.54 (m, 2H, Ph), 7.43–7.39 (m,
2H, pyrrole, Ph), 7.37 (s, 1H, CH), 7.29–7.25 (m, 1H, Ph), 6.85 (d, J = 4.0 Hz, 1H, pyrrole),
2.80 (s, 3H, CH3). 13C NMR (100 MHz, CDCl3): δ 144.9, 143.5, 133.6, 132.9, 131.3, 130.8,
128.95, 128.91, 128.2, 127.9, 127.5, 126.8, 126.68, 126.61, 124.0, 122.0, 121.6, 121.0, 119.8, 113.4,
112.7, 107.7, 106.6, 18.1. Elemental analysis calcd (%) for C24H17N3: C 82.97, H 4.93, N 12.10;
found: C 83.02, H 4.98, N 12.17.

6-Methyl-13,14-dihydrobenzo[g]benzo[4’,5’]imidazo[2’,1’:3,4]pyrazino[1,2-a]indole (3i).
White powder (0.121 g, 34% yield; 0.270 g, 76% yield). 1H NMR (400 MHz, CDCl3) δ 7.90–



Molecules 2022, 27, 2460 12 of 18

7.88 (m, 2H, Ph), 7.70–7.65 (m, 2H, Ph), 7.42–7.33 (m, 3H, Ph), 7.28–7.24 (m, 1H, pyrrole),
7.22–7.19 (m, 2H, CH, Ph), 2.97–2.93 (m, 2H, indole), 2.90–2.88 (m, 5H, indole, CH3). 13C
NMR (100 MHz, CDCl3): δ 144.8, 143.3, 137.2, 131.2, 129.0, 128.7, 126.8, 126.7, 126.2, 125.9,
123.9, 121.7, 121.3, 120.7, 120.2, 119.5, 112.6, 108.2, 104.6, 30.7, 22.6, 18.1. Elemental analysis
calcd (%) for C22H17N3: C 81.71, H 5.30, N 12.99; found: C 81.75, H 5.37; N 13.34.

6-Methyl-3-(thiophen-2-yl)benzo[4,5]imidazo[1,2-a]pyrrolo[2,1-c]pyrazine (3j). White
powder (0.137 g, 41% yield; 0.294 g, 88% yield). 1H NMR (400 MHz, CDCl3) δ7.78 (d,
J = 8.1 Hz, 1H, Ph), 7.75 (d, J = 8.1 Hz, 1H, Ph), 7.32–7.31 (m, 1H, thienyl), 7.30–7.28 (m, 2H,
thienyl), 7.22 (d, J = 4.0 Hz, 1H, pyrrole), 7.16–7.12 (m, 2H, CH, Ph), 7.09–7.07 (m, 1H, Ph),
6.70 (d, J = 4.0 Hz, 1H, pyrrole), 2.69 (s, 3H, CH3). 13C NMR (100 MHz, CDCl3): δ 144.8,
143.1, 132.6, 131.1, 127.8, 126.3, 126.1, 124.0, 123.5, 122.0, 121.7, 121.2, 119.7, 114.1, 112.6,
107.6, 106.3, 18.1. Elemental analysis calcd (%) for C18H13N3S: C 71.26, H 4.32, N 13.85;
found: C 71.29, H 4.37, N 13.90.

3-Butyl-5a-methyl-2-propyl-5a,6-dihydro-5H,12H-benzo[4,5]imidazo[1,2-a]pyrrolo[1,2-
d]pyrazine (4a). Orange oil (0.01 g, 4% yield). 1H NMR (400 MHz, CDCl3) δ 6.79 (m, 1H, Ph),
6.75–6.60 (m, 2H, Ph), 6.39 (d, J = 7.6 Hz, 1H, Ph), 5.81 (s, 1H, pyrrole), 4.47 (d, J = 14.8 Hz,
1H, CH2), 4.44 (d, J = 14.8 Hz, 1H, CH2), 3.92 (d, J = 12.0 Hz, 1H, CH2), 3.85 (s, 1H, NH), 3.70
(d, J = 12.0 Hz, 1H, CH2), 2.50–2.45 (m, 2H, CH2), 2.34 (t, J = 15.2 Hz, 2H, CH2), 1.56–1.50
(m, 2H, CH2), 1.43–1.39 (m, 2H, CH2), 1.37–1.31 (m, 2H, CH2), 1.26 (s, 3H, CH3), 0.95–0.90
(m, 6H, CH3).

5a-Methyl-3-phenyl-5a,6-dihydro-5H,12H-benzo[4,5]imidazo[1,2-a]pyrrolo[1,2-d]pyrazine
(4b). Red oil (0.102 g, 31% yield). 1H NMR (400 MHz, CDCl3) δ 7.42–7.35 (m, 4H, Ph), 7.31–
7.27 (m, 1H, Ph), 6.80 (t, J = 7.5 Hz, 1H, Ph), 6.64 (t, J = 7.5 Hz, 1H, Ph), 6.59–6.57 (m, 1H, Ph),
6.46 (d, J = 7.5 Hz, 1H, Ph), 6.27 (d, J = 3.5 Hz, 1H, pyrrole), 6.12 (d, J = 3.5 Hz, 1H, pyrrole),
4.65 (d, J = 14.6 Hz, 1H, CH2), 4.52 (d, J = 14.6 Hz, 1H, CH2), 4.16 (d, J = 12.1 Hz, 1H, CH2),
3.88 (d, J = 12.1 Hz, 1H, CH2), 3.68 (s, 1H, NH), 1.22 (s, 3H, CH3). 13C NMR (100 MHz,
CDCl3): δ 142.5, 138.8, 134.6, 132.5, 128.7 (2C), 128.2 (2C), 126.8, 126.1, 121.6, 119.3, 110.4,
108.2, 107.4, 105.2, 79.9, 52.1, 43.2, 24.7. Elemental analysis calcd (%) for C20H19N3: C 79.70,
H 6.35, N 13.94; found: C 79.78, H 6.41, N 13.99.

5a-Methyl-3-(p-tolyl)-5a,6-dihydro-5H,12H-benzo[4,5]imidazo[1,2-a]pyrrolo[1,2-d]pyrazine
(4c). Red oil (0.104 g, 30% yield). 1H NMR (400 MHz, CDCl3) δ 7.31 (d, J = 8.0 Hz, 2H, Ph),
7.26 (d, J = 8.0 Hz, 2H, Ph), 6.84 (t, J = 7.5 Hz,1H, Ph), 6.68 (t, J = 7.5 Hz, 1H, Ph), 6.61 (d,
J = 7.4 Hz, 1H, Ph), 6.49 (d, J = 7.5 Hz, 1H, Ph), 6.28 (d, J = 3.5 Hz, 1H, pyrrole), 6.15 (d,
J = 3.5 Hz, 1H, pyrrole), 4.68 (d, J = 14.6 Hz, 1H, CH2), 4.55 (d, J = 14.6 Hz, 1H, CH2), 4.17
(d, J = 12.1 Hz, 1H, CH2), 3.90 (d, J = 12.1 Hz, 1H, CH2), 3.70 (s, 1H, NH), 2.43 (s, 3H, CH3),
1.24 (s, 3H, CH3). 13C NMR (100 MHz, CDCl3): δ 142.4, 138.8, 136.5, 134.6, 129.6, 129.3
(2C), 128.2 (2C), 125.7, 121.6, 119.2, 110.3, 107.8, 107.3, 105.0, 79.9, 52.0, 43.2, 24.7, 21.2. Anal.
Calcd for C21H21N3, %: C, 79.97; H, 6.71; N, 13.32. Found, %: C, 80.02; H, 6.74; N, 13.35.

3-(4-Methoxyphenyl)-5a-methyl-5a,6-dihydro-5H,12H-benzo[4,5]imidazo[1,2-a]pyrr-
olo[1,2-d]pyrazine (4d). Red oil (0.127 g, 35% yield). 1H NMR (400 MHz, CDCl3) δ 7.29 (d,
J = 8.7 Hz, 2H, Ph), 6.95 (d, J = 8.6 Hz, 2H, Ph), 6.82–6.78 (m, 1H, Ph), 6.65–6.62 (m, 1H, Ph),
6.59 (d, J = 8.8 Hz, 1H, Ph), 6.45 (d, J = 7.4 Hz, 1H, Ph), 6.18 (d, J = 3.4 Hz, 1H, pyrrole), 6.10
(d, J = 3.4 Hz, 1H, pyrrole), 4.64 (d, J = 14.7 Hz, 1H, CH2), 4.51 (d, J = 14.7 Hz, 1H, CH2), 4.11
(d, J = 12.1 Hz, 1H, CH2), 3.84 (s, 3H, CH3), 3.80 (d, J = 12.1 Hz, 1H, CH2), 3.67 (s, 1H, NH),
1.22 (s, 3H, CH3). 13C NMR (100 MHz, CDCl3): δ 158.7, 142.6, 138.8, 134.4, 129.6 (2C), 125.4,
125.1, 121.7, 119.2, 114.1 (2C), 110.4, 107.4, 104.9, 79.9, 77.3, 55.4, 52.0, 43.2, 24.8. Elemental
analysis calcd (%) for C21H21N3O: C 76.11, H 6.39, N 12.68; found: C 76.18, H 6.47, N 12.74.

3-(3-Methoxyphenyl)-5a-methyl-5a,6-dihydro-5H,12H-benzo[4,5]imidazo[1,2-a]pyrr-
olo[1,2-d]pyrazine (4e). Red oil (0.120 g, 33% yield). 1H NMR (400 MHz, CDCl3) δ 7.33–7.29
(m, 1H, Ph), 7.26–7.23 (m, 1H, Ph), 6.95–6.93 (m, 1H, Ph), 6.86–6.83 (m, 1H, Ph), 6.82–6.78
(m, 1H, Ph), 6.64 (t, J = 7.5 Hz, 1H, Ph), 6.59–5.57 (m, 1H, Ph), 6.46 (d, J = 7.5 Hz, 1H, Ph),
6.28 (d, J = 3.5 Hz, 1H, pyrrole), 6.12 (d, J = 3.5 Hz, 1H, pyrrole), 4.65 (d, J = 14.6 Hz, 1H,
CH2), 4.51 (d, J = 14.6 Hz, 1H, CH2), 4.15 (d, J = 12.1 Hz, 1H, CH2), 3.91 (d, J = 12.1 Hz, 1H,
CH2), 3.84 (s, 3H, CH3), 3.69 (s, 1H, NH), 1.22 (s, 3H, CH3). 13C NMR (100 MHz, CDCl3):
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δ 159.8, 142.3, 138.9, 134.5, 133.8, 129.6, 126.2, 121.4, 120.6, 119.3, 113.8, 112.2, 110.1, 108.4,
107.3, 105.2, 79.9, 55.3, 52.1, 43.2, 24.7. Elemental analysis calcd (%) for C21H21N3O: C 76.11,
H 6.39, N 12.68. found: C 76.20, H 6.45, N 12.78.

3-(4-Chlorophenyl)-5a-methyl-5a,6-dihydro-5H,12H-benzo[4,5]imidazo[1,2-a]pyrr-
olo[1,2-d]pyrazine (4f). Red oil (0.118 g, 32% yield). 1H NMR (400 MHz, CDCl3) δ 7.38 (d,
J = 8.6 Hz, 2H, Ph), 7.30 (d, J = 8.6 Hz, 2H, Ph), 6.82 (t, J = 7.6 Hz, 1H, Ph), 6.66 (t, J = 7.5 Hz,
1H, Ph), 6.61 (d, J = 7.4 Hz, 1H, Ph), 6.47 (d, J = 7.5 Hz, 1H, Ph), 6.27 (d, J = 3.5 Hz, 1H,
pyrrole), 6.13 (d, J = 3.5 Hz, 1H, pyrrole), 4.65 (d, J = 14.7 Hz, 1H, CH2), 4.52 (d, J = 14.7 Hz,
1H, CH2), 4.14 (d, J = 12.1 Hz, 1H, CH2), 3.82 (d, J = 12.1 Hz, 1H, CH2), 3.71 (s, 1H, NH),
1.23 (s, 3H, CH3). 13C NMR (100 MHz, CDCl3): δ 142.5, 138.8, 133.4, 132.6, 130.9, 129.3
(2C), 128.9 (2C), 126.5, 121.7, 119.4, 110.5, 108.6, 107.4, 105.4, 79.8, 52.1, 43.1, 24.7. Elemental
analysis calcd (%) for C20H18ClN3: C 71.53, H 5.40, N 12.51; found: C 71.59, H 5.48, N 12.55.

3-(4-Bromophenyl)-5a-methyl-5a,6-dihydro-5H,12H-benzo[4,5]imidazo[1,2-a]pyrrolo[1,2-
d]pyrazine (4g). Red oil (0.138 g, 33% yield). 1H NMR (400 MHz, CDCl3) δ 7.53 (d,
J = 8.4 Hz, 2H, Ph), 7.23 (d, J = 8.4 Hz, 2H, Ph), 6.83 (t, J = 7.4 Hz, 1H, Ph), 6.65 (t, J = 7.0 Hz,
1H, Ph), 6.60 (d, J = 7.5 Hz, 1H, Ph), 6.46 (d, J = 7.3 Hz, 1H, Ph), 6.27 (d, J = 3.5 Hz, 1H,
pyrrole), 6.13 (d, J = 3.5 Hz, 1H, pyrrole), 4.64 (d, J = 14.7 Hz, 1H, CH2), 4.51 (d, J = 14.7 Hz,
1H, CH2), 4.13 (d, J = 12.1 Hz, 1H, CH2), 3.82 (d, J = 12.1 Hz, 1H, CH2), 3.69 (s, 1H, NH),
1.22 (s, 3H, CH3). 13C NMR (100 MHz, CDCl3): δ 142.4, 138.7, 133.4, 131.8 (2C), 131.4, 129.6
(2C), 126.6, 121.7, 120.7, 119.4, 110.5, 108.7, 107.4, 105.4, 79.8, 52.1, 43.1, 24.7. Elemental
analysis calcd (%) for C20H18BrN3: C 63.17, H 4.77, N 11.05; found: C 63.23, H 4.85, N 11.13.

5a-Methyl-3-(naphthalen-2-yl)-5a,6-dihydro-5H,12H-benzo[4,5]imidazo[1,2-a]pyrrolo[1,2-
d]pyrazine (4h). Red oil (0.073 g, 19% yield). 1H NMR (400 MHz, CDCl3) δ 7.89–7.83 (m,
3H, Ph), 7.79 (s, 1H, Ph), 7.55–7.46 (m, 3H, Ph), 6.83 (t, J = 7.5 Hz, 1H, Ph), 6.69 (t, J = 7.5 Hz,
1H, Ph), 6.60 (d, J = 7.4 Hz, 1H, Ph), 6.49 (d, J = 7.5 Hz, 1H, Ph), 6.41 (d, J = 3.5 Hz, 1H,
pyrrole), 6.19 (d, J = 3.5 Hz, 1H, pyrrole), 4.69 (d, J = 14.6 Hz, 1H, CH2), 4.56 (d, J = 14.6 Hz,
1H, CH2), 4.26 (d, J = 12.2 Hz, 1H, CH2), 3.97 (d, J = 12.2 Hz, 1H, CH2), 3.67 (s, 1H, NH),
1.22 (s, 3H, CH3). 13C NMR (100 MHz, CDCl3): δ 142.5, 138.8, 134.7, 133.6, 132.2, 129.9,
128.3, 127.9, 127.8, 126.7, 126.5, 126.4, 126.2, 125.9, 121.7, 119.3, 110.4, 108.8, 107.4, 105.5, 79.9,
52.4, 43.3, 24.8. Elemental analysis calcd (%) for C24H21N3: C 82.02, H 6.02, N 11.96; found:
C 82.14, H 6.16, N 12.12.

14a-Methyl-5,8,14a,15-tetrahydro-6H,14H-benzo[g]benzo[4’,5’]imidazo[1’,2’:4,5]py-
razino[1,2-a]indole (4i). Red oil (0.1 g, 28% yield). 1H NMR (400 MHz, CDCl3) δ 7.29–
7.24 (m, 2H, Ph), 7.21–7.18 (m, 1H, Ph), 7.06 (t, J = 7.4 Hz, 1H, Ph), 6.82 (t, J = 7.5 Hz, 1H, Ph),
6.68–6.62 (m, 1H, Ph), 6.44 (d, J = 7.7 Hz, 1H, Ph), 5.97 (s, 1H, pyrrole), 4.62 (d, J = 14.7 Hz,
1H, CH2), 4.55 (d, J = 14.7 Hz, 1H, CH2), 4.35 (d, J = 11.9 Hz, 1H, CH2), 4.20 (d, J = 11.9 Hz,
1H, CH2), 3.75 (s, 1H, NH), 2.95–2.82 (m, 2H, indole), 2.72–2.58 (m, 2H, indole), 1.29 (s,
1H, CH3). 13C NMR (100 MHz, CDCl3): δ 142.5, 138.7, 136.1, 129.5, 129.0, 128.6, 126.6,
126.1, 124.6, 122.7, 121.9, 120.3, 119.1, 110.8, 107.0, 103.8, 79.5, 77.3, 55.3, 42.8, 31.1, 24.4, 22.5.
Elemental analysis calcd (%) for C22H21N3: C 80.70, H 6.46, N 12.83; found: C 80.78, H 6.51,
N 12.90.

5a-Methyl-3-(thiophen-2-yl)-5a,6-dihydro-5H,12H-benzo[4,5]imidazo[1,2-a]pyrrolo[1,2-
d]pyrazine (4j). Red oil (0.125 g, 37% yield). 1H NMR (400 MHz, CDCl3) δ 7.29 (d, J = 3.6 Hz,
1H, thienyl), 7.10–7.08 (m, 1H, thienyl), 6.98 (d, J = 3.5 Hz, 1H, thienyl), 6.82 (t, J = 7.4 Hz,
1H, Ph), 6.67 (m, 1H, Ph), 6.62 (d, J = 7.2 Hz, 1H, Ph), 6.47 (d, J = 7.5 Hz, 1H, Ph), 6.35 (d,
J = 3.5 Hz, 1H, pyrrole), 6.11 (d, J = 3.5 Hz, 1H, pyrrole), 4.63 (d, J = 15.1 Hz, 1H, CH2), 4.55
(d, J = 15.1 Hz, 1H, CH2), 4.11 (d, J = 12.2 Hz, 1H, CH2), 4.02 (d, J = 12.2 Hz, 1H, CH2),
3.74 (s, 1H, NH), 1.33 (s, 1H, CH3). 13C NMR (100 MHz, CDCl3): δ 142.1, 138.7, 134.3,
127.5, 126.6, 126.2, 124.9, 124.7, 121.6, 119.2, 110.5, 109.6, 107.1, 105.0, 79.6, 51.5, 42.5, 24.3.
Elemental analysis calcd (%) for C18H17N3S: C 70.33, H 5.57, N, 13.67; found: C 70.45, H
5.67, N 13.76.

2-(5-Butyl-4-propyl-1H-pyrrol-2-yl)-1H-benzo[d]imidazole (5a). Yellow powder (0.157 g,
28% yield). 1H NMR (400 MHz, DMSO-d6) δ 12.25 (s, 1H, NH), 11.18 (s, 1H, NH), 7.43
(s, 2H, Ph), 7.08–7.05 (m, 2H, Ph), 6.60 (s, 1H, pyrrole), 2.51–2.47 (m, 2H, CH2), 2.31 (t,
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J = 7.4 Hz, 2H, CH2), 1.54–1.45 (m, 4H, CH2), 1.26–1.19 (m, 2H, CH2), 0.89 (t, J = 7.4 Hz, 3H,
CH3), 0.84 (t, J = 7.3 Hz, 3H, CH3). 13C NMR (100 MHz, DMSO-d6): δ 147.2, 132.7, 121.24,
121.4, 120.3, 119.9, 106.6, 32.2, 27.5, 24.8, 24.1, 21.9, 13.9, 13.8. Elemental analysis calcd (%)
for C18H23N3: C 76.83, H 8.24, N 14.93; found: C 76.96, H 8.31, N 15.03.

2-(4,5,6,7-Tetrahydro-1H-indol-2-yl)-1H-benzo[d]imidazole (5l). Yellow powder (0.175 g,
37% yield). 1H NMR (400 MHz, DMSO-d6) δ 12.27 (s, 1H, NH), 11.20 (s, 1H, NH), 7.85–7.38
(m, 2H, Ph), 7.10–7.08 (m, 2H, Ph), 6.55 (s, 1H, pyrrole), 2.57–2.55 (m, 2H, indole), 2.47–2.42
(m, 2H, indole), 1.74–1.67 (m, 2H, indole). 13C NMR (100 MHz, DMSO-d6): δ 177.6, 147.3,
130.8, 121.4, 121.3, 121.1, 120.5, 117.6, 110.4, 108.1, 30.75, 23.5, 22.9, 22.63, 22.62. Elemental
analysis calcd (%) for C15H15N3: C 75.92, H 6.37, N 17.71; found: C 76.03, H 6.48, N 17.82.

2-(5-(p-Tolyl)-1H-pyrrol-2-yl)-1H-benzo[d]imidazole (5c). Beige powder (0.41 g, 75%
yield). 1H NMR (400 MHz, DMSO-d6) δ 12.48 (s, 1H, NH), 11.96 (s, 1H, NH), 7.76 (d,
J = 8.0 Hz, 2H, Ph), 7.59–7.49 (m, 2H, Ph), 7.20–7.16 (m, 4H, Ph), 6.95 (d, J = 3.2 Hz, 1H,
pyrrole), 6.65 (d, J = 3.2 Hz, 1H, pyrrole), 2.30 (s, 3H, CH3). 13C NMR (100 MHz, DMSO-d6):
δ 146.4, 143.9, 135.6, 134.8, 134.5, 129.2 (2C), 124.4 (2C), 123.8, 121.7, 121.3, 117.8, 111.1, 110.6,
107.1, 20.7. Elemental analysis calcd (%) for C18H15N3: C 79.10, H 5.53, N 15.37; found: C
79.15, H 5.58, N 15.41.

2-(5-(4-Methoxyphenyl)-1H-pyrrol-2-yl)-1H-benzo[d]imidazole (5d). Pink powder
(0.121 g, 21% yield). 1H NMR (400 MHz, DMSO-d6) δ 12.48 (s, 1H, NH), 11.90 (s, 1H, NH),
7.79 (d, J = 8.7 Hz, 2H, Ph), 7.57–7.47 (m, 2H, Ph), 7.16–7.14 (m, 2H, Ph), 6.97 (d, J = 8.7 Hz,
2H, Ph), 6.92 (d, J = 3.6 Hz, 1H, pyrrole), 6.57 (d, J = 3.6 Hz, 1H, pyrrole), 3.77 (s, 3H, CH3).
13C NMR (100 MHz, DMSO-d6): δ 146.7, 144.2, 135.9, 135.2, 134.8, 129.6 (2C), 124.7 (2C),
124.2, 122.1, 121.6, 118.1, 111.4, 107.5, 21.1. Elemental analysis calcd (%) for C18H15N3O: C
74.72, H 5.23, N 14.52: found: C 74.77, H 5.29, N 14.58.

2-(5-(3-Methoxyphenyl)-1H-pyrrol-2-yl)-1H-benzo[d]imidazole (5e). Red powder
(0.231 g, 40% yield). 1H NMR (400 MHz, DMSO-d6) δ 12.53 (s, 1H, NH), 12.09 (s, 1H,
NH), 7.59 (m, 1H, Ph), 7.51 (m, 1H, Ph), 7.48–7.47 (m, 1H, Ph), 6.40 –7.38 (m, 1H, Ph), 7.28 (t,
J = 7.9 Hz, 1H, Ph), 7.17–7.16 (m, 2H, Ph), 6.94 (d, J = 3.0 Hz, 1H, pyrrole), 6.79–6.77 (m, 1H,
Ph), 6.72 (d, J = 3.0 Hz, 1H, pyrrole), 3.83 (s, 3H, CH3). 13C NMR (100 MHz, DMSO-d6): δ
146.0, 133.4, 131.4, 131.2, 126.3 (2C), 124.6, 121.6 (2C), 119.1, 114.2, 111.2, 108.3. Elemental
analysis calcd (%) for C18H15N3O: C 74.72, H 5.23, N 14.52; found: C 74.87, H 5.36, N 14.65.

2-(5-(4-Chlorophenyl)-1H-pyrrol-2-yl)-1H-benzo[d]imidazole (5f). Brown powder
(0.487 g, 83% yield). 1H NMR (400 MHz, DMSO-d6) δ 12.57 (s, 1H, NH), 12.10 (s, 1H, NH),
7.87 (d, J = 8.5 Hz, 2H, Ph), 7.59 (s, 1H, Ph), 7.47 (s, 1H, Ph), 7.44 (d, J = 8.5 Hz, 2H, Ph),
7.17–7.16 (m, 2H, Ph), 6.96 (d, J = 3.7 Hz, 1H, pyrrole), 6.73 (d, J = 3.7 Hz, 1H, pyrrole). 13C
NMR (100 MHz, DMSO-d6): δ 146.2, 133.5, 130.9, 130.8, 128.8 (2C), 126.1 (2C), 124.6, 122.1,
121.6, 118.0, 111.3, 110.8, 108.4. Elemental analysis calcd (%) for C17H12ClN3: C 69.51, H
4.12, N 14.30; found: C 69.64, H 4.21, N 14.42.

2-(5-(4-Bromophenyl)-1H-pyrrol-2-yl)-1H-benzo[d]imidazole (5g). Light yellow pow-
der (0.277 g, 41% yield). 1H NMR (400 MHz, DMSO-d6) δ 12.66 (s, 1H, NH), 12.13 (s, 1H,
NH), 7.84 (d, J = 8.4 Hz, 2H, Ph), 7.57–7.53 (m, 4H, Ph), 7.18–7.16 (m, 2H, Ph), 6.96 (d,
J = 3.2 Hz, 1H, pyrrole), 6.74 (d, J = 3.2 Hz, 1H, pyrrole). 13C NMR (100 MHz, DMSO-d6): δ
146.0, 133.4, 131.4, 131.2, 126.3 (2C), 124.6, 121.6 (2C), 119.1, 114.2, 111.2, 108.3. Elemental
analysis calcd (%) for C17H12BrN3: C 60.37, H 3.58, N 12.42; found: C 60.42, H 4.05, N 12.47.

2-(5-(Naphthalen-2-yl)-1H-pyrrol-2-yl)-1H-benzo[d]imidazole (5h). Beige powder
(0.185 g, 30% yield). 1H NMR (400 MHz, DMSO-d6) δ 12.54 (s, 1H, NH), 12.18 (s, 1H, NH),
8.48 (s, 1H, Ph), 8.02–7.99 (m, 1H, Ph), 7.92–7.87 (m, 3H, Ph), 7.63–7.61 (m, 1H, Ph), 7.53–7.44
(m, 3H, Ph), 7.19–7.17 (m, 2H, Ph), 7.00 (d, J = 3.2 Hz, 1H, pyrrole), 6.87 (d, J = 3.2 Hz, 1H,
pyrrole). 13C NMR (100 MHz, DMSO-d6): δ 146.2, 143.9, 134.59, 134.52, 133.4, 131.7, 129.4,
128.0, 127.7, 127.5, 126.4, 125.5, 124.6, 123.5, 121.9, 121.8, 121.3, 117.8, 111.1, 110.7, 108.4.
Elemental analysis calcd (%) for C21H15N3: C 81.53, H, 4.89, N 13.58; found: C 81.58, H
4.95, N 13.64.

2-(1H-Benzo[d]imidazol-2-yl)-4,5-dihydro-1H-benzo[g]indole (5i). Beige powder (0.313 g,
55% yield). 1H NMR (400 MHz, DMSO-d6) δ 12.43 (s, 1H, NH), 12.05 (s, 1H, NH), 7.85 (d, J
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= 8.5 Hz, 1H, Ph), 7.49 (s, 2H, Ph), 7.16–7.11 (m, 4H, Ph), 7.04–7.00 (m, 1H, Ph), 6.75 (s, 1H,
pyrrole), 2.84 (t, J = 7.3 Hz, 2H, indole), 2.67 (t, J = 7.3 Hz, 2H, indole). 13C NMR (100 MHz,
DMSO-d6): δ 146.5, 134.7, 130.4, 128.9, 127.9, 126.6, 125.4, 123.2, 121.4, 120.8, 120.7, 108.6,
29.4, 21.3. Elemental analysis calcd (%) for C19H15N3: C 79.98, H 5.30, N 14.73; found: C
80.02, H 5.36, N 14.77.

5-Methylbenzo[4,5]imidazo[1,2-a]pyrrolo[2,1-c]pyrazine (6k). Beige powder (0.199 g,
82% yield). 1H NMR (400 MHz, CDCl3) δ 7.89 (d, J = 8.4 Hz, 1H, Ph), 7.61 (d, J = 7.9 Hz,
1H, Ph), 7.43–7.39 (m, 2H, Ph, pyrrole), 7.34–7.30 (m, 1H, pyrrole), 7.28–7.27 (m, 2H, CH,
pyrrole), 6.79–6.78 (m, 1H, pyrrole), 2.53 (s, 3H, CH3). 13C NMR (100 MHz, CDCl3): δ 143.8,
142.0, 129.6, 123.8, 121.6, 121.4, 120.1, 119.2, 115.7, 112.8, 109.1, 106.8, 105.4, 15.6. Elemental
analysis calcd (%) for C14H11N3: C 76.00, H 5.01, N 18.99: found: C 76.12, H 5.17, N 19.13.

3-Butyl-5-methyl-2-propylbenzo[4,5]imidazo[1,2-a]pyrrolo[2,1-c]pyrazine (6a). Yellow
powder (0.214 g, 61% yield). 1H NMR (400 MHz, CDCl3) δ 7.71 (d, J = 8.0 Hz, 1H, Ph), 7.43
(d, J = 8.0 Hz, 1H, Ph), 7.24 (t, J = 7.6 Hz, 1H, Ph), 7.15–7.13 (m, 2H, Ph, CH), 6.92 (s, 1H,
pyrrole), 2.89–2.85 (m, 2H, CH2), 2.59 (s, 3H, CH3), 2.44 (t, J = 7.5 Hz, 2H, CH2), 1.62–1.56
(m, 2H, CH2), 1.49 –1.45 (m, 2H, CH2), 1.36–1.30 (m, 2H, CH2), 0.92–0.84 (m, 6H, CH3). 13C
NMR (100 MHz, CDCl3): δ 144.4, 142.7, 130.7, 129.7, 127.3, 123.8, 121.3, 121.1 (2C), 119.0,
108.9, 107.2, 106.2, 34.5, 28.4, 25.9, 23.8, 22.6, 18.6, 14.2, 13.9. Elemental analysis calcd (%)
for C21H25N3: C 78.96, H 7.89, N 13.15; found: C 79.05, H 7.97, N 13.21.

6-Methyl-1,2,3,4-tetrahydrobenzo[4’,5’]imidazo[2’,1’:3,4]pyrazino[1,2-a]indole (6l). Beige
powder (0.154 g, 51% yield). 1H NMR (400 MHz, CDCl3) δ 7.80 (d, J = 8.1 Hz, 1H, Ph),
7.44 (d, J = 8.0 Hz, 1H, Ph), 7.44 (t, J = 7.6 Hz, 1H, Ph), 7.33 (t, J = 7.6 Hz, 1H, Ph), 7.21 (t,
J = 7.6 Hz, 1H, Ph), 7.06 (s, 1H, CH), 6.82 (s, 1H, pyrrole), 3.11 (t, J = 6.0 Hz, 2H, indole),
2.69 (t, J = 5.5 Hz, 2H, indole), 2.54 (s, 3H, CH3), 1.88–1.84 (m, 2H, indole), 1.77–1.74 (m, 2H,
indole). 13C NMR (100 MHz, CDCl3): δ 144.3, 142.5, 129.7, 128.2, 124.1, 123.6, 121.7, 121.1,
119.0, 108.9, 106.0, 105.2, 77.36, 25.9, 24.0, 23.8, 22.7, 18.6. Elemental analysis calcd (%) for
C18H17N3: C 78.52, H 6.22, N 15.26; found: C 78.65, H 6.35, N 15.36.

5-Methyl-3-phenylbenzo[4,5]imidazo[1,2-a]pyrrolo[2,1-c]pyrazine (6b). Brown pow-
der (0.264 g, 81% yield). 1H NMR (400 MHz, CDCl3) δ 88 (d, J = 8.1 Hz, 1H, Ph), 7.59 (d,
J = 7.9 Hz, 1H, Ph), 7.48–7.46 (m, 2H, Ph), 7.45–7.38 (m, 5H, Ph, pyrrole), 7.30 (t, J = 7.5 Hz,
1H, Ph), 7.10 (s, 1H, CH), 6.65 (d, J = 3.9 Hz, 1H, pyrrole), 2.03 (s, 3H, CH3). 13C NMR
(100 MHz, CDCl3): δ 144.1, 142.7, 134.3, 133.1 131.1 (2C), 129.6, 128.6, 127.7 (2C), 124.0,
122.8, 122.0, 121.6, 119.2, 115.9, 109.1, 106.8, 106.7, 19.6. Elemental analysis calcd (%) for
C20H15N3: C 80.78, H 5.08, N 14.13; found: C 80.83, H 5.14, N 14.19.

5-Methyl-3-(p-tolyl)benzo[4,5]imidazo[1,2-a]pyrrolo[2,1-c]pyrazine (6c). Yellow pow-
der (0.291 g, 85% yield). 1H NMR (400 MHz, CDCl3) δ 7.91 (d, J = 8.1 Hz, 1H, Ph), 7.51 (d,
J = 7.9 Hz, 1H, Ph), 7.44 (d, J = 3.9 Hz, 1H, pyrrole), 7.40–7.36 (m, 3H, Ph), 7.28–7.24 (m, 3H,
Ph), 6.95 (s, 1H, CH), 6.63 (d, J = 3.9 Hz, 1H, pyrrole), 2.48 (s, 3H, CH3), 2.00 (s, 3H, CH3).
13C NMR (100 MHz, CDCl3): δ 144.1, 142.6, 138.4, 133.0, 131.1, 130.8 (2C), 129.5, 128.2 (2C),
123.7, 122.5, 121.8, 121.3, 119.0, 115.5, 109.0, 106.5, 106.3, 21.3, 19.4. Elemental analysis calcd
(%) for C21H17N3: C 81.00, H 5.50, N 13.49; found: C 81.13, H 5.58, N 13.60.

3-(4-Methoxyphenyl)-5-methylbenzo[4,5]imidazo[1,2-a]pyrrolo[2,1-c]pyrazine (6d).
Brown powder (0.323 g, 90% yield). 1H NMR (400 MHz, CDCl3) δ 7.86 (d, J = 8.0 Hz, 1H,
Ph), 7.55 (d, J = 8.1 Hz, 1H, Ph), 7.40 (d, J = 3.9 Hz, 1H, pyrrole), 7.38 (d, J = 8.5 Hz, 2H,
Ph), 7.29–7.25 (m, 2H, Ph), 7.03 (s, 1H, CH), 6.94 (d, J = 8.7 Hz, 2H, Ph), 6.59 (d, J = 3.9 Hz,
1H, pyrrole), 3.87 (s, 3H, CH3), 2.00 (s, 3H, CH3). 13C NMR (100 MHz, CDCl3): δ 159.9,
144.1, 142.7, 132.8, 132.2 (2C), 129.6, 126.3, 123.8, 122.5, 121.9, 121.4, 119.1, 115.6, 113.0 (2C),
109.0, 106.6, 106.4, 55.4, 19.4. Elemental analysis calcd (%) for C21H17N3O: C 77.04, H 5.23,
N 12.84; found: C 77.10, H 5.28, N 12.91.

3-(3-Methoxyphenyl)-5-methylbenzo[4,5]imidazo[1,2-a]pyrrolo[2,1-c]pyrazine (6e).
Brown powder (0.317 g, 88% yield). 1H NMR (400 MHz, CDCl3) δ 7.76 (d, J = 8.1 Hz, 1H,
Ph), 7.44 (d, J = 8.1 Hz, 1H, Ph), 7.30 (d, J = 3.9 Hz, 1H, pyrrole), 7.27–7.25 (m, 1H, Ph),
7.22–7.14 (m, 2H, Ph), 6.93–6.86 (m, 4H, CH, Ph), 6.52 (d, J = 3.9 Hz, 1H, pyrrole), 3.73 (s,
3H, CH3), 2.95 (s, 3H, CH3). 13C NMR (100 MHz, CDCl3): δ 158.9, 144.2, 142.7, 135.5, 132.8,
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129.7, 128.6, 123.9, 123.7, 122.9, 121.9, 121.6, 119.3, 116.8, 115.7, 114.2, 109.1, 106.8, 106.5, 55.4,
19.3. Elemental analysis calcd (%) for C21H17N3O: C 77.04, H 5.23, N 12.84; found: C 77.10;
H 5.28, N 12.91.

3-(4-Chlorophenyl)-5-methylbenzo[4,5]imidazo[1,2-a]pyrrolo[2,1-c]pyrazine (6f). Brown
powder (0.303 g, 83% yield). 1H NMR (400 MHz, CDCl3) δ 7.89 (d, J = 8.1 Hz, 1H, Ph), 7.61
(d, J = 8.0 Hz, 1H, Ph), 7.43–7.39 (m, 6H, Ph, pyrrole), 7.32 (t, J = 7.6 Hz, 1H, Ph), 7.13 (s,
1H, CH), 6.63 (d, J = 3.9 Hz, 1H, pyrrole), 2.05 (s, 3H, CH3). 13C NMR (100 MHz, CDCl3): δ
144.2, 142.5, 134.7, 132.7, 132.2 (2C), 131.5, 129.6 (2C), 127.9, 124.1, 123.1, 121.7, 121.6, 119.4,
116.1, 109.1, 107.0, 106.7, 19.8. Elemental analysis calcd (%) for C20H14ClN3: C 72.40, H 4.25,
N 12.66; found: C 72.49, H 4.31, N 12.74.

3-(4-Bromophenyl)-5-methylbenzo[4,5]imidazo[1,2-a]pyrrolo[2,1-c]pyrazine (6g). Yel-
low powder (0.397 g, 96% yield). 1H NMR (400 MHz, CDCl3) δ 7.89 (d, J = 8.1 Hz, 1H, Ph),
7.59–7.56 (m, 3H, Ph), 7.42–7.39 (m, 1H, pyrrole), 7.36 (d, J = 8.0 Hz, 2H, Ph), 7.33–7.27 (m,
2H, Ph), 7.10 (s, 1H, CH), 6.63 (d, J = 3.9 Hz, 1H, pyrrole), 2.04 (s, 3H, CH3). 13C NMR
(100 MHz, CDCl3): δ 144.1, 142.4, 133.1, 132.4 (2C), 131.4, 130.8 (2C), 129.5, 124.0, 123.1,
122.8, 121.6, 121.5, 119.2, 116.0, 109.1, 106.9, 106.6, 19.7. Elemental analysis calcd (%) for
C20H14BrN3: C 63.84, H 3.75, N 11.17; found, %: C 63.95, H 3.81, N 11.28.

5-Methyl-3-(naphthalen-2-yl)benzo[4,5]imidazo[1,2-a]pyrrolo[2,1-c]pyrazine (6h). Light
brown powder (0.302 g, 79% yield). 1H NMR (400 MHz, CDCl3) δ 7.97 (s, 1H, Ph), 7.93–7.87
(m, 4H, Ph), 7.61–7.56 (m, 4H, Ph), 7.48 (d, J = 3.9 Hz, 1H, pyrrole), 7.41 (t, J = 7.3 Hz, 1H,
Ph), 7.32 (t, J = 7.4 Hz, 1H, Ph), 7.13 (s, 1H, CH), 6.73 (d, J = 3.9 Hz, 1H, pyrrole), 2.06 (s, 3H,
CH3). Elemental analysis calcd (%) for C24H17N3: C 82.97, H 4.93, N 12.10; found: C 83.11,
H 5.07, N 12.19.

7-Methyl-13,14-dihydrobenzo[g]benzo[4’,5’]imidazo[2’,1’:3,4]pyrazino[1,2-a]indole (6i).
Brown powder (0.299 g, 84% yield). 1H NMR (400 MHz, CDCl3) δ 7.89 (d, J = 7.9 Hz, 1H,
Ph), 7.65 (d, J = 7.9 Hz, 1H, Ph), 7.42 (t, J = 7.4 Hz, 1H, Ph), 7.35–7.26 (m, 5H, Ph, pyrrole),
7.19–7.16 (m, 2H, Ph, CH), 2.95 (t, J = 6.7 Hz, 2H, indole), 2.79 (t, J = 6.7 Hz, 2H, indole), 2.58
(s, 3H, CH3). 13C NMR (100 MHz, CDCl3): δ 144.4, 142.7, 136.8, 130.6, 129.9, 129.6, 129.3,
128.0, 125.9, 125.8, 125.1, 124.5, 124.1, 121.9, 121.7, 119.4, 109.3, 108.1, 105.9, 30.8, 23.4, 19.8.
Elemental analysis calcd (%) for C22H17N3: C 81.71, H 5.30, N 12.99; found: C 81.78, H 5.39,
N 13.07.

3.4. X-ray Crystallography

Crystal Data for 3e: Formula: C21H17N3O·CHCl3 (M = 327.38 g/mol): monoclinic,
space group P21/c (No. 14), a = 10.3012(10) Å, b = 22.0073(19) Å, c = 7.2627(7) Å,
β = 90.469(3)◦, V = 1566.72(9) Å3, Z = 4, T = 296(2) K, µ(CuKα) = 1.076 mm−1, Dcalc
= 1.261 g/cm3, 43,389 reflections measured (2.30◦ ≤ θ≤ 30.06◦), 4583 unique (Rint = 0.1327;
Rsigma = 0.0865), which were used in all calculations. The final R1 was 0.0699 (I > 2σ(I))
and wR2 was 0.1920 (all data). CCDC 2102328 contains the supplementary crystallographic
data for this paper. The data can be obtained free of charge from The Cambridge Crystallo-
graphic Data Centre via http://www.ccdc.cam.ac.uk (accessed on 10 August 2021).

Crystal Data for 6b: Formula: C20H15N3·CHCl3 (M = 297.35 g/mol): monoclinic, space
group P21/c (No. 14), a = 10.4033(3) Å, b = 20.1257(7) Å, c = 7.8873(3) Å, β = 108.427(2)◦,
V = 1646.4(3) Å3, Z = 4, T = 296(2) K, µ(CuKα) = 0.083 mm−1, Dcalc = 1.321 g/cm3, 42,575
reflections measured (3.36◦ ≤ θ ≤ 30.05◦), 4804 unique (Rint = 0.0288; Rsigma = 0.0186),
which were used in all calculations. The final R1 was 0.0555 (I > 2σ(I)) and wR2 was 0.0774
(all data). CCDC 2102327 contains the supplementary crystallographic data for this paper.
The data can be obtained free of charge from The Cambridge Crystallographic Data Centre
via http://www.ccdc.cam.ac.uk (accessed on 10 August 2021).

4. Conclusions

In conclusion, three different series of valuable and highly promising annulated hetero-
cyclic assemblies have been synthesized from available building blocks, pyrrole/indolecarb-
aldehyde, o-phenylenediamine and propargyl chloride, by simply controlling the water

http://www.ccdc.cam.ac.uk
http://www.ccdc.cam.ac.uk
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content of the reaction. Moreover, 5a-methyl-5a,6-dihydro-5H,12H-benzo[4,5]imidazo[1,2-
a]pyrrolo[1,2-d] 4 and 5-methylbenzo[4,5]imidazo[1,2-a]pyrrolo[2,1-c]pyrazine 6 with the
methyl group in α-position to pyrrole were obtained for the first time. These compounds
represent important scaffolds for pharmaceutical chemistry, given the wide biological
activity of nitrogen-containing heterocycles and manifold possibilities of their further
functionalization.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/molecules27082460/s1. Synthesis S1: procedure for the synthesis
intermediate H and 1H NMR spectra; Figures S1 and S2: 2D NOESY and HMBC of H; Figures S3–S80:
1H and 13C NMR spectra for 3, 4, 5 and 6; Figures S81–S88: selected 2D NMR spectra for 4i, 6e; Tables
S1–S3: crystallographic data of 3e and 6d. References [27,28] are cited in the supplementary materials.
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