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Editorial on the Research Topic

Physiology, Application, and Bioengineering of Oleaginous Microorganisms

INTRODUCTION

The current Research Topic provides an effective communication platform, collecting both
original research articles and review papers examining explorations of the mechanism for
lipid accumulation, biotechnological applications, and metabolic engineering efforts related to
oleaginous fungi including the non-conventional yeasts. Microbes have been harnessed for the
production of hydrocarbon with a high-energy density as “drop-in” fuels, renewable chemicals,
and value-added compounds. In addition to the commonly used model organisms such as
Escherichia coli and Saccharomyces cerevisiae, over the past few years, oleaginous yeasts that
naturally accumulate high-content lipids have been directly used or genetically modified for
producing diverse bioproducts, although early trials on the commercial production of microbial oil
date back toWorldWar I. This Research Topic concentrates on the advancement of bioengineering
of oleaginous yeasts, including Yarrowia lipolytica and Rhodosporidium (Rhodotorula) toruloides,
for producing biofuels and bioproducts, with particular emphasis on the establishment of synthetic
biology tools and novel engineering strategies.

SYNTHETIC BIOLOGY TOOLS FOR OLEAGINOUS YEASTS

Synthetic biology facilitates the Design-Build-Test-Learn (DBTL) biological engineering cycle for
strains development and improvement. The sets of molecular biology toolbox have been established
for the genetic manipulation of non-conventional yeasts Y. lipolytica (Bredeweg et al., 2017) and
R. toruloides (Park et al., 2018). As an essential genetic unit to control the expression of targeted
genes, the constitutive, inducible, and repressible promoters have been cloned and characterized
in both strains (Nora et al., 2019). The strength of the hybrid promoters in Y. lipolytica could
be fine-tuned by engineering tandem copies of upstream activation sequences (UASs) (Blazeck
et al., 2011; Xiong and Chen, 2020). Genetically encoded biosensors were recently developed
in response to the dynamic changes of the cellular contents of malonyl-CoA and flavonoid in
Y. lipolytica by recruiting bacterial transcriptional factors, and they were used to improve the
stability and yield of the engineered strains (Lv et al., 2020). The Cre-loxp recombination system
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was devoloped for the marker-less deletion of genes and
integration of DNA fragments into the genome of the strains
such as Y. lipolytica and R. toruloides and the homologous
recombination frequency could be increased in the strains
with disruption of the Ku70 encoding gene (Koh et al.,
2014). The clustered regularly interspaced short palindromic
repeats (CRISPR) and CRISPR-associated proteins (CRISPR-
Cas) technologies have been successfully developed for the
oleaginous microorganisms Y. lipolytica and R. toruloides to
carry out genome editing (Schultz et al., 2019; Abdel-Mawgoud
and Stephanopoulos, 2020; Yang et al., 2020). Furthermore,
the current CRISPR-based technologies in oleaginous yeasts
including R. toruloides can be optimized to achieve multiplexed
genome engineering by lowering off-target effects and improving
the efficiency (Jiao et al., 2019; Otoupal et al., 2019).

METABOLIC ENGINEERING OF

OLEAGINOUS YEASTS

Oleaginous microorganisms are particularly attractive as
emerging microbial chassis for metabolic engineering. In
oleaginous microorganisms, the metabolism naturally results
in high flux through acetyl-CoA and NAPDH, the precursor
and reducing power for the biosynthesis of lipids and many
other bio-based products. As an organism with a status of
Generally Recognized as Safe (GRAS), the oleaginous yeast Y.
lipolytica has been engineered for producing microbial lipid with
a titer of 99 g L−1 and a rate of 1.2 g/L/ h (Qiao et al., 2017).
The lipid-based chemicals such as fatty alcohol, wax esters,
and unusual fatty acids including ricinoleic acid (Béopoulos
et al., 2014) and eicosapentaenoic acid (EPA) classified as n-3
(omega-3) polyunsaturated fatty acids (PUFA) were produced
in the recombinants of Y. lipolytica by reprogramming lipid and
fatty acid biosynthesis (Xue et al., 2013). The product portfolio
was extended to biosynthesize organic acids such as succinic
acid and the sugar substitutes such as erythritol by metabolic
engineering of Y. lipolytica. In parallel, considerable progress
has been made in the metabolic engineering of R. toruloides for
producing both lipid-based compounds and other chemicals
such as indigoidine, a blue pigment (Wehrs et al., 2019; Liu et al.,
2020; Wen et al., 2020).

To construct the productive cell factories of oleaginous
microorganisms, some novel metabolic engineering strategies
including engineering central carbon metabolism and pathway

compartmentalization have been employed. In the oleaginous

yeast Y. lipolytica, NADPH to support lipid biosynthesis was
primarily generated from the oxidative pentose phosphate
pathway (PPP) when glucose was used as a carbon source, this
resulted in carbon loss as released CO2 for the biosynthesis of
the end product (Wasylenko et al., 2015). To re-balance the
redox potential for the biosynthesis of lipid in Y. lipolytica,
different synthetic pathways were engineered in yeast cytosol
to convert glycolytic NADH into NADPH (Qiao et al.,
2017). Acetyl-CoA generation was enhanced to improve the
production of triacetic acid lactone (TAL) by engineering
the pyruvate dehydrogenase (PDH) complex, pyruvate PDH
bypass pathway, and β-oxidation in Y. lipolytica (Markham
et al., 2018). Pathway compartmentalization leads to both
high concentrations of precursor supply and high enzyme
activities, alleviation of the competition from other metabolic
pathways, and increases the sink capacity of the host for the
accumulation of products. Other than the pathways engineered
in the cytoplasm, pathway construction and modification were
conducted in the endoplasmic reticulum, mitochondria, and
peroxisomes of Y. lipolytica (Xu et al., 2016). Furthermore,
the transport of metabolites across different organelles could
be re-wired by manipulation of the corresponding transporters
to redirect metabolic flux toward target biosynthesis. As
an example, the production of itaconic acid biosynthesis
was improved by overexpression of the gene encoding a
mitochondrial tricarboxylate transporter from Aspergillus terreus
in Y. lipolytica (Zhao et al., 2019). Another peculiar feature of
oleaginous microorganisms is the formation of lipid droplets as a
cellular compartment for the storage of neutral lipids including
triacylglycerols (TAG) and/or sterol esters (SE). It found that
there was a synergy between lipid accumulation and lipid-soluble
pigments such as lycopene and β-carotene production. The titer
of 6.5 g/L of β-carotene was achieved by engineering both
carotenoid biosynthesis and lipid accumulation in Y. lipolytica
(Larroude et al., 2018). By capitalizing on the uniqueness of
oleaginous microbes as platform organisms, it is a promising
route to develop efficient cell factories by using these advanced
metabolic engineering approaches.
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