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INTRODUCTION 
 

Esophageal adenocarcinoma (EAC) is the cancer arising 

from  the  esophagus.  EAC is  also known as one of the  

 

most common types of tumors among the esophageal 

cancers. Barrett’s esophagus (BE) is one kind of 

intestinal metaplasia in the distal esophagus and also a 

precursor cause of EAC [1]. BE is more common in 
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ABSTRACT 
 

Esophageal adenocarcinoma (EAC) is the cancer arising from the esophagus, which frequently develop from 
Barrett’s esophagus (BE). Extracellular vesicles (EVs), particularly exosomes, are nanosized vesicles of endosomal 
origin released from various types of cells that have been implicated in cancers. However, the significance of 
circulating exosomes during the progression of BE to EAC remains unknown. Sera exosmal microRNAs were 
profiled from 13 EAC and 12BE patients compared to 12 healthy controls. We found a substantial dysregulation of 
exosomal miRNA levels in BE compared to healthy control, and identified a unique signature of 24 up regulated and 
14 down regulated miRNAs. Further validation showed exosomal miR-196a, -26b, -21, and -143 expression was 
significantly higher in BE and continued to have higher levels in EAC compared to healthy controls; while sera 
exosomal miR-378, -210, -205, and -200c-3p were significantly lower expressed in BE patients compared to 
compared to controls. Further, miR-378, -210, -205, and -200c-3p continue to have even lower levels in EAC 
patients compared to BE. Interestingly, sera expression levels of exosomal miR-15a, -16, and -193a-3p were 
significantly down regulated in BE PD-L1(+) patients; Sera exosomal miR-15a, -15b, -16, and -193a-3p expression 
levels in EAC PD-L1(+) patients were significantly lower (all p < 0.01) when compared to EAC PD-L1(-) patients. More 
importantly, the BE-EAC group had longitudinally decreased exosomal expression levels of miR-15a, -15b, -16, and -
193a-3p from BE status to their EAC progression. In conclusion, distinct microRNA expression patterns were 
demonstrated in circulating exosomes from Barrett’s esophagus and esophageal adenocarcinoma; Furthermore 
exosomal microRNAs potentially targeting PD-L1 mRNA were down regulated in PD-L1 (+) BE and EAC patients. 
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developed countries, affecting 2% of the general adult 

population [2]. One study with a cohort of 961 patients 

undergoing colonoscopy who were offered an additional 

endoscopy, and found an overall prevalence of 6.8%, 

with 5.5% for short-segment BE in persons aged 40 

years or older [3]. In another similar colonoscopy-based 

study of 300 patients over the age of 65 years, the 

prevalence was 4% and 15% for long- and short-

segment BE, respectively [4]. Therefore BE is common 

in older men and women undergoing screening 

colonoscopy regardless of reflux symptoms [4]. In other 

population-based studies, the prevalence of BE in the 

general population ranged between 1.3%, 1.6% and 

1.9% [5–7]. The length of BE is greater in men than in 

women, but other features are similar [8]. Incidence 

rates for high-grade dysplasia/cancer are similar in men 

and women, although the number of cases is small [8]. 

BE is clinically linked to the development of EAC by a 

0.5% risk each year. Dysplasia is now used as the major 

biomarker to classify patients with barrett’s esophagus 

at high risk to develop EAC [9, 10]. The transition from 

BE to EAC was implicated as a progress through low 

grade to high-grade dysplasia [11, 12]. BE included 

non-dysplastic Barrett’s intestinal metaplasia, low-grade 

and high-grade dysplasia [9, 13]. The malignant 

progression rate varies according to the presence of 

dysplasia in esophagus [9, 10, 13]. However, it remains 

unclear that how BE mediated dysplasia contributes to 

EAC development. 

 

Among the esophagus cancer patients PD-L1 is reported 

to be over expressed nearly 40% and associated with the 

worse overall survival [14]. In clinical trials, immune 

check point inhibitors reported to have a response rate 

9.9-33.3% in esophagus cancer [15]. Our group recently 

reported the identification of biomarkers, microRNAs, 

to determine which patients are more likely to response 

PD-L1 inhibitor treatment [16]. Recent studies indicated 

that exosomes (~50-200nm), membrane-bound extra-

cellular vesicles, coordinate intercellular communica-

tion between different cells [17]. Exosomes could 

potentially regulate cancer progression and metastasis 

by transferring DNA, RNA or proteins between various 

cells in the local and distant sites [18]. MicroRNAs 

(miRNAs) are small non-coding RNAs that involved in 

messenger RNA degradation and translation [19], which 

also implicated in its ability to inhibit translation of 

tumor associated genes [20–23]. Numerous documents 

have implicated in miRNAs’ significance on 

development of BE as well as EAC [24–27], which 

further demonstrated the potential of miRNA profiling 

to distinguish BE from EAC [28–30]. However, 

circulating exosomal miRNAs during the disease 

progression of BE to EAC has yet been examined. We, 

therefore, aimed to characterize miRNA content of 

exosomes in both BE and EAC patients, further 

validated that circulating exosomes contain differential 

level of microRNAs targeting Programmed death-ligand 

1 (PD-L1) mRNA in Barrett’s esophagus and esopha-

geal adenocarcinoma. 

 

RESULTS 
 

Serum miRNAs were differentially expressed in BE 

and EAC 
 

Sera exosomes isolated from BE and EAC were firstly 

characterized. Isolated exosomes were shown a 

spherical morphology with an average size of 133 

±25 nm (Figure 1A, 1B). Exosomal markers, CD63, 

CD9 and CD81 were present (Figure 1C), which clearly 

indicate that this vesicles are mostly exosomes. No 

 

 
 

Figure 1. Characterisation of exosome-like vesicles released from serum by (A) transmission electron microscopy, (B) dynamic light 

scattering analysis (133±25 nm) and (C) western blotting. Presence of exosomal markers, CD63, CD9, CD81 and mitochondrial protein 
cytochrome c in lysates from sera-derived exosomes and cell lysate. 
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significant differences were seen among healthy 

subjects, BE, and EAC. 

 

A pilot microRNA profiling was further performed to 

identify the differentially expressed exosome miRNAs 

in 13 EAC and 12BE patients compared to 12 healthy 

controls. Comparison shown that 38 exosomal miRNAs 

were differentially expressed in EAC patients compared 

to those of BE patients. Among them, we found that 24 

exosomal miRNAs were significantly up regulated 

(including miR-4508, miR-145, miR-106b, miR-30a-5p, 

miR-125b-5p, miR-382-5p, miR-196a, miR-100-5p, 

miR-151a-3p, miR-26b, miR-127-3p, miR-4488, miR-

21, miR-25, miR-143, miR-320e, miR-215, miR-4286, 

miR-186-5p, miR-181a-5p, miR-219-5p, miR-28-3p, 

miR-601, miR-194) and 14 miRNAs (miR-378, miR-

192-5p, miR-210, miR-15b-5p, miR-205, miR-31-5p, 

miR-720, let-7a-5p, miR-133a-3p, miR-200c-3p, miR-

200a-3p, miR-203, miR-375, miR-1) were down 

regulated significantly (fold change>2, p<0.05) in  

sera exosomes of EAC patients with compared to  

BE (Table 1 and Figure 2A). Moreover, principal 

component analysis (PCA) were performed for Healthy, 

BE and EAC based on miRNA profiles (Figure 2B). 

EAC was correlated with the first component (p<0.01). 

These results indicated that aberrantly expressed serum 

exosomal miRNA profiles were implicated in BE to 

EAC progression. We further identified which biologic 

pathways were affected during the sequential 

progression of BE to EAC, we applied DIANA-mirPath 

on the dysregulated serum miRNAs, and 52 KEGG 

pathways were significantly enriched (p<0.05) after 

false discovery rate was corrected. Fatty acid 

biosynthesis (2.238E-12), Hippo signaling pathway 

(2.604E-06), ErbB signaling pathway (1.001E-04) were 

top ranked as the most prominent pathways enriched in 

quantiles with the serum miRNA signature 

(Supplementary Table 1), suggesting that these biologic 

pathways were involved in the sequential progression of 

BE to EAC. 

 

We further identified and assessed a miRNA 

combination that could classify BE or EAC from 

healthy controls. A miRNA classifier based on the 

differential miRNA pattern was built to classify BE and 

EAC patients and from healthy individuals. The miRNA 

classifier showed higher accuracy to distinguish 

individuals with BE and EAC from controls (EAC vs. 

Controls, area under the curve (AUC) = 0·887 [0·799–

0·935]; BE vs. Controls AUC = 0·723 [0·675–0·788], 

p<0·001) (Figure 2C). The miRNA classifier had higher 

sensitivity (range 75·4-88·9%) and specificity (82·1-

93·4%) to detect EAC. These data further supported a 

notion that the potential mechanisms regulated by 

differentially expressed microRNAs would play 

important roles during BE and EAC development. 

Validation of dysregulated miRNAs with independent 

larger sample-size cohort 

 

To further validate the dysregulated exosomal miRNAs 

during BE-EAC sequential progression, TaqMan Real-

Time PCR was employed to validate the differential 

expression levels of eight miRNAs including miR-

196a, -26b, -21, -143, -378, -210, -205, and -200c-3p. 

These miRNA candidates were selected from the 

original microRNA assay screening according to their 

functional significance of previous investigations. An 

independent larger cohort of 79 EAC patients, 56 BE 

patients and 66 healthy controls was included here for 

further validation (Table 2). We found that exosomal 

miR-196a, -26b, -21, and -143 were significantly 

increased in individual BE patients when compared 

with healthy controls (Figure 3). In addition, the results 

demonstrated that exosomal miR-196a, -26b, -21, and -

143 continued to have higher levels in EAC compared 

to BE (Figure 3); while miR-378, -210, -205, and -

200c-3p were significantly under expressed in 

individual BE patients compared to healthy controls 

(Figure 3). Further exosomal miR-378, -210, -205, and 

-200c-3p continued to show lower levels in EAC 

patients (Figure 3). These findings confirmed that 

extracellular/circulating exosomal miRNAs are 

potentially important regulators influencing the 

sequential progression of Barrett’s esophagus to 

esophageal adenocarcinoma. 

 

MiRNAs targeting PD-L1 were down regulated in BE 

and EAC patients with PD-L1 positive expression 

 

The upregulation of PD-L1 is found in cancers and 

contributes to evasion of the host immune defense. 

Some previous studies suggested that PD-L1 was 

regulated by miR-15a, -15b, -16, and -193a-3p targeting 

PD-L1 mRNA in human malignancies [31]. We 

analyzed the association between the expression of PD-

L1 and that of sera exosomal miR-15a, -15b, -16, and -

193a-3p in 25 BE and 48 EAC patients with PD-L1 

positive expression compared to those PD-L1 negative 

patients (43 BE and 44 EAC). Healthy controls with 

positive PD-L1 individuals (n=22) and negative PD-L1 

individuals (n=56) were also included for comparison. 

The median expression levels of sera exosomal miR-

15a, -16, and -193a-3p were significantly down 

regulated (all p < 0.05) in BE PD-L1(+) patients when 

compared to BE PD-L1(-) patients (Figure 4); further 

sera exosomal miR-15a, -15b, -16, and -193a-3p 

expression levels in EAC PD-L1(+) patients were 

significantly lower (all p < 0.01) when compared to 

EAC PD-L1(-) patients (Figure 4). However, there were 

no significant differentially expressed between healthy 

controls with positive PD-L1 patients and negative PD-

L1 patients (Figure 4). 
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Table 1. Differential microRNAs expression in serum during the sequential progression of Barrett’s esophagus to 
esophageal adenocarcinoma. 

Barrett’s esophagus vs. Healthy Control Esophageal adenocarcinoma vs. Barrett’s esophagus 

miR-Name Fold change Adjusted p-value miR-Name Fold change Adjusted p-value 

miR-4508 2.962 0.0700 miR-4508 4.643 0.0022 

miR-145 2.928 0.0650 miR-145 4.063 0.0030 

miR-106b 0.344 0.0755 miR-106b 3.125 0.0071 

miR-30a-5p 1.123 0.0729 miR-30a-5p 2.881 0.0015 

miR-125b-5p 1.244 0.0784 miR-125b-5p 2.811 0.0016 

miR-382-5p 1.254 0.0144 miR-382-5p 2.668 0.0030 

miR-196a 1.153 0.0446 miR-196a 2.651 0.0031 

miR-100-5p 1.166 0.0560 miR-100-5p 2.585 0.0028 

miR-151a-3p 1.099 0.0740 miR-151a-3p 2.534 0.0025 

miR-26b 1.186 0.0460 miR-26b 2.495 0.0056 

miR-127-3p 1.186 0.0536 miR-127-3p 2.483 0.0035 

miR-4488 1.067 0.0513 miR-4488 2.429 0.0006 

miR-21 1.207 0.0363 miR-21 2.422 0.0019 

miR-25 0.963 0.0015 miR-25 2.408 0.0043 

miR-143 1.224 0.0396 miR-143 2.334 0.0038 

miR-320e 0.690 0.0615 miR-320e 2.245 0.0028 

miR-215 1.211 0.0550 miR-215 2.214 0.0024 

miR-4286 1.085 0.0715 miR-4286 2.209 0.0033 

miR-186-5p 2.077 0.0731 miR-186-5p 2.172 0.0031 

miR-181a-5p 1.435 0.0523 miR-181a-5p 2.168 0.0025 

miR-219-5p 0.866 0.0880 miR-219-5p 2.153 0.0065 

miR-28-3p 1.415 0.0206 miR-28-3p 2.114 0.0008 

miR-601 1.245 0.0183 miR-601 2.083 0.0063 

miR-194 0.819 0.0190 miR-194 2.065 0.0036 

miR-378 0.731 0.0358 miR-378 0.493 0.0021 

miR-192-5p 0.653 0.0517 miR-192-5p 0.393 0.0032 

miR-210 0.584 0.0437 miR-210 0.250 0.0012 

miR-15b-5p 0.837 0.0597 miR-15b-5p 0.162 0.0041 

miR-205 0.630 0.0642 miR-205 0.093 0.0015 

miR-31-5p 7.275 0.0558 miR-31-5p 0.093 0.0020 

miR-720 1.678 0.0551 miR-720 0.092 0.0034 

let-7a-5p 1.407 0.0344 let-7a-5p 0.089 0.0033 

miR-133a-3p 2.288 0.0663 miR-133a-3p 0.088 0.0065 

miR-200c-3p 0.558 0.0691 miR-200c-3p 0.087 0.0034 

miR-200a-3p 0.766 0.0563 miR-200a-3p 0.073 0.0021 

miR-203 0.807 0.0274 miR-203 0.053 0.0024 

miR-375 0.783 0.0464 miR-375 0.048 0.0005 

miR-1 0.521 0.0556 miR-1 0.033 0.0032 

 

MiRNAs targeting PD-L1 were reduced expressed in 

BE patients with continually developing EAC 

 

We then selected five BE patients continually 

developing EAC in 2 years from our cohorts, we tested 

the sera exosmal miRNAs expression of miR-15a, -15b, 

-16, and -193a-3p longitudinally. 10 BE patients who 

did not develop EAC in 5 years were included as 

control group. Compared with control group, the BE-

EAC group had decreased sera exosomal expression 
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Figure 2. (A) Heatmap of differential sera miRNA profiles during the sequential progression of Barrett’s esophagus to esophageal 

adenocarcinoma. Heatmap representation of the mean fold change in differential miRNA signature. Two-dimensional grid matrix displaying 
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38 serum miRNAs was obtained by the functional heat-map in R. Columns refer to time course comparison: 12 healthy controls, 12 BE and 13 
EAC. Rows stand for the 38 differential miRNAs. Each entry of the grid refers to relative fold (log2) of a given miRNA. The color of each entry is 
determined by the value of that fold difference, ranging from green (negative values) to red (positive values). (B) Principal component 
analysis. The plots for disease phenotypes (12 healthy controls, 12 BE and 13 EAC) were performed as principal component analysis among all 
samples based on miRNA profiles. (C) The performance of sera exosomal microRNA classifier to detect the risk of BE and EAC. ROC curves 
from 12 healthy controls, 12 BE and 13 EAC. Performance shown for distinguishing individuals with BE or EAC from healthy controls. 
 

levels of miR-15a, -15b, -16, and -193a-3p from BE 

status to their EAC progression (Figure 5), suggesting 

that these exosomal microRNAs could be early 

biomarkers for EAC development in BE patients. 

Furthermore, there were 3 PD-L1(-) and 2 PD-L1 (+) 

patients when BE status, all turned into PD-L1 (+) 

patients in all 5 BE patients who progressed to EAC, 

However, all samples were negative expression of PD-

L1 status in 10 BE patients who did not progress to 

EAC. However, the statistic test is not significant at p < 

0.05 due to the small sample size. 

 

DISCUSSION 
 

BE patients are at a higher risk of developing EAC, 

which has the poor survival in its late stage [13]. In the 

current study, we performed a profiling of sera exosomal 

microRNA among BE and EAC patients. Distinct 

microRNA patterns were identified during the 

progression of BE to EAC. These differential exosomal 

miRNAs were validated with independent cohort, 

including miR-196a, -26b, -21, -143, -378, -210, -205, 

and -200c-3p. Expression of miR-196a, -26b, -21, and -

143 were significantly higher in BE and continue to have 

higher levels in EAC compared to healthy controls; 

while miR-378, -210, -205, and -200c-3p were 

significantly lower expressed in BE patients compared to 

compared to controls. Further, miR-378, -210, -205, and 

-200c-3p continue to have even lower levels in EAC 

patients compared to BE. microRNAs-196a was found 

to correlate with during BE related dysplasia progression 

into esophagus adenocarcinoma [32]. Moreover, miR-

196a levels were conversely correlated with long-term 

survival esophageal adenocarcinoma [33] and regulated 

the role of pro- and anti-apoptotic functions by targeting 

keratin 5, small prolinerich protein 2C, and S100 

calcium-binding protein A9 [34]. MiR-21 was proven to 

be aberrantly increased in Barrett’s oesophagus [35], 

which was further enhanced by the activated EGFR 

signaling pathway in lung cancers [36]. Up regulation of 

miR-143 was found in BE and EAC [35], suggesting 

miR-143 may play an important role in dysplaysia and 

tumor develoment, possibly through targeting DNMT3A 

[37]. Taken all together, our findings strongly support 

potential roles of miRNAs in BE and sequential EAC 

tumorigenesis. We further confirmed exosomal miRNAs 

were differentially expressed at different stages of BE 

and EAC. We identified and assessed a miRNA 

combination that could detect the presence of EAC in at-

risk BE patients (Figure 2C). The miRNA classifier is a 

potential biomarker for esophageal adenocarcinoma in 

patients at risk. The miRNA classifier could be valuable 

to detect preclinical esophageal adenocarcinoma, 

providing patients with a chance of curative resection 

and longer survival. 

 

In addition, Fatty acid biosynthesis (2.238E-12), Hippo 

signaling pathway (2.604E-06), ErbB signaling pathway 

(1.001E-04) were identified with enrichment into the 

serum miRNA signature (Supplementary Table 1), 

indicating important biological signals coordinating the 

sequential progression of BE to EAC. Fatty acid 

synthase (FASN) as a key enzyme participated in the 

fatty acid biosynthetic pathway, and Over expression of 

FASN protein was observed in over half of BE patients, 

especially in the intestinal mucin phenotype of Barrett’s 

esophagus in which glandular cells display increased 

proliferation, angiogenesis, and COX-2 expression; 

Further FASN over expression pattern was retained in 

EAC [38]. Recent investigations demonstrated that 

amplification of ERBB2 (also called HER2) oncogenic 

form was found in esophageal adenocarcinoma 

progression, leading to a worse outcome for EAC [39]. 

Combined with our current results, BE and EAC 

dysregulated miRNAs can regulate Fatty acid 

biosynthesis and ErbB signaling pathway, further 

contribute to development of EAC. 

 

Up regulation of the surface expression of PD-L1 in 

tumor cells can interact with its receptor PD-1 on T cells, 

leading to evade immune surveillance and inhibit the 

immune checkpoint response [40]. The roles of 

microRNAs in transcriptional regulating the expression 

of PD-1/PD-L1 immune checkpoint remain elusive. In 

argonautes immunoprecipitation experiments, Kaso SC et 

al., discovered an interaction between the PD-L1 mRNA 

and the miR-15a or miR-16 [31]. Furthermore, Wang X 

et al., observed an inverse correlation between PD-L1 

and miR-34a expression in acute myeloid leukemia [41]. 

Further, miR-93-5p and miR-106b-5p could target 

expression of PD-L1 mRNA in bulk cancer cells [42]. 

MiR-424 could regulate the PD-1/PD-L1 pathways in 

chemo resistant ovarian cancer through direct binding to 

PD-L1 mRNA 3’UTR [43]. In this study we for the first 

time found that microRNA expression levels of sera 

miR-15a, -16, and -193a-3p were significantly down 

regulated (all p < 0.05) in BE PD-L1(+) patients  

(Figure 5); further sera miR-15a, -15b, -16, and -193a-3p 
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Table 2. Characteristics of independent cohorts of healthy controls and patients with BE or EAC. 

Variable  Controls (n = 66)  BE (n = 56)  EAC (n = 79) 

Gender (male) 36 32 45 

Age (years, mean ± SD and range) 55±15 55±10 55±6 

Barrett length (mean and range) NA C4M5 (C1M3–C10M11) C8M8 (C5M5–C13M13) 

Tumor stage (T)       

1 NA NA 0 

2     12 

3     35 

4     30 

Unknown     2 

Lymph node status (N)       

0 NA NA 13 

1     14 

2     24 

3     15 

4     13 

Unknown     0 

Metastasis (M)       

0 NA NA 33 

1     40 

Unknown     6 

Body mass index (mean ± SD) 25±5 26±5 25±6 

Current smokers 13 14 14 

Previous smokers 22 14 15 

Non-smokers 31 28 50 

BE Barrett’s esophagus, EAC esophageal adenocarcinoma, CM circumference length, maximum length. 
 

 
 

Figure 3. Validation of miRNA array expression using independent samples. TaqMan real-time RT-PCR to validate the expression 

levels of miR-196a, miR-26b, miR-21, miR-143, miR-378, miR-210, miR-205, and miR-200c-3pusing an independent cohort of 79 EAC patients, 
56 BE patients and 66 healthy controls. Data shown are as mean ± SD. 
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Figure 4. The expression of microRNA predicted to target programmed death ligand 1 (PD-L1) is lower in BE and EAC with 
PD-L1 positivity. TaqMan real-time RT-PCR to validate the expression levels of miR-15a, -15b, -16, and -193a-3p using the combined cohort 

of 25 BE and 48 EAC patients with PD-L1 positive samples compared to those PD-L1 negative patients (43 BE and 44 EAC). Healthy controls 
with positive PD-L1 patients (n=22) and negative PD-L1 patients (n=56) were also included for comparison. Data shown are as mean ± SD. 
 

 
 

Figure 5. Exosomal miRNAs expression correlates with BE-EAC progression. TaqMan real-time RT-PCR to validate the expression 

levels of miR-15a, -15b, -16, and -193a-3p using 5 BE-EAC patients and 10 BE-BE patients. Data shown are as mean ± SD. 
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expression levels in EAC PD-L1(+) patients were 

significantly lower (all p < 0.01) when compared to EAC 

PD-L1(-) patients (Figure 5). These results demonstrated 

that tumor suppressor microRNAs may contribute to the 

regulation of PD-L1 expression in BE and EAC. More 

importantly, compared with control group, the BE-EAC 

group had decreased sera exosomal expression levels of 

miR-15a, -15b, -16, and -193a-3p from BE status to their 

EAC progression (Figure 5), suggesting that these 

exosomal microRNAs could be not only early biomarkers 

for EAC development in BE patients, further differential 

expressed microRNAs in Barrett’s esophagus may target 

PD-L1 expression and contribute to the development of 

esophageal adenocarcinoma. 
 

It is deserved to search for changes of microRNA 

expression from BE to EAC as well as healthy subjects, 

and clarify the rising and decreasing groups  

of microRNA. Further investigation shows that 

microRNAs expression, which are likely to be involved 

in the progression of the parthenogenesis of EAC 

development from BE, compared the group that appears 

to have progressed in the same patient with the 

unchanged group. However, there are still some 

limitations in our study. BE and EAC samples were not 

paired in our study, but from separate individuals. In 

addition, we did not perform any functional investigation 

in vivo of the identified miRNAs. Another limitation for 

longitudinal analysis is that the sample size from the BE 

patients with continually developing EAC is small. 

 

CONCLUSIONS 
 

In conclusion, here we performed a retrospective study 

by enrolling independent and large validation set of 

subjects, our results demonstrated that circulating 

exosomal miRNAs may have a promising diagnostic 

performance for the detection of BE and EAC. Further 

circulating exosomes contain differential level of 

microRNAs targeting PD-L1 mRNA in Barrett’s 

esophagus and esophageal adenocarcinoma. 

 

MATERIALS AND METHODS 
 

Patients 
 

BE patients and EAC patients at Hospital, Tongji 

Medical College, Huazhong University of Science and 

Technology, Wuhan, China were enrolled between 2012 

through 2019 after obtaining informed consent and 

approval by the Human Research Ethics Committee of 

Tongji Medical College, Huazhong University of 

Science and Technology. All participants in the first 

pilot study, including controls, underwent routine 

endoscopy [12 healthy controls, 12 BE and 13 EAC, 

Clinical features are displayed in Table 3]. Healthy 

subjects were patients undergoing endoscopy for 

unexplained upper abdominal complaints, had no reflux 

symptoms or endoscopic abnormalities. A further 

validation assay included an independent larger cohort 

of 79 EAC patients, 56 BE patients and 66 healthy 

controls. No significant difference of mean BMI 

between healthy controls, BE and EAC patients in both 

cohorts. The diagnoses of BE are made on the basis of 

histologic specimens evaluated by two specialized GI 

pathologists. Patients with concurrent or previous 

diagnosis of low-grade dysplasia (LGD), high-grade 

dysplasia (HGD), or EAC were excluded from BE 

patients in this study. Within this cohort, we also 

searched the cases that were further diagnosed to 

develop EAC during the follow-up period. There were 

totally 68 BE patients recruited in this study. The median 

follow-up time was 4.1 years (interquartile range, 1.5 to 

7.5) for the 68 BE patients. Among them, 33 BE patients 

had more than 5 year follow up after they were first 

diagnosed as BE. The tissue microarray was applied to 

determine PD-L1 status in this study as described 

previously [44]. Briefly, immunohistochemistry was 

performed on a Leica Bond III platform using the Bond 

Polymer Refine Detection Kit (Leica Biosystems). The 

primary antibody against PD-L1 (SP142, rabbit IgG; 

Spring Bioscience, Pleasanton, CA) was incubated for 

30 minutes at room temperature at a 1:50 dilution. This 

antibody had been previously validated in a large 

number of NSCLCs and was shown to be satisfactory 

(>95% concordance). For quantitative evaluation, an 

average score was derived by averaging the scores from 

each patient. Cases of PD-L1 expression of 5% or more 

were considered positive. Clinical data were retrieved 

from the hospital’s patient records. The experimental 

design and analysis were included in the workflow, as 

shown in Supplementary Figure 1. 

 

Exosome isolation from sera by precipitation 

 

Exosomes from sera was extracted using total exosome 

isolation kit (Life technologies) [45]. Briefly, 15 ml 

serum was centrifuged at 3,000 g for 30 min and 

thereafter at 10,000 g for 30 min to remove cells and 

debris. Sera were further diluted with PBS and 

centrifuged at 10,000g for 10 min at room temperature. 

The pelleted exosomes was solubilized with PBS and 

utilized for characterization. 

 

Nanoparticle tracking analysis 

 

Size distribution and concentration was analyzed using 

nanoparticle tracking analysis (NTA) on a NanoSight 

NS500 (Malvern Instruments Ltd.). Samples were 

recorded at camera level=14, detection level=3 and 5 

videos of 20 seconds with a coefficient of variance 

<20% were used for analysis. To ensure measurement 
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Table 3. Characteristics of normal controls and patients with Barrett’s esophagus or esophageal adenocarcinoma 
used for microRNA expression profiling. 

Variable  Controls (n = 12) BE (n = 12) EAC (n = 13) 

Gender (male) 6 6 7 

Age (years, mean ± SD and range) 52±13 53±9 51±16 

Barrett length (mean and range) NA C4M5 (C1M3–C10M11) C8M8 (C5M5–C13M13) 

Tumor stage (T)    

1 NA NA 0 

2   4 

3   4 

4   5 

Unknown   0 

Lymph node status (N)    

0 NA NA 2 

1   2 

2   4 

3   3 

4   2 

Unknown   0 

Metastasis (M)    

0 NA NA 4 

1   6 

Unknown   3 

Body mass index (mean ± SD) 26±6 25±4 25±3 

Current smokers 2 3 1 

Previous smokers 1 2 2 

Non-smokers 9 7 10 

BE Barrett’s esophagus, EAC esophageal adenocarcinoma, CM circumference length, maximum length. 
 

accuracy all samples were analyzed during the same 

time frame for each cohort/experiment on a single 

instrument by the same operator. 

 

Transmission electron microscopy (TEM) 

 

Isolated exosomes were loaded onto formwar carbon-

coated grids, fixed in 2% paraformaldehyde, washed 

and immunolabelled with anti-CD63 antibody followed 

by 10 nm gold-labelled secondary antibody (Sigma 

Aldrich). The exosomes were post-fixed in 2.5% gluta-

raldehyde, washed, contrasted in 2% uranyl acetate, 

embedded in a mixture of uranyl acetate (0.4%) and 

methyl cellulose (0.13%), and examined by electron 

microscope (Carl Zeiss NTS). 

 

MicroRNA expression profiling 

 

Sera exosmal RNA was extracted using the miRNeasy 

Mini kit (Qiagen) following the manufacturer’s 

protocol. RNA quality was assessed by using a 

Nanodrop spectrophotometer (Thermo Scientific). 25 ng 

RNA was reverse transcribed for cDNA synthesis using 

the TaqMan Multiplex RT set (Applied Biosystems). 

qPCR was performed using TaqMan 2X Universal PCR 

Master Mix, No AmpErase UNG (Applied Biosystems). 

TaqMan Low-Density Array Human miRNA Panel 

(Applied Biosystems, Foster City, CA) was chosen for 

miRNA profiling. 

 

Pathway analysis 

 

DIANA-mirPath [46] was employed to perform the 

enrichment analysis of predicted target genes by one or 

more miRNAs in biological pathways. The software 

performs an enrichment analysis of multiple miRNA 

target genes to all known KEGG pathways based on two 

algorithms, microT-CDS [47, 48] and miRTarBase [49]. 

The software is available at http://microrna.gr/mirpath. 

 

TaqMan miRNA qPCR 

 

Sera exosome RNA was isolated from newly recruited 

cohort of 79 EAC, 56 BE and 66 healthy controls using 

http://microrna.gr/mirpath
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Qiagen miRNeasy Serum/Plasma Kit (Qiagen, Valencia, 

CA). Individual miRNA analysis was performed using 

TaqMan miRNA assays (Applied Biosystems, Foster 

City, CA). A synthetic RNA spike-in, C. elegans miR-39 

miRNA mimic, was added prior to cDNA synthesis as a 

control for variations in reverse transcription efficiency. 

The PCR amplifications were carried out by incubation 

for 10 min at 95°C, followed by 40 amplification cycles 

at 95°C for 10 sec and 60°C for 1 min. All reactions 

were performed in duplicate. miRNA with more than 

half of the Ct values > 35 per group were excluded from 

the analysis. Relative expression was calculated using 

the 2-ΔΔCt method. The relative miRNA levels were 

normalized to internal controls miR-16-5p. 

 

Western blotting 

 

Protein samples from lysed exosomes (5 μg) were 

resolved by sodium dodecyl sulphate-polyacrylamide gel 

electrophoresis (SDS-PAGE) (10-15%) and transferred 

to polyvinylidene fluoride membranes (Millipore). Blots 

were blocked 1hour with 5% milk in Tris-buffered saline 

(TBS) with 0.1% Tween-20, and blotted 1 hour with the 

following primary antibodies including CD63 

(#106228D, Invitrogen), CD9 (#sc20048, Santa Cruz), 

CD81 (#10630D, Invitrogen), or cytochrome c 

(#556433, BD Pharmingen). After three washes with 

TBS/0.1% Tween-20, filters were incubated for 1h at 

room temperature with an HRP-conjugated secondary 

antibody before being revealed with ECL substrate 

(Pierce Biotechnology). 

 

Statistical analysis 

 

Statistical analysis was performed with the GraphPad 

(San Diego, CA). Group comparisons were analyzed 

using Kruskal-Wallis or Student’ t test. Statistical data 

were expressed as mean ± SD. P value less than 0.05 

was considered statistically significant. The microRNA 

classifier (MSC) test was performed by logistic 

regression analysis following previously reported 

standard operating procedures with fixed parameters 

[50]. The sensitivity, specificity, and area under the 

receiver operating characteristic curve (AUC) were used 

to evaluate the performance of the classifiers. 

 

Compliance with ethics guidelines 

 

The study was performed in accordance with relevant 

guidelines and regulations, following the approval of 

the licensing committee of Tongji Medical College, 

Huazhong University of Science and Technology, and 

conformed to the tenets of the Declaration of Helsinki. 

Written informed consent was obtained from all patients 

with healthy subjects. We thank the participants of the 

study. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 
 

 
 

Supplementary Figure 1. The workflow in this study. 
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Supplementary Table 
 

Supplementary Table 1. Biologic pathways enriched by differentially expressed serum miRNAs. 

KEGG pathway p-value #genes #miRNAs 

Top of Form 

Fatty acid biosynthesis (hsa00061) Bottom of Form 2.238E-12 

Top of Form 

7Bottom of Form 6 

Top of Form 

Hippo signaling pathway (hsa04390) Bottom of Form 2.604E-06 

Top of Form 

70Bottom of Form 15 

Top of Form 

Axon guidance (hsa04360) Bottom of Form 2.604E-06 

Top of Form 

69Bottom of Form 16 

Top of Form 

Proteoglycans in cancer (hsa05205)Bottom of Form 3.331E-05 

Top of Form 

93Bottom of Form 18 

Top of Form 

Glioma (hsa05214) Bottom of Form 5.042E-05 

Top of Form 

35Bottom of Form 15 

Top of Form 

Adrenergic signaling in cardiomyocytes(hsa04261) Bottom of Form 9.324E-05 

Top of Form 

69Bottom of Form 17 

Top of Form 

Neurotrophin signaling pathway (hsa04722) Bottom of Form 9.324E-05 

Top of Form 

65Bottom of Form 18 

Top of Form 

ErbB signaling pathway (hsa04012)Bottom of Form 1.001E-04 

Top of Form 

50Bottom of Form 18 

Top of Form 

Glutamatergic synapse (hsa04724) Bottom of Form 1.972E-04 

Top of Form 

53Bottom of Form 15 

Top of Form 

Oxytocin signaling pathway (hsa04921)Bottom of Form 2.029E-04 

Top of Form 

79Bottom of Form 16 

Top of Form 

FoxO signaling pathway (hsa04068) Bottom of Form 2.363E-04 

Top of Form 

67Bottom of Form 16 

Top of Form 

Long-term potentiation (hsa04720) Bottom of Form 4.527E-04 

Top of Form 

39Bottom of Form 15 

Top of Form 

cGMP-PKG signaling pathway (hsa04022) Bottom of Form 5.394E-04 

Top of Form 

79Bottom of Form 18 

Top of Form 

mTOR signaling pathway (hsa04150) Bottom of Form 7.141E-04 

Top of Form 

35Bottom of Form 15 

Top of Form 

Wnt signaling pathway (hsa04310) Bottom of Form 7.141E-04 

Top of Form 

66Bottom of Form 16 

Top of Form 

Signaling pathways regulating pluripotency of stem cells (hsa04550) 

Bottom of Form 

7.141E-04 Top of Form 

67Bottom of Form 

18 

Top of Form 

PI3K-Akt signaling pathway (hsa04151) Bottom of Form 7.141E-04 

Top of Form 

146Bottom of Form 19 

Top of Form 

Acute myeloid leukemia (hsa05221) Bottom of Form 1.070E-03 

Top of Form 

33Bottom of Form 15 

Top of Form 

Long-term depression (hsa04730) Bottom of Form 1.318E-03 

Top of Form 

31Bottom of Form 11 

Top of Form 

Ras signaling pathway (hsa04014) Bottom of Form 1.318E-03 

Top of Form 

100Bottom of Form 18 

Top of Form 

Amphetamine addiction (hsa05031)Bottom of Form 1.354E-03 

Top of Form 

33Bottom of Form 16 

Top of Form 

Prostate cancer (hsa05215) Bottom of Form 1.373E-03 

Top of Form 

46Bottom of Form 15 
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Top of Form 

Pathways in cancer (hsa05200) Bottom of Form 1.373E-03 

Top of Form 

167Bottom of Form 18 

Top of Form 

Gap junction (hsa04540) Bottom of Form 1.412E-03 

Top of Form 

39Bottom of Form 15 

Top of Form 

Thyroid hormone signaling pathway (hsa04919) Bottom of Form 1.412E-03 

Top of Form 

53Bottom of Form 19 

Top of Form 

Glycosaminoglycan biosynthesis (hsa00534) Bottom of Form 1.864E-03 

Top of Form 

11Bottom of Form 10 

Top of Form 

Non-small cell lung cancer (hsa05223) Bottom of Form 1.864E-03 

Top of Form 

28Bottom of Form 15 

Top of Form 

Rap1 signaling pathway (hsa04015) Bottom of Form 1.864E-03 

Top of Form 

94Bottom of Form 19 

Top of Form 

AMPK signaling pathway (hsa04152) Bottom of Form 2.614E-03 

Top of Form 

60Bottom of Form 18 

Top of Form 

MAPK signaling pathway (hsa04010) Bottom of Form 3.176E-03 

Top of Form 

113Bottom of Form 19 

 


