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ABSTRACT Melanoma mortality rates are the highest amongst skin cancer patients. Melanoma is life
threating when it grows beyond the dermis of the skin. Hence, depth is an important factor to diagnose
melanoma. This paper introduces a non-invasive computerized dermoscopy system that considers the
estimated depth of skin lesions for diagnosis. A 3-D skin lesion reconstruction technique using the estimated
depth obtained from regular dermoscopic images is presented. On basis of the 3-D reconstruction, depth and
3-D shape features are extracted. In addition to 3-D features, regular color, texture, and 2-D shape features
are also extracted. Feature extraction is critical to achieve accurate results. Apart from melanoma, in-situ
melanoma the proposed system is designed to diagnose basal cell carcinoma, blue nevus, dermatofibroma,
haemangioma, seborrhoeic keratosis, and normal mole lesions. For experimental evaluations, the PH2, ISIC:
Melanoma Project, and ATLAS dermoscopy data sets is considered. Different feature set combinations is
considered and performance is evaluated. Significant performance improvement is reported the post inclusion
of estimated depth and 3-D features. The good classification scores of sensitivity = 96%, specificity = 97%
on PH2 data set and sensitivity = 98%, specificity = 99% on the ATLAS data set is achieved. Experiments
conducted to estimate tumor depth from 3-D lesion reconstruction is presented. Experimental results achieved
prove that the proposed computerized dermoscopy system is efficient and can be used to diagnose varied skin
lesion dermoscopy images.

INDEX TERMS Melanoma in-situ, skin lesions, classification, 3D lesion reconstruction, 3D features and
tumor depth estimation.

I. INTRODUCTION
The world health organization reports a rapid increase of skin
cancer cases [1]. Skin cancer can be broadly classified as
melanoma and non-melanoma type. About two to three mil-
lion cases of non-melanoma cancer and 132,000 melanoma
cancers are reported annually worldwide [2]. A staggering
mortality rate of 75% is reported in the US alone due to
skin cancermelanomawhen compared to non-melanoma skin
cancers [3], [4]. An average increase of 2.6% deaths caused
due to melanoma has been observed annually in the past
decade. Cases where early detection of skin cancer melanoma
is achieved, the costs incurred towards treatments are fairly
low and a five year survival rate of 95% is reported. The cost

incurred towards the treatment of advance cases of melanoma
is very high and the five year survival rate is only 13% [5].
Early detection of skin cancer melanoma is a challenging
problem and requires attention.

To diagnose and study the skin lesions dermatologists
use the dermoscopy technique also referred to as sur-
face skin microscopy, dermatoscopy and epiluminescence
microscopy (ELM ) [6]. The dermoscopy technique adopted is
non-invasive and is generally performed by expert dermatolo-
gists. Dermoscopy is performed by the application of a gel on
the skin lesion, then digital imaging systems like stereomicro-
scope or dermatoscope are used to obtain magnified images.
Magnified skin lesion images provide additional color,
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structure and pattern data not clearly visible to the naked
human eye. This additional data enable the dermatologists to
identify the type of skin lesion and aid the diagnosis [7].

The use of classical clinical algorithms such as ABCD
(Asymmetry, Border, Color and Diameter) [8], ABCDE
(Asymmetry, Border, Color, Diameter and Evolution) [9],
Menzies method [10] and the seven-point checklist [11]
is adopted by for the diagnosis of melanoma skin lesions.
An improvement of 5–30% is achieved by using dermoscopy
and classical clinical algorithms when compared to the exam-
ination carried out by the naked human eye [12]. The skill of
the dermatologists is also critical to achieve accurate diagnos-
tic performance considering dermoscopy images [13], [14].
Considering the varied type of melanoma, non-melanoma
skin lesions and dependency on the skill level of dermatol-
ogist, accurate diagnosis of melanoma is still a problem.

The use of computer aided diagnosis can be used to tackle
this problem. Availability of advance image processing tech-
niques and decision making mechanisms to build computer
aided diagnostic system can provide a wholistic solutions to
aid early diagnosis of skin cancer melanoma. The computer
aided diagnostic systems are also referred to as ‘‘Computer-
ized dermoscopy’’ [22]. Computerized dermoscopy systems
primarily constituted of five components A) Dermoscopy
image acquisition of skin lesions, B) Region of interest identi-
fication or segmentation of skin lesion, C) Feature Extraction
D) Feature selection and E) Decision making mechanisms
achieved through machine learning techniques. Numerous
studies published lay emphasis on the segmentation or region
of interest identification [15]–[18]. Several computerized
dermoscopy systems to have been developed considering
all or combinations of shape, texture, color features and incor-
porating varied decision support mechanisms [12], [19]–[28].
To the best of our knowledge, little or no emphasis is laid so
far on depth estimation and 3D reconstruction of skin lesions
from 2D dermoscopic images. Considering the depth and 3D
geometry of the skin lesion is critical to achieve accurate
diagnosis. A detailed discussion is presented in the latter
section of the paper.

Surface illumination based dermoscopy techniques are
used to for image acquisition as they are inexpensive and eas-
ily available. Dermoscopy techniques like Nevoscopy [30],
trans-illumination light microscopy [31], High-frequency
ultrasound [32], acoustic microscopy [33] and 3D high-
frequency skin ultrasound images [38], to name a few are
considered by researchers to construct 3D volumes and esti-
mate the depth of skin lesions for accurate diagnosis. The
availability and the cost of these special dermoscopy imaging
systems is still a problem.

A noninvasive computerized dermoscopy system to aid
diagnosis of skin lesions is proposed in this paper. Spe-
cial emphasis is laid to aid diagnosis of in-situ melanoma.
An adaptive snake model [18] for segmentation of the 2D
dermoscopic skin lesion images. To reconstruct the 3D skin
lesion initially a depth map is derived from the 2D dermo-
scopic image. The depth map construction is adopted from

the technique presented in [34]. The depth map data is fit
to the 2D surface to achieve 3D skin lesion reconstruction.
The 3D skin lesion is represented as structure tensors. Using
the 2D skin lesion data color, texture and 2D shape fea-
tures ae extracted. The 3D reconstructed skin lesion data is
used to obtain the 3D shape features. The 3D shape features
encompass the relative depth features estimated. To highlight
and study the significance of the features, feature selection
methods are considered. For decision making, three different
multiclass classifiers have been considered and their per-
formance is compared and studied. The proposed comput-
erized dermoscopy system relies on bag-of-features (BoF),
AdaBoost and Support Vector Machines (SVM) for deci-
sionmaking. Comparisons considering different feature com-
binations and classifiers is presented in the experimental
study. Good classification results considering melanoma skin
lesions (especially in-situ melanoma) achieved early in the
research motivated authors to further expand the diagno-
sis on varied skin lesion types. Experimental study is con-
ducted using dermoscopic images obtained from Atlas of
Dermoscopy CD [41], PH2 dataset [42] and ISIC: Melanoma
project dataset [62], [63].

The main contributions of the study is summarized as
follows

1. 3D reconstruction from 2D dermoscopic images using
depth estimation.

2. 3D shape features considering the 3D lesion con-
structed.

3. Considering different algorithms for multiclass deci-
sion making.

4. Comprehensive skin lesion data considered in the study
namely melanoma, in-situ melanoma, atypical nevus,
common nevus, basal cell carcinoma, blue nevus, der-
matofibroma, haemangioma, seborrhoeic keratosis and
normal mole lesions.

The remaining manuscript is organized as follows. The
signifance of depth and the various stages of skin cancer
melanoma is discussed in section two. A brief literature
review is presented in section three. Section four discusses
the proposed computerized dermoscopy system. The experi-
mental study and discussions is in the penultimate section of
the paper. Last section of the paper describes the conclusions
drawn and future work.

II. MELANOMA – ‘‘IT IS SKIN DEEP’’
Melanoma is typically a type of skin cancer. Of all types of
skin cancer known, melanoma is the deadliest type and the
highest mortality rates are reported from patients suffering
from melanoma. Melanoma cancer occurrences are predom-
inantly reported in the skin but occurrences in the eyes, nasal
passages, throat, brain etc. are also known. In the research
presented here melanoma cancer of the skin is considered.
To diagnose melanoma of the skin a physical examination by
a dermatologist and a biopsy is generally carried out. Post
confirmation, the doctors proceed to identify the stage of
the melanoma skin cancer to initiate the relevant treatment.
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Stages of melanoma are described through various scales
like Clarke scale, Breslow scale, Tumor Node and Metas-
tases (TNM ) scales. The Clarke and Breslow scale basically
define the measure of the depth of the tumor i.e. how deep the
tumor has gone into the skin. A normal skin anatomy is shown
in Fig.1 (a). The T stages of melanoma defined by Cancer
Research UK [35] to measure type and size of primary tumor
and the is shown in Fig. 1.

FIGURE 1. Anatomy of the skin (a) and T Stages of melanoma (b). Based
on the depth of the primary tumor the stage of melanoma is identified.
(Note: Depth and dimension of tumor may vary from case to case.
Figure only intends to highlight the significance of tumor depth in
melanoma diagnosis) (Source: Cancer Research UK).

In Fig. 1(b), ‘‘Tis’’ represents an initial stage of melanoma
and the tumor is on the epidermis (i.e. top layer of the skin).
The primary tumor is of size T1 if the depth is less than
1 mm and is still in the epidermis. Primary tumor is of size
of T2 when it has grown into the dermis of the skin and its
depth ranges from 1mm to 2mm. Size of the tumor is T3 if its
measured depth is 2mm to 4 mm thick and is still localized
to the dermis. When the growth depth of a primary tumor is
greater than 4mm and is beyond the dermis then it is said
to be of T4 size.Based on how far the cancer is spread and
the size of the tumor melanoma cancer is classified into five
stages [35], [36].

Stage 0: It is the initial stage also referred to as
insitumelanoma. Occurrences of abnormal melanocytes are
observed in the top layer of the skin. Melanoma detected in
this stage is 100% curable.
Stage 1: The tumor in this stage has spread into the

skin but limited to the epidermis layer. No spread into the
lymph or other parts of the body are detected. The tumor
growth depth is between 1mm to 2mm and can exhibit ulcer-
ation (i.e. breakage of the skin). At this stage through surgical
procedures the patients can be cured. Two sub classes i.e. 1A
and 1B are considered based on the depth of the tumor.
Stage 2:Melanoma tumor is 2mm to 4mm in size and can

exhibit ulceration. No spread to lymph nodes or other parts
of the body. Sub classes include 2A, 2B and 2C based on the
depth and the ulceration. Cure is possible through surgical
procedures.
Stage 3: Tumor is more than 4mm deep and can exhibit

ulceration. Cancer is spread to the lymph nodes but is still
localized. Advance surgery and post-surgical care required.
Survival rate is less. Sub classes include 3A, 3B and 3C.
Stage 4: The tumor is more than 4mm deep and has spread

to other organs and lymph nodes. Treatment at this stage is
expensive and life threatening as the cancer has spread from
its primary tumor site. Low survival rates amongst patients.

Based on the above discussion it is clear that the depth of
the tumor is a critical parameter for diagnosis and identifica-
tion of the cancer stage. Early detection of melanoma (Stage 0
and Stage 1) is the solution to reduce mortality rates amongst
patients suffering frommelanoma skin cancer. In the research
work presented here a computerized dermoscopy system to
aid early detection of melanoma is presented considering
the 3D reconstruction of the lesion. The 3D reconstruction
enables to estimate the relative depth of the primary tumor.

III. LITERATURE REVIEW
Identification of the skin lesion or region of interest in dermo-
scopic images is achieved through segmentation procedures.
In [15] type two fuzzy logic is used to determine the threshold
for segmentation of skin lesions. Illumination correction cou-
pled with texture based segmentation technique is presented
in [16]. The Mimicking Expert Dermatologist’s Segmenta-
tion (MEDS) technique is proposed in [17]. MEDS technique
requires low computation resources and provides accurate
segmentation results that concur with the segmentation car-
ried out by dermatologists. A comparison considering gra-
dient vector flow, level set, expectation-maximization level
set, adaptive thresholding, fuzzy-based split-and-merge algo-
rithm and adaptive snake segmentation techniques is reported
by Silveira et al. [18]. Of all the techniques considered the
adaptive snake and the expectation-maximization level set
technique exhibit the best segmentation performance. Adap-
tive snake segmentation technique is considered in the pro-
posed computerized dermoscopy system as low execution
time and higher segmentation accuracy is reported (when
compared to the expectation-maximization level set tech-
nique) in [18].
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Researchers have suggested numerous works to aid early
detection of melanoma considering dermoscopic images.
A detailed survey can be obtained from [29].

In [21] an inspection system to identify Clark Nevi and
Malignant Melanoma from pigmented skin lesions is dis-
cussed. Threshold based segmentation algorithm based on
Otsu’s algorithm is considered. Shape color and texture fea-
tures are extracted and binary classifiers are considered to
identify the two classes of dermoscopic images considered.

In [26], using supervised mechanisms, lesion features and
maximum a posteriori (MAP) technique, a segmentation tech-
nique is proposed. Hair removal techniques using Histograms
of Oriented Gradient (HoG) features is also discussed. A clas-
sification mechanism is used to identify the presence of pig-
ment network in skin lesions. The classification is achieved
considering Gaussian and Laplacian of Gaussian (G− LoG)
features.

To identify two classes of skin lesions (malignant and
benign) a computer-aided diagnosis system is presented
in [12]. Manual and automated segmentation procedures of
skin lesions are discussed. Using wavelet transforms texture
features are extracted. Garnavi et al. [12] consider texture,
shape and novel boundary features in the spatial and fre-
quency domains. Classification is achieved using Support
SVM, hidden naive Bayes (HNB), random forest tree (RF)
and logistic model tree (LMT ).
A Multi Parameter Extraction and Classification Sys-

tem (MPECS) is proposed to detect early melanoma or in situ
melanoma in [24]. A six phase approach [23] is adopted to
extract the color, texture and shape features. Classification
of three skin lesion types, namely ‘‘Advanced Melanoma’’,
‘‘Non-Melanoma’’, ‘‘Early Melanoma’’ is achieved through
Neural Networks (NN ) and SVM classifiers.

Sadeghi et al. [25] highlight the importance of detecting
irregular streaks in dermoscopic images to accurately diag-
nosemelanoma. Streak patterns, color and texture features are
considered in the work presented. A simple logistic classifier
is used to identify the absence/presence (regular and irregu-
lar) of streaks in dermoscopic images.

The significance of color features to classify skin lesions
is put forth in [27]. A K-means clustering algorithm is incor-
porated to extract the color features. The Congenital nevi,
combined nevi, Reed/Spitz nevi, melanomas, dysplastic nevi,
blue nevi, dermal nevi, seborrheic keratosis and dermatofi-
broma lesion images are considered for evaluation. Using a
symbolic regression algorithm the skin lesion are classified
into benign or malignant types.

A. Saéz et al. [28] consider that each dermoscopic
image represents a Markov model. The parameters estimated
from the model are considered as the features of the skin
lesion. Classification is performed to identify the globular,
reticular and homogeneous patterns in the pigmented cell.
Saéz et al. [28] have obtained the dermoscopic images from
Interactive Atlas of Dermoscopy [37].

Based on high-level intuitive features (HLIF) and SVM
classifiers the diagnosis of melanomas and non-melanoma

skin lesions is presented in [20]. In addition to the HILF
features, low-level features and their combinations are also
considered.

In [19] a novel equation to compute the exposure time for
skin to burn is introduced A threshold based segmentation,
hair detection and removal techniques is considered as the
preprocessing steps in the image analysis module. Shape,
color and texture features are extracted to define the skin
lesion images. A two level SVM classifier is used to identify
the benign, atypical and melanoma moles from the PH2
dataset [42].

The importance of considering global and local features in
computer aided diagnosis methods is discussed in [22]. Use
of color and texture features (global and local) to identify
melanoma and non-melanoma images from the PH2 dataset
is presented. The use of, SVM , AdaBoost and BoF classifier
is adopted for decision making.

Based on the literature reviewed it is observed that limited
work is carried out considering 3D reconstruction, depth
estimation and 3D shape features of skin lesions which is
critical to diagnose melanoma skin cancer. The state of art
works carried out so far predominantly consider only binary
decision making mechanisms. In this paper, authors consider
3D reconstruction of skin lesion images to estimate depth of
the tumor and adopt multiclass decision making mechanisms.

IV. PROPOSED COMPUTERIZED DERMOSCOPY SYSTEM
This section of paper presents the proposed computerized
dermoscopy system. The main objective of the proposed
system is to aid early detection of melanoma, especially in-
situ melanoma. Additionally, the proposed system can also be
adopted to diagnose different skin lesions types. Overview
of the proposed system is shown in Fig. 2. The dermo-
scopic image dataset is considered to consist of training and
testing data. Segmentation is performed obtain the region
of interest or skin lesion to be diagnosed. A depth map is
extracted from the 2D dermoscopic image. Depth map is used
in constructing a 3Dmodel corresponding to the dermoscopic
image. The 3D model is represented as a structure tensor.
A comprehensive feature set considering the 2D shape, 3D
shape, color and texture are extracted per image. A feature
selection method to understand the significance of features
extracted on decision making is incorporated. For decision
making, most of the related works consider binary classifica-
tionmechanisms. The proposed system considers amulticlass
classification mechanisms for decision making, enabling its
applicability to diagnose a wide variety of skin lesion images.
Dermoscopic images used for evaluation are obtained from
CD-ROM of Dermoscopy [41] and PH2 dataset [42].

A. PROBLEM FORMULATION
Let I = {I0, I1, · · · In} represent a set of n dermoscopic
images. LetC = {C0,C1, · · ·Cm} represent a set of classes of
the dermoscopic images i.e. ∀Ix ∈ I : Ix ∈ Cx where Cx ∈ C.
The set I consists of images used for training and testing. Each
image In is represented by a feature set Fn. The training data
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FIGURE 2. Overview of the proposed computerized proposed computerized dermoscopy system for skin lesion classification.

is represented as R = {(F1,C1) , (F2,C2) , · · · (FR,CR)},
where CR ∈ C and FR represents the features of the r th

image from the set I. Similarly the testing data vector can
be defined as T = {(F1,C1) , (F2,C2) , · · · (FT ,CT )} where
CT represent the unknown classes and FT represent a set
of features extracted from the T th image whose class is to
be identified. Let D represent a decision making mechanism
such thatD (FR) = CR. The class identified i.e. CT in T is the
diagnostic output of the proposed computerized dermoscopy
system. The goal of the proposed computerized dermoscopy
system can be defined as

D (FT ) = CT , (1)

where FT represents the features of the image IT ∈ I that
needs to be diagnosed.

From (1) it is clear that a robust feature extraction tech-
nique aiding the decision making mechanism D is to be
developed. The features extracted consider the 2D shape,
3D shape, color and texture information of the skin lesions.
Identification of the skin lesion and 3D construction are also
considered as the sub problems that need to be solved.

B. SEGMENTATION
Dermoscopic images generally consists of normal skin and
skin lesion segments. Identification of the normal skin and
skin lesion is critical to accurately extract features. The skin
lesions can be identified using segmentation techniques.

The proposed system considers an adaptive snake (AS) seg-
mentation technique to identify skin lesion regions in a set
of images I. Literature presented in [18] proves the accuracy
and speed of the AS segmentation technique. Skin texture
variations, skin hair and specular reflections present in der-
moscopic images tend to induce spurious edges not belonging
to the skin lesion. Eliminating the spurious edges and accurate
segmentation can be achieved using the AS model. Based on
correlationmatching in theHSV (Hue SaturationValue) color
of a skin image, intensity variations along radial directions
are identified as edges. Edges obtained are linked using a
continuity criteria to form a contour segment set. Subset of
the contour segments also known as snakes are approximated
using an estimation algorithm [39] to obtain the skin lesion
segment. The regions depicting the variations of color (skin
region and lesion region) are manually selected by the user.

Let’s consider a boolean set B = {b1, · · · , bk} associated
with k number of contour segments identified in an image
In ∈ I. The number of contour segment identified are consid-
ered as features of In. The contour segment set is denoted as
A = {a1, · · · , ak}. The counter model consisting of x points
is defined as O = {o1, · · · , ox}. The approximation of B or a
subset of B, by the model O is defined as

O
′

= argmax
o

log (p (A,B,O)) . (2)

The approximation O
′

is achieved through the approxi-
mate a posteriori criterion. Equation (2) can be solved using
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FIGURE 3. The adaptive snake (AS) segmentation technique for 6 skin lesion images. The original image is shown in the first column, the major
segment identified is shown in the second column. Intermediate images obtained at 10, 30 and 50 iterations are shown in column 3 to 5. The
segmentation result (at 70 iterations) and the ground truth obtained is shown in the last two columns.

the EM algorithm [39]. According to the EM algorithm,
log (p (A,B,O)) can be substituted with its expected value
with respect to the unknown variable B in (2).The substitution
is defined as

S
(
O;O

′
)
= EB

{
log (p (A,B,O))A,O

′
}
, (3)

where EB represents the energy of the Bth contour and the
best estimate of O is O

′

. Let P (ox ,A) represent a potential
function defined as

P (ox ,A) = −
∑

y
dyPy (ox), (4)

where dy,Py (ox) represents the confidence degree and poten-
tial function of the yth contour segment. The confidence
degree dy is a probability P, that the yth contour segment is
valid or true i.e. dy = P(By = 1|Ay,O

′

)
Based on the substitutions presented in [40] and (4),

S(O;O
′

) can be simplified and presented as

S(O;O
′

) = K +
∑

x
P(ox ,A)+ Ei(O), (5)

where K represents a constant and Ei is the internal energy.
PotentialP is also referred to as an adaptive potential due to

the varying nature its exhibits during estimation. Estimation
is performed based on a user specified number of iterations.

A detailed explanation of theAS segmentationmodel is found
in [40].

The AS segmentation results obtained considering der-
moscopic images obtained from the PH2 dataset is shown
in Fig. 3. The number of iterations is set to 70. A dermoscopic
image is considered as the input. The normal skin region and
lesion region (center of the skin lesion) is selected manually.
The major segment (largest contour segment) detected is
shown in the second column of Fig 3. Adaption of the snake at
10, 30, 50 and 70 iterations is shown in column three to six.
The ground truth (provided in the PH2 dataset) is shown in
the last column. The segmentation accuracy is evident from
the results shown in Fig 3. Results considering skin lesions
extending beyond the input image is also shown. In such
cases the image boundary is considered as the boundary of
the segmented skin lesion.

C. 3D LESION SURFACE RECONSTRUCTION
3D reconstruction is essential to estimate depth of the skin
lesions. Techniques like stereo vision, structure from motion,
depth from focus, depth from defocus etc. are used to esti-
mate depth considering multiple images. Using constrained
image acquisition techniques like active illumination and
coded aperture method’s, depth can be estimated using sin-
gle images [34]. The varying or unknown dermoscopic data
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FIGURE 4. The 3D lesion surface reconstruction technique. The original image is shown in column 1. The edge map used to compute the defocus is
shown in column 2. Sparse and the resultant depth map is shown in column 3-4. The structure tensor T representing the 3D lesion surface is
shown in the last column. (a) 3D surface reconstruction results for melanoma image obtained from ATLAS dataset. (b) 3D surface reconstruction
results for melanoma image obtained from PH2 dataset.. (c) 3D surface reconstruction results for blue nevus image from ATLAS dataset.

acquisition parameters/settings used and the non-availability
of multiple images render these mechanisms ineffective.
In [34] a novel technique to estimate depth, considering a
single image obtained from unconstrained image data acqui-
sition techniques is described. The proposed computerized
dermoscopy system adopts this technique to estimate the
depth in dermoscopic images. Depth map obtained is fit to
the underling 2D surface to enable 3D surface reconstruction.
The 3D surface constructed is represented as structure ten-
sors. The 3D surface reconstruction results considering two
melanoma and one blue nevus skin lesion images is shown
in Fig. 4.

1) DEPTH MAP CONSTRUCTION
The depth of the skin is computed using the estimated defocus
occurrence at edges. Input skin lesion images lesions (shown
in column 1 of Fig. 4) are reblurred using aGaussian function.
Defocus occurrences at edges (represented as edge map col-
umn 2 of Fig.4) is obtained, as a ratio between the gradient
magnitude of the input skin lesion image and its reblurred
version. Propagating the blur observed at edges to the whole
skin lesion image, enables in computing depth maps. An ideal
step edge model considering the edge is located at x = 0 is
defined as

E (x) = AS (x)+ O, (6)

where A, O represent the amplitude and offset. S (x) repre-
sents the step function.

Defocus blur is obtained by convolving the sharp input
skin lesion image with a point spread function. A Gaussian
function i.e. g (x, s) is used to approximate the point spread
function. Standard deviation s , in the Gaussian function is
directly proportional to the circle of confusion (c) and it is
defined as s = kc [34]. The blurred edge B (x) obtained
using the edge model and Gaussian function is defined as
B (x) = E (x)⊗ g (x, s). Let I represent an input skin lesion
image. Reblurring of the input skin lesion image is achieved
using a two dimensional isotropic Gaussian function and it
is represented as IB. Gradient magnitude along the x and y
directions of the input image is defined as

‖∇I (x, y)‖ =
√
∇I2x +∇I2y , (7)

where ∇Ix ,∇Iy represent the gradients along x and y direc-
tions.

Gradient magnitude of the blurred image is computed in a
similar fashion. The gradient magnitude ratio between edge
locations (in the x direction) of I and IB is ‖∇I (x)‖

‖∇IB(x)‖
. A sparse

depth map D (x) is constructed by estimating the blur scale
occurrences at each edge location. Inaccurate blur estimates
at certain edge locations are eliminated by using a joint
bilateral filter and the input skin lesion image as a reference.
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The resulting sparse depth map (shown in column 3 of Fig.4.)
D (x) is then used to obtain the full depth map D (x). The
full depth map D (x) is obtained by propagating the defocus
blur estimates obtained at edge locations to the entire skin
lesion image. Image interpolation technique based onmatting
Laplacian technique [44] is used to obtain the full depth map.
The depth maps obtained is shown in column 4 of Fig.4. The
optimal depth map D is obtained by solving the following
equation

(L+ λM)D = λMD̄ (8)

where L, M, λ represent the matting Laplacian, diagonal
matrix and scalar balance factor. D and D̄ are the vector
representations of the full depth map and sparse depth maps.

2) TENSOR STRUCTURE REPRESENTATION
OF LESION SURFACE
Three dimensional legion surface S is represented as S :
A ⊂ D3

7→ D2. Where D3 is the three dimensional space in
which A lies. A point A is represented as (xA, yA,D (xA, yA))
whereD (xA, yA) represents the depth map. The legion recon-
struction is achieved as a gradient descent of the depth map
based energy function. Nonlinear partial differential equa-
tions (PDE) are used to represent the gradient descent. A heat
equation is used to implement the gradient descent. Legion
reconstruction using the heat equation can be defined as

min
D:U7→D

R (D) =
∫
U

(
‖∇D‖2

)
dxdy, (9)

where ∇D =
[
∂D
∂x ,

∂D
∂y

]
represents gradient of the depth map

and U is the image domain.
Perona and Malik[43] have shown that (9) results in

smooth surfaces. To preserve lesion edges and attain
smooth surfaces, Perona andMalik [43] introduced nonlinear
anisotropic PDE to implement the gradient descent defined
as

min
D:U7→D

R (D) =
∫
U

(
1− e−

‖∇0D‖2

κ2

)
dxdy, (10)

where κ is the edge preservation constant and 0 is the diffu-
sion tensor.

Using gradient decentminimization, (10) is solved in a lim-
ited number of iterations. Let ρ represents a tangential space
obtained from the depth map. The 3D lesion reconstructed is
considered as a structure tensor T defined as

T = ∇Dρ .∇D. (11)

T represents a 3D lesion structure constructed, the cor-
responding coordinate based eigenvectors represent mini-
mum andmaximum gradient directions. Diffusion tensors are
represented using eigenvalues and eigenvectors. Eigenvalues
represent magnitude of the gradient observed in the depth
map. Eigenvectors define direction of the gradients. The dif-
fusion tensor 0 is defined as

0 = fa (α1, α2) β1β2ρ + fb (α1, α2) β1β2ρ (12)

where fa (x) , fb (x) represent functions incorporated to cap-
ture the gradient deviations.

The structure tensor obtained is used to compute 3D skin
lesion features. The 3D skin lesion reconstructed i.e. T is
shown in the last column of Fig.4.

D. FEATURE EXTRACTION
Characteristics of the skin lesion images are represented as
features. In this paper color, texture, 2D shape and 3D shape
features are considered. Accurate and robust feature repre-
sentation is essential as they directly affect the performance
of the skin lesion classification.

1) COLOR FEATURE EXTRACTION
Color characteristics are often used by dermatologists to clas-
sify skin lesions [22]. According to dermatologists melanoma
skin lesions are characterized by variegated coloring [45].
The variegated coloring induces high variance in the red,
green and blue color space. Red, green and blue component
data of the pixels in the segmented skin lesion is stored
as vectors. The mean µ and variance σ of each channel is
computed. Mean, variance computed is represented as µR,
µG,µB and σR, σG, σB.To capture complex non-uniform color
distributions within the skin lesion, mean ratios of the mean
values is computed i.e. µR

µG
, µR
µB

, µG
µB

. Variations in color of
the skin lesion with respect to the surrounding skin is also
considered as color features. These features are represented
as µR

µ̄R
, µG
µ̄G

, µB
µ̄B

, where µ̄ represents the mean value of sur-
rounding/normal skin region.

2) TEXTURE FEATURE EXTRACTION
To extract the texture features the segmented skin lesion
image is converted to grey scale. Haralick-features [46] are
adopted to obtain the texture characteristics of the skin lesion.
Considering applicability of the proposed computerized der-
moscopy system to classify even low quality skin lesion
images, Haralick texture features is considered [21]. Texture
features are computed using gray-tone spatial-dependence
matrices i.e.G[θ ]

s (x, y).The angle of the spatial neighborhood
θ = 1, 2, 3, 4. The matrix denotes the number of the grey
tomes of x and y that are spatial neighbors. The matrix
G[θ ]
s (x, y) is computed at 0ř, 45ř, 90ř and 135ř degrees. The

energy feature is computed using

E [θ ]
=

∑
x,y
G[θ ]
s (x, y)2 (13)

The homogeneity texture feature is computed using

H [θ ]
=

∑
x,y

G[θ ]
s (x, y)

1+ |x − y|
(14)

The contrast feature is defined as

CT [θ ]
=

∑
x,y
|x − y|2 G[θ ]

s (x, y) (15)

Mean (µx , µy) and standard deviations (αx , αy) of the
matrix G[θ ]

s considering gray tones of x and y are computed.
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Using mean and standard deviation the correlation feature is
computed as

CO[θ ]
=

∑
x,y

(x − µx)
(
y− µy

)
G[θ ]
s (x, y)

αxαy
(16)

The mean values of E [θ ], H [θ ], CT [θ ], CO[θ ], represented as
µE [θ ] , µH [θ] , µCT [θ ] and µCO[θ ] are considered as additional
texture features.

3) 2D SHAPE FEATURE EXTRACTION
Shape, border and asymmetry features are considered as 2D
shape features in the proposed computerized dermoscopy
system. A total of eleven 2D shape features are extracted
from the segmented skin lesion images. Area A of a skin
lesion is defined as the number of pixels present in the lesion.
Perimeter shape feature P is a count of the number of pixels
on the segmented skin lesion boundary. Let C represent the
segmented skin lesion centroid. Length of a line that con-
nects two furthest boundary points passing through C is the
greatest diameter GD. Length of a line connecting closest
lesion boundary points and passing through C is considered
as the shortest diameter SD shape feature. Using area i.e. A
and perimeter i.e. P of a skin lesion, the circularity index
features computed are CRC = 4Aπ

P2 , IrA = P
A
, IrB = P

GD
,

IrC = P
(

1
SD
−

1
SD

)
and IrD = GD − SD. Circularity

index features computed quantify irregularity. Major, minor
axis lengths and asymmetry index features are computed in
accordance to [47].

4) 3D SHAPE FEATURE EXTRACTION
The maximum, minimum and average or relative depth fea-
ture is extracted from the 3D skin lesion reconstructed.
In addition seven Hu invariants [48] and three affine moment
invariants [49] are adopted to characterize 3D shape features
of the skin lesion.

For a skin lesion image I = f (x, y) of size K × L,
the (k + l)th order geometric moment is defined as

mkl =
∑K−1

x=0

∑L−1

y=0
f (x, y) xkyl . (17)

The (k + l)th order central moment is

µkl =
∑K−1

x=0

∑L−1

y=0
f (x, y) (x−x̄)k (y−ȳ)l, (18)

where x̄ = m10/m00, ȳ = m01/m00 is the center of gravity of
an image m00. Considering intensity images, m00 represents
it quality. The moments mkl and µkl are used to represent the
shape of the image.

Normalization of the central moments of higher orders
using the 0th central moment is defined as

ηkl =
µkl

µr00
, (19)

where r = k+l+2
2 and k + l = 2, 3, 4 . . ..

Using (19) the Hu’s moment invariants (HM) are com-
puted as

HM1 = η20 + η02,

HM2 = (η20 − η02)2 + 4η211,

HM3 = (η30 − 3η12)
2
+ (3η21 − η02)

2,

HM4 = (η30 + η12)2 + (η21 + η03)2,

HM5 =

((
η30 − 3η12

)
(η30 + η12)

[
(η30 + η12)2

− 2(η21 + η03)2
])
+
((
η30 − 3η21

)
(η03 + η21)

×

[
(η03 + η21)2 − 2(η12 + η30)2

])
,

HM6 =

(
(η20 − η02)

[
(η30 + η12)2 − (η21 + η03)2

])
+ (4η11 (η30 + η12) (η21 + η03)) ,

HM7 =

(
(3η21 − η03) ((η30 + η12)

[
(η30 + η12)

2

− 3 (η21 + η03)2
])
− ((3η12 − η30) ((η03 + η21)

×

[
(η03 + η21)

2
− 3 (η12 + η30)2

])
. (20)

To provide additional 3D shape features, affine moment
invariants of the first, second and third order are considered.
According to [49] the features affine moment invariants are
defined as

AM1 =

(
µ20µ02 − µ

2
11

)
/µ4

00,

AM2 =

(
µ2
30µ

2
03 − 6µ30µ21µ12µ03 + 4µ30µ

3
12

+4µ3
21µ03 − 3µ2

21µ
2
12

)/
µ10
00,

AM3 =

(
µ20

(
µ21µ03 − µ

2
12

)
− µ11(µ30µ03

−µ21µ12)+ µ02(µ30µ12 − µ
2
21)

)/
µ7
00

(21)

E. FEATURE SELECTION
Feature selection, generally is identifying an optimized sub-
set of features extracted that imparts highest discriminating
power to the decision making mechanism adopted. In the
proposed computerized dermoscopy system color

(
FC
)
, tex-

ture
(
FT
)
, 2D shape

(
FS2d

)
, and 3D shape

(
FS3d

)
features

of skin lesion images are extracted. Apart from imparting
discriminating power, feature selection is adopted to study the
impact of color features, texture features, 2D shape features,
3D shape feature and their combinations to classification of
skin lesions.

The feature set is defined as FR =
{
FC ,FT ,FS2d ,FS3d

}
.

A heuristic approach is adopted to obtain the optimized
feature set FSelR ⊆ FR. Optimized feature set is con-
structed considering different combinations of the features
extracted. Resulting performance enable in understanding
the significance of features considered on the classifica-
tion system. Experimental study discussed in the subsequent
section considers four optimized feature set combining the
features extracted. The optimized feature sets considered for
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evaluation are defined as

FSel_1R =

{
FS2d ,FS3d

}
,

FSel_2R =

{
FC ,FT

}
,

FSel_3R =

{
FC ,FT ,FS2d

}
,

FSel_4R =

{
FC ,FT ,FS2d ,FS3d

}
. (22)

F. CLASSIFICATION
Skin lesion classification is the final step of proposed
computerized dermoscopy system. In the research work
presented here, three different classes of classifiers i.e.
SVM [50], [51], AdaBoost [52] and the recently developed
bag-of-features (BoF) [53], [54] classifiers are adopted. The
classifiers adopted are also referred to as decision making
mechanisms D. Classification broadly involves two phases
namely training and testing.

In the training phase the classifiers learn from the train-
ing set R. Feature properties with respect to the classes are
derived in the training phase. In the testing phase we wish to
classify test data T. Based on the feature properties observed
in training, the decision making mechanisms D classifies a
test image IT represented by feature set FT as the resultant
class CT .
Skin lesion data is complex in nature and cannot be con-

sidered as a global model. In the BoF decision making mech-
anism, skin lesion data is considered as a combination of
individual feature models rather than the complete feature
set FSelR . The BoF classifier exhibits promising results when
adopted for complex image analysis [53], [54]. Therefore,
the BoF classifier was deemed applicable to solve our skin
lesion classification problem [22].

The capability to train a strong classifier from a com-
bination of weak classifiers and appropriate feature selec-
tion capabilities exhibited by the AdaBoost algorithm moti-
vated the authors to consider its inclusion in the proposed
system [22].

SVM classifiers are robust, simple to implement and pro-
vide high degree of classification accuracy [50]. Recent
works for skin lesion classification [12], [19], [20], [22] prove
the applicability of SVM classifiers for decision making.
A Gaussian radial basis function (RBF) kernel is consid-
ered in the proposed computerized dermoscopy system. The
RBF kernel assists in deriving complex relations between the
skin lesion classes and complex nonlinear skin lesion data
represented as a feature vector space. A linear kernel is a
special case of the RBF kernel [55], hence the authors have
considered to adopt a RBF kernel in the SVM classifier.

V. EXPERIMENTAL STUDY AND DISCUSSIONS
In this section experimental studies conducted to evaluate
performance of the proposed computerized dermoscopy sys-
tem is presented. The proposed system was implemented on
MATLAB. The dermoscopy data used in the experiments,
experiment details, performance of the three classifiers

proposed, comparisons with existing systems and the experi-
ments based on the 3D reconstruction algorithm proposed for
depth estimation is discussed.

A. DATA
Data to evaluate the performance of the proposed dermoscopy
system is acquired from two sources. The datasets used are
summarized in Table I.

TABLE 1. Dataset details used for experiments.

The PH2 database of 200 dermoscopic images [42]
from Pedro Hispano hospital is considered. Four classes
i.e. common nevus, atypical nevus, melanoma, in-situ
melanoma (lentigo melanoma) are considered. All images in
the PH2 dataset are 8-bit RGB color images. The PH2 dataset
is also used to evaluate the performance in [19], [22],
and [57]–[59].

The second dataset is obtained from Atlas of Dermoscopy
CD published alongside [41]. Comprehensive skin lesion data
of varied types with analysis from expert dermatologists is
provided in the ATLAS. The authors created a custom dataset
of varied skin lesion types. A total of 63 24-bit RGB color der-
moscopic images are selected. TheATLAS dataset consists of
a comprehensive set of skin lesion images rendering it more
practical to evaluate the proposed computerized dermoscopy
system. The ATLAS dataset created is complex and 8 type of
skin lesions are considered.

B. EXPERIMENT DETAILS
Performance of the proposed systemwith each classifier indi-
vidually is evaluated considering the feature selection FSelR
combinations defined in (22). Training and testing data used
in the experiments is obtained in accordance to the procedure
described in [22]. A total of 4 experiments per classifier per
dataset is carried out. Experiment details and the notations
used to represent them is described in Table II. Leave-one-out
approach [20], [22] is adopted for testing due to the limited
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TABLE 2. Experiment details using varied feature types and datasets.

size of the datasets available. To evaluate performance a cost
function is derived based on the confusion matrix obtained.
Overall classification accuracy (CA) considering all skin
lesion classes (i.e. 4 classes for PH2 and 8 classes for ATLAS
dataset) is computed using the confusion matrix. A tradeoff
between specificity (SP) and sensibility (SE) exists hence
Barata [22] have introduced as cost function C for evaluating
performance.

The cost function C is defined as

C =
KFN (1− SE)+KFP (1− SP)

KFN +KFP
, (23)

where KFN ,KFP are constants and KFN = 1.5 × KFP.
Constants KFN and KFP represent the false negative (FN )
and false positive (FP) costs. In the experimental results
presented KFN = 1.5 and KFP = 1.0 is considered.

C. ASSESSMENT OF BoF CLASSIFIER ON EXPERIMENTS
The BoF classifier considers a block size of 50 and the
number of histogram bins is set to 25. The k-means clus-
tering algorithm is adopted to obtain visual words. A total
of 500 visual words is considered. Classification is achieved
using the k-Nearest Neighbor (kNN ) classifier. The kNN
employed, considers Euclidean distance and the number of
neighbors is set to 10. Results obtained in this study is sum-
marized in Table III.

Considering PH2 dataset best performance is reported
considering color, texture and 2D shape features (D1EX3).
Inclusion of 2D shape features to texture and color exhibits a
19.4% reduction in the value of cost function C .
Results considering ATLAS dataset show that color and

texture information alone considered in D2EX2 is insuffi-
cient to classify skin lesions. Considering shape features (2D
and/or 3D) improves performance of the BoF classifier
observed in D2EX1, D2EX3 and D2EX4. On the ATLAS
dataset best performance is reported in D2EX3.

Classification using PH2 dataset exhibits better perfor-
mance than the ATLAS dataset. This observation is due to the
fact that limited training data and numerous skin lesion types
are considered in the ATLAS dataset enhancing complexity.

TABLE 3. Experimental results considering BoF classifier.

To overcome this drawback we used two additional classifiers
discussed in the latter section of the paper. A noteworthy
observation is that classification using the shape descrip-
tors (i.e. D1EX1, D2EX1) exhibits similar performance to
color and texture features (i.e. D1EX2, D2EX2). Inclusion
of shape features to color and texture improve performance
considering the BoF classifier.

D. ASSESSMENT OF AdaBoost CLASSIFIER
ON EXPERIMENTS
The AdaBoost classifier considered is built using 10 weak
classifiers. Number of bins is set to 50. This configuration
is established based on a number of iterations to obtain best
performance. The classification results obtained is shown
Table IV. Considering PH2 dataset the AdaBoost classifier
exhibits better results when compared to the BoF classi-
fier. It must be noted that in D1EX2 we report SE = 96,
SP = 98 similar to the values observed in [22] that reports
SE = 96, SP = 77 for color and texture features consider-
ing AdaBoost classifier. In D1EX3 and D2EX4, AdaBoost
exhibits best classification results considering experiments
conducted on the datasets. Performance of the AdaBoost
classifier improves on considering the proposed 3D shape
features for the ATLAS dataset. The AdaBoost classifier
exhibits better performance considering PH2 dataset when

TABLE 4. Experimental results considering AdaBoost classifier.
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TABLE 5. Experimental results considering SVM classifier.

compared to ATLAS dataset. AdaBoost classifier does not
achieve acceptable performance on theATLAS dataset even if
the number of weak classifiers are increased. A similar obser-
vation is also reported in [22]. To overcome this drawback and
improve performance across varied datasets the authors have
considered the SVM classifier.

E. ASSESSMENT OF SVM CLASSIFIER ON EXPERIMENTS
The BoF and AdaBoost classifier exhibit promising results
considering PH2 dataset. On evaluation with the complex
ATLAS dataset these classifiers exhibit low performance.
Authors have adopted a RBF kernel in the SVM classifier
to overcome this drawback and achieve acceptable perfor-
mance on both PH2 and ATLAS datasets. The LIBSVM
software available in [56] is used for the experimental study.
Results obtained considering the RBF-SVM classifier is
shown in Table V.

Considering PH2 dataset, the best performance is reported
in D1EX4 which outperforms the results presented in
[19] and [22]. A marked improvement in performance
is reported on the ATLAS dataset considering the SVM
classifier.

Results obtained prove that the SVM classifier exhibits
better generalization performance on increasing the feature
vector when compared to the other classifiers. Observe results
of D1EX1, D1EX4 against D1EX2 and D1EX3 in Table V.
A marked performance improvement considering the pro-
posed 3D shape feature inclusion is reported on PH2 dataset.
Similar performance improvement is reported consider-
ing ATLAS dataset. Results of D2EX1, D2EX4 against
D2EX2 and D2EX3 in Table V prove the performance
improvement. In [20] it is stated that performance of the
SVM is directly dependent on the features extracted i.e. to
project data into separable feature space. Based on the results
presented it can be concluded that the 3D shape feature
extracted improve classification performance (Refer D1EX1,
D1EX4, D2EX1 and D2EX4 in Table V). The SVM classifier
considered exhibits better performance in comparison to the
AdaBoost and BoF classifier.

FIGURE 5. In-situ melanoma baseline image and 3D depth projections
(a) Baseline image (top) and estimated depth (bottom). (b) Region of
interest (top) and estimated depth (bottom).

F. SHORT NOTE ON COMPARISONS WITH SIMILAR
STATE OF ART SYSTEMS
A tentative comparison with the other state of art systems is
presented here even if we have not considered similar features
and datasets.

Using the asymmetry, border, color, texture features on
the Dermat dataset in [21] an accuracy of 86%, SE = 94%
and SP = 68% is reported. Combining geometry, texture,
border features on a custom dataset an accuracy of 91.26% is
reported in [12]. Considering high level, low level features on
datasets created from DermQuest, Dermatology Information
System the highest accuracy of 83.59% (SE= 91.01%, SP=
73.45%) is reported by Amelard et al. [20].

Considerable amount of research work is carried out using
the PH2 dataset. Using color and texture features in [22]
SE= 98%, SP= 79% andC = 0.100 is reported. Using color
features alone the best performance of SE= 100%, SP= 75%
and C = 0.099 is reported in [22]. Automated skin lesion
analysis system developed by Abuzaghleh et al. [19] reports a
classification accuracy of melanoma, benign, atypical lesions
as 97.5%, 95.7%, and 96.3%. Abuzaghleh et al. [19] report
a SE = 97.6%, SP = 90.5% and average accuracy of 96.5
in [57]. Barata et al. [58] report performance measures of
SE = 98%, SP = 90% on PH2 dataset and SE = 83%,
SP= 76%on EDRAdatasets considering a fusion of features.
A recent work [59], introduces sparse coding of the Scale-
Invariant Feature Transform (SIFT) features for melanoma
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FIGURE 6. In-situ melanoma follow-up image and 3D depth
projections (a) Follow-up image (top) and estimated depth (bottom).
(b) Region of interest (top) and estimated depth (bottom).

classification. Reference [59] reports a performance of
SE = 100%, SP = 90.3% on the PH2 dataset.
In comparison the proposed computerized dermoscopy

system considering the PH2 dataset (and SVM classifier)
reports performance results SE = 96%, SP = 97% and
C = 0.038. The classification accuracy of melanoma, com-
mon nevus, atypical nevus and in-situ skin lesions is 100%,
93%, 90%, and 100%. The average classification accuracy
is 95.75%. Using only color features of PH2 dataset and
the AdaBoost classifier a performance of SE = 96%, SP =
98% and C = 0.031 is observed. The results considering the
ATLAS dataset is SE = 98%, SP = 99% and C = 0.013.
The classification accuracy is 96.83%. The results obtained
prove that the proposed computerized dermoscopy system is
efficient and can be adopted to diagnose skin lesions of varied
types. Use of the proposed computerized dermoscopy system
to train or test new dermatologists is also mooted.

G. ASSESSMENT OF PROPOSED 3D SKIN LESION
RECONSTRUCTION TECHNIQUE
A major goal of the proposed computerized dermoscopy
system is to aid early detection of melanoma i.e. in-situ
melanoma. Diagnosis can be efficiently achieved using the
3D reconstruction technique proposed. The 3D data / tensor
provides useful insight to analyze relative depth of melanoma
cancer skin lesions.

FIGURE 7. Melanoma images obtained from [60] and 3D depth
projections (a) In-situ melanoma image (top) and estimated
depth (bottom). (b) Spreading melanoma image with Breslow index
0.5mm (top) and estimated depth (bottom). (c) Spreading melanoma
image with Breslow index of 0.9mm (top) and estimated depth (bottom).

In the initial experiment we have considered an in-
situ melanoma image from Chapter 16 (Follow-up of
melanocytic skin lesions with digital dermoscopy) of
the ATLAS CRROM [41]. Baseline image and the
corresponding depth estimated is shown in Fig. 5.
In Fig. 5(a) baseline image and the estimated depth
is shown. Region of interest and the corresponding
depth estimated is shown in Fig. 5(b). Relative depth
estimated is 0.0023. Follow-up image observed after
4 months is shown in Fig. 6. Region of interest and estimated
depth of the follow-up image is shown in Fig. 6(b). The
relative depth estimated of the follow up image is 0.0055.
Spreading of the melanoma in the region of interest is clearly
evident by comparing Fig. 5(b) and Fig. 6(b). Results shown
in Fig. 5, Fig. 6, and the marginal increase in relative esti-
mated depth values validate the 3D reconstruction/estimation
technique proposed in this paper.

Dermoscopic images from [60] is consider to further assess
performance of the proposed 3D reconstruction technique.
An in-situ melanoma image (top) and the corresponding rela-
tive estimated depth (bottom) is shown Fig. 7(a). A spreading
melanoma with a Breslow index of 0.5 mm and the relative
depth estimated is shown in Fig. 7(b). The relative estimated
depth and the spreading melanoma image with a Breslow
index of 0.9mm is shown in Fig. 7(c). Relative estimated
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FIGURE 8. Slow growing melanoma follow-up image from [61] and 3D
depth projections (a) Baseline image (top) and estimated depth (bottom).
(b) Follow-up image obtained after 5 years. Biopsy reveals melanoma is
0.15mm thick (top) and estimated depth (bottom).

depth of the images computed using our proposed technique
is reported as 0.0918, 0.1388 and 0.2437. Considering der-
moscopic images shown in Fig. 7(b) and Fig. 7(c), Breslow
index difference of 80% is observed. A difference of 75.58%
is reported using the proposed relative depth estimation tech-
nique. The increase in the relative estimated depth and the
difference measure reported validate the relative estimation
accuracy.

To evaluate performance of the proposed 3D reconstruction
technique on slow growing melanoma, dermoscopic data
from [61] is considered. The baseline image and the corre-
sponding relative estimated depth is shown in Fig. 8(a). The
follow-up image after five years and the relative estimated
depth is shown in Fig. 8(b). The follow-up dermoscopic
skin lesion was biopsied and the melanoma was found to be
0.15mm thick. The relative estimated depth for the baseline
image and follow-up image is 0.0189, 0.0436. The increas-
ing values of the relative estimated depth prove accuracy of
the proposed 3D reconstruction technique for slow growing
melanoma.

The International Skin Imaging Collaboration (ISIC):
Melanoma Project introduced in recent times, is an
academia-industry partnership providing dermoscopic data
for melanoma diagnosis [62]. A large number of societies
have collaborated together in the ISIC: Melanoma Project.
Data provided is by far the most comprehensive set of

TABLE 6. Evaluation of 3D skin lesion reconstruction technique using ISIC
data [63].

publicly available melanoma skin lesion images [63]. A total
of 4670 skin lesion images collected from various clinical
trials are available in the dataset till date. Clinical/ diagnosis
data corresponding to each skin lesion image is also available.

To validate 3D reconstruction technique, a set of 22 images
from the ISIC archive [63] is considered. Images whose
Breslow depth is confirmed through biopsies performed are
taken for evaluation study. Preprocessing and segmentation
is performed on images. Post segmentation, 3D skin lesion
construction is performed. Relative estimated depth using
proposed technique is noted. Results obtained are shown
in Table VI. Large Breslow depth variations, from 0.16 to
0.9 is observed in dataset considered. Satisfactory and uni-
form relative depth estimation values are reported. Minor
variations (in order of 10−3) of estimated depth values for
images with similar Breslow depths is observed. Minor
variations are attributed to gradient differences observed in
images. Results presented depict that increase in estimated
depth is correlated to increase in Breslow depth, proving

4300117 VOLUME 5, 2017



Satheesha et al.: Melanoma Is Skin Deep: 3-D Reconstruction Technique

effectiveness of proposed 3D reconstruction technique on
large set of dermoscopic images considered.

Though actual depth (currently obtained using invasive
biopsy) cannot be computed, accurate estimates can be
obtained using the proposed technique. The relative esti-
mated depth is a critical feature for identification of in-situ
melanoma. In addition, 3D features extracted using the 3D
reconstructed skin lesion improve overall system classifica-
tion performance as reported in the previous section.

VI. CONCLUSION
Amongst all skin cancers known, melanoma accounts for the
majority of deaths reported. Melanoma is curable if diag-
nosed early. Use of non-invasive computerized dermoscopy
techniques to diagnose skin lesions is commonly adopted.
Identifying depth of the melanoma tumor into the skin is
essential to ascertain the stage of cancer. Existing comput-
erized dermoscopy techniques lay marginal or no emphasis
on depth for diagnosis. Authors here believe ‘‘Melanoma
is Skin Deep’’ and introduce a computerized dermoscopy
system in this paper that incorporates depth estimation. A 3D
skin lesion reconstruction technique using 2D dermoscopic
images is proposed. Segmentation is achieved using the adap-
tive snake technique. The 3D reconstruction is achieved by
fitting the depth map estimated to the underling 2D surface.
Color, texture and 2D shape features are extracted. Based
on the 3D tensor structure constructed, depth and 3D shape
features are extracted. Feature selection to study the effects
of features and their combinations on decision making is
proposed. For decision making BoF, AdaBoost and SVM
classifiers is applied. Experimental study is conducted using
the PH2 and ATLAS datasets. Results considering different
feature combinations and BoF, AdaBoost, SVM classifiers is
presented. In view of the results, it is concluded that inclusion
of 3D shape features proposed (that include the estimated
depth features) enhance performance aiding accurate diagno-
sis of varied skin lesion types. The SVM achieves best classi-
fication scores of SE = 96% and SP = 97% on PH2 dataset.
The SVM classification score of SE = 98% and SP = 99%
on ATLAS dataset is reported.

The depth estimation technique proposed in this paper is
naïve. Depth estimation performance is evaluated on ISIC:
Melanoma project dataset and data obtained from literature
published. Though good performance is reported, improve-
ment of the estimation technique is always an open issue.
Future of the work presented here is to identify depth
estimation error using clinical data and devise new tech-
niques to minimize errors. Authors welcome dermatologists/
researchers to undertake a collaborative research to develop
the proposed system further considering clinical data.
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