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Abstract
Motivation

Two-locus model is a typical significant disease model to be identified in genome-wide

association study (GWAS). Due to intensive computational burden and diversity of disease

models, existing methods have drawbacks on low detection power, high computation cost,

and preference for some types of disease models.

Method

In this study, two scoring functions (Bayesian network based K2-score and Gini-score) are

used for characterizing two SNP locus as a candidate model, the two criteria are adopted simul-

taneously for improving identification power and tackling the preference problem to disease

models. Harmony search algorithm (HSA) is improved for quickly finding the most likely candi-

date models among all two-locusmodels, in which a local search algorithmwith two-dimen-

sional tabu table is presented to avoid repeatedly evaluating some diseasemodels that have

strongmarginal effect. Finally G-test statistic is used to further test the candidate models.

Results

We investigate our method named FHSA-SED on 82 simulated datasets and a real AMD

dataset, and compare it with two typical methods (MACOED and CSE) which have been

developed recently based on swarm intelligent search algorithm. The results of simulation

experiments indicate that our method outperforms the two compared algorithms in terms of

detection power, computation time, evaluation times, sensitivity (TPR), specificity (SPC),

positive predictive value (PPV) and accuracy (ACC). Our method has identified two SNPs

(rs3775652 and rs10511467) that may be also associated with disease in AMD dataset.

Introduction
With the advent of high-throughput sequencing technology, it is possible to measure all of sin-
gle-nucleotide polymorphisms (SNPs) from thousands of individuals [1]. The genome wide
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association studies (GWAS), that aim to detect the casual relationship between SNPs and dis-
ease status and explore multiple SNPs synergistic effect on diseases status in a population, play
a very important role in identifying the causes of disease [2] [3] [4], which have successfully
identified many SNP genetic markers associated with a wide range of diseases and quantitative
traits [5] [6]. Around 30 schizophrenia associated loci have been identified through GWAS
techniques [7–10]. However, it is also an enormous challenge in calculation capability to detect
the casual relationship between multi-SNPs and disease status at a whole-genome scale due to
the enormous computational burden imposed by a very high-dimensional search space: a brute
force search method is infeasible to evaluate the entire multi-locus model in genome wide
scale. For identifying multi-locus disease models, there have been a number of algorithms pro-
posed to search the multi-locus models in recent years. These algorithms can be categorized as
exhaustive combinatorial search, stochastic search, heuristic search and machine learning
based technique [11–12].

The exhaustive search approach, in which all possible multi-locus SNP combinations are eval-
uated on the strength of their associations with disease states, is very simple and can be realized
through a parallel mechanism for detecting SNPs combinations for non-genome-wide associa-
tion study [13–16]. However, current calculation technique is usually limited, and it is infeasible
to detect the multi-locus epistasis models using the exhaustive search algorithm for GWAS.

Heuristic search algorithm [17–20] is an approximate search algorithm, which can expedite
the search process by reducing the search space. Stochastic search algorithm [21–22] works by
using probabilistic methods to search the optimal solution. However, both heuristic search and
stochastic search cannot ensure discovering the global optimal solution. Machine learning
based technique [23–25] is also adopted widely in computational biology, which can be catego-
rized as classification for difference analysis and regression analysis, which is usually combined
with feature selection technique for selecting a group of features (such as SNPs, genes) that
affect significantly the phenotypes or traits, but it can not determine the true causal relation-
ship between genotype and phenotype.

In recent years, swarm intelligent optimization algorithms, inspired by natural phenomenon
or biological system, have attracted considerable attention for genetic interactions [1, 4, 26–
29]. For example, AntEpiSeeker [29] introduced a two-stage ant colony optimization (ACO)
algorithm for the detection of epistatic model. M Aflakparast et al. (2014) [30] proposed a
cuckoo search epistasis (CSE) algorithm which combined Bayesian scoring with cuckoo search
(CS) algorithm [31] for detecting the multi-locus disease-causing models. Jing and Shen (2014)
[4] proposed a Multi-objective Ant Colony Optimization algorithm for SNP Epistasis Detec-
tion (MACOED), in which both Bayesian network scoring and logistical regression scoring are
combined as evaluation criterions for SNP interactivities. However, these methods have draw-
backs on low detection power and high computation cost.

It is very important to develop or choose appropriate methods for identifying the multi-
locus disease-causing models for genome-wide study. There has been remarkable activity in
the development of methodology (e.g. Bayesian methods, regression-based methods, linkage
disequilibrium (LD) and haplotype-based methods) [32] for the detection of epistasis in the
past ten years. However, they perform inconsistently usually with different disease models [4]
because they were conceived merely based on part of detective models of epistasis. Some multi-
objective detection methods were proposed to improve the performance for detecting the
multi-locus epistasis models, such as multi-filter enhanced genetic ensemble (MF-GE) system
[23] and multi-objective ant colony optimization algorithm (MACOED). the MF-GE algo-
rithm requires diverse and accurate classifiers to achieve better accuracy and requires configur-
ing parameters properly for each classifier, which is a very large challenge for MF-GE method;
MACOED simultaneously employs the Bayesian-based K2-score and regression-based AIC-
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score as evaluation indexes in the filter stage, in which, however, the two-fold scoring method
would increase the computation burden and make some models failed to pass the screening
stage due to overly strict evaluation methods. Although the two-fold scoring method could
decrease the false positive rate (Type I error) in MACOED, it is apparent that the false negative
rate (Type II error) increases; in addition, the regression-based AIC-score methods require an
iteration process to optimize the regression coefficients, which is often computationally unaf-
fordable for SNP datasets with very large number of markers. To tackle these drawbacks (pref-
erence to some types of disease models, high computation cost), we propose a two stages
(screening and testing) intelligent search algorithm named FHSA-SED (Harmony Search Algo-
rithm with two scoring functions for SNP Epistasis Detection)” to detect two-locus disease
models. To quickly identify various disease models, in the FHSA-SED algorithm, two evalua-
tion criteria (Bayesian network based K2-score and Gini-score) are employed to enhance the
ability for identifying various disease models, Harmony Search Algorithm (HSA) is improved
to speed up the process of detecting disease models and a local search algorithm with two-
dimensional tabu table is presented to avoid repeatedly evaluating (overcoming the premature
convergence) some disease models which have strong main effects.

In this study, our central goal is to detect as various disease models as possible, and to
enhance the power of identifying disease models by employing two complementary methods
(K2-score and Gini-score). Our method is divided into two stages: in the 1st stage, we want to
quickly obtain some most likely two-locus disease models (candidate solutions) using harmony
search algorithm; in the 2nd stage, we adopt the G-test method to test the candidate solutions.

Some terms (Joint effect, Evaluation times, Computation time and two-locus disease model)
are explained in Box 1.

Outline
A flow chart of our method is illustrated in Fig 1, in which the detection process of two-locus disease
models in FHSA-SED algorithm is divided into two stages: “screening” and “testing”. In the screen-
ing stage, an improved harmony search algorithm (HSA) (Z.W. Geem, 2001) [35] is employed to
search two-locus models that might be associated with phenotype, and two criteria (Bayesian net-
work based K2-score and Gini-score) are respectively used to evaluate the causality between the
two-locus models and phenotype. Some two-locus models with highest K2-score are stored in har-
mony memory HM1, and some models with highest Gini-score are stored in HM2. Next, HM1 and

Box 1

Terms:
1. Joint effect (Synergy effect) denotes k SNP locus act jointly to have a particular phe-

notypic effect, which includes additive effect, statistical interaction effect and so on.

2. Evaluation times represent the number that k-locusmodels are evaluated using
Bayesian scoring criterion and Gini scoring criterion.

3. Computation time denotes the time spent executing algorithm in the program.

4. two-locus disease model is defined as by penetrance table, in which a two-way SNP
genetic combination is referred to as collective association with the dichotomous phe-
notype (disease status) if the genotype distribution at the two SNPs is different signifi-
cantly between cases and controls, and it may be responsible for significantly
increasing the risks of complex diseases [33–34].
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HM2 are merged into a union set HM (= HM1[HM2) as shortlisted candidates. In the Testing
stage, these shortlisted candidates are further checked using aG-test statistical method.

Methods
Let a set of SNP variables X = {x1,x2,� � �,xN} indicate N SNP markers for L individuals (samples),
Y be the phenotype variable with values of {y1,y2,� � �,yJ}; we represent the homozygous major

Fig 1. The flow chart of FHSA-SED algorithm.① Yellow ellipse consists of the entire two-SNP combinations that have not been filtered.②Orange ellipse
contains the two-locus models with highest K2-score, which are the filtered results in 1st stage.③ Light green ellipse contains the two-locus models with
highest Gini-score, which are the filtered results in 1st stage.④ Pink ellipse is the union of HM1 and HM2.⑤ Final output results which have passed the
G-test are in white ellipse.

doi:10.1371/journal.pone.0150669.g001
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allele, heterozygous allele and homozygous minor allele as 0, 1 and 2, respectively. For a k-loci
combination model, I denotes the number of genotype combinations (there are 3k SNP geno-
type combinations), J is the number of phenotype states Y (which is equal to 2 for a case-con-
trol dataset). ni is the number of cases in the dataset with SNP nodes taking the i-th genotype
combination, nij represents the number of cases that belong to the phenotype state j where the
k-way SNPs variables have i-th genotype combination.

Bayesian network scoring criterion and Gini index criterion
It is a vital factor to design new effective method for identifying the disease models successfully.
Some existing methods [4] [32] usually prefer one type of disease models to others. To tackle
the preference problem to various disease models, we employ two evaluation criteria (Bayesian
network based K2-score and Gini-score) to improve the power for identifying various disease
models.

Bayesian network scoring criterion. A Bayesian network (BN) is a kind of statistical
model which represents a set of random variables and their conditional dependencies by using
a directed acyclic graph (DAG). In the DAG, nodes denote random variables, and edges repre-
sent conditional dependences between two linked nodes.

There are more than 20 kinds of BNmodels [22] [36–37] that have been developed to find
causal relationships, perform explanatory analysis, describe the causal influence and make pre-
dictions. In GWAS studies, BNmodel is also used to detect the interaction effect among SNP
markers, which can represent the causal relationship between genetic variants and disease status.

In a DAG of Bayesian network for representing the relationships of SNP markers and dis-
ease states, there are only directed edges linking from the SNP markers to diseases status, and
there is no edge connected from disease state to SNP markers and also no linkage among SNP
markers. In the DAG, if and only if SNP xi is a direct cause of phenotype state yj, there is a
direct edge linking from node xi to phenotype yj.

According the theorem 1 that is given in [38] (more detail interpretation about Bayesian
network scoring method are introduced in S1 File), the K2-Score based on Bayesian network
scoring criterion [37] can be described as Eq (1),

K2� Score ¼
YI
i¼1

ðJ � 1Þ!
ðni þ J � 1Þ!

YJ
j¼1

nij!

 !
ð1Þ

Gini index criterion. Gini index (Gini coefficient) is a measure of statistical dispersion
(http://en.wikipedia.org/wiki/Gini_coefficient#cite_note-1) [39–42], which can be used to mea-
sure the impurity of a data partition or the inequality among values of a frequency distribution.

For a binary classification case-control problem, the Gini index is a diversity index [43]
which is defined as Eq (2).

Gini� score ¼
XI

i¼1
Pi � ð1�

XJ

j¼1
p2i;jÞ ð2Þ

where, pi,j (pi;j ¼ nij=ni )is the estimated probability that the i-th genotype combination actually

associated with phenotype yj. ð1�
XJ

j¼1
p2i;jÞmeans the estimated probability that genotype com-

bination is misclassified as phenotype yj. Pi (Pi ¼ ni=L) is the percentage of i-th genotype com-
bination in sample set.
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(Please see the computational process of an example in Table A1 in S1 File.)

Proposed FHSA algorithm for two-locus disease model detection
Detecting multi-locus models at a whole-genome scale is a non-trivial task since it takes too
much time to detect all models from hundreds of millions of SNPs. In this approach, we pro-
pose a fast harmony search algorithm (HSA) to accelerate the detection process of disease
models, without an exhaustive search.

Standard HSA (see S2 File) [35] is a meta-heuristic algorithm, which mimics the process of
improvising a musical harmony. Compared with traditional mathematical optimization algo-
rithms, HSA does not require substantial gradient information and is not dependent to initiali-
zation, making it widely applied in the fields of combinatorial optimization.

In the standard HSA, harmonymemory is a set of harmonies. By evaluating their fitness with
some criterion, some harmonies in the set are substituted with some other harmonies which are sup-
posed to be with more fitness. Such a process continues until some finishing criterion is satisfied.

In the proposed FHSA-SED algorithm, each harmony denotes a k-way (k-locus) model that
is a combination of k different SNP markers (k = 2 in this study) and we employ two harmony
memories: HM1 and HM2. The harmony in HM1 is evaluated with Bayesian network scoring
criterion, and the Gini scoring criterion is used to evaluate the harmony in HM2. [Fig B1 in S2
File presents the flow chart of fast harmony search algorithm (FHSA)]. The pseudo code of
FHSA is as Algorithm-1.
Algorithm-1:harmony search algorithm for SNP Epistasis Detection with two
scoring criterion (K2-Score and Gini-Score)

Input: maximum model evaluation times (MMEs) of SNP-pairs model, HS
parameters: HMCR, PAR and HMS

Output: HM1, HM2, and fitness values of each harmony in HM1 and HM2
1. Initialize harmony memory HM1 and HM2 randomly.

For I = 1:HMS
HM1(I, 1:k) = (r1,r2, . . .,rk); //ri 2 {1,2,� � �,N}(r1 < r2 < . . . < rk),
HM2(I, 1:k) = (s1,s2, . . .,sk); //si 2 {1,2,� � �,N} (s1 < s2 < . . . < sk)

End
2. Calculate the fitness value of each harmony in HM1 using Bayesian network

scoring function (f1), and the fitness value of each harmony in HM2 using
Gini scoring function (f2), respectively.
For I = 1:HMS

Score1(I) = f1 (HM1(I, 1:k));
Score2(I) = f2 (HM2(I, 1:k));

End
3. Generate a new harmony Hnew as follows:

for i = 1:k
if rand(0,1)<HMCR
a = drand(0,1)×HMS×2e;
if a<HMS
Hnew(i) = HM1(a, i);
if rand(0,1)<PAR
Hnew(i) = Hnew(i) + (rand(0,1)−0.5)×|HM1(idbest1,i)−HM1(r1,i)|;

end
else
Hnew(i) = HM2(a-HMS, i);
if rand(0,1)<PAR
Hnew(i) = Hnew(i) + (rand(0,1)−0.5)×|HM2(idbest2,i)−HM2(r2,i)|;

end
end

else
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Hnew(i) = drand(0,1)×Ne;
end

end
If Hnew has been visited before

execute the local search algorithm in the neighborhood of Hnew;
end

4. Calculate the fitness of Hnew using scoring functions f1 and f2
respectively:

score1 = f1(Hnew), score2 = f2(Hnew);
5. Determine whether Hnew can replace the worst harmony in HM1 or HM2:
if score1 is better than Score1(idworst1)
HM1(idworst1,:) = Hnew;

end
if score2 is better than Score2(idworst2)
HM2(idworst2,:) = Hnew;

end
6. If termination conditions meet, output HM1 and HM2, otherwise, turn to

step 4.
In algorithm1, r1 and r2 are random integer between 1 and HMS; idbest1/

idworst1 denotes the index of best/ worst harmony in the HM1; idbest2 and
idworst2 denote the indexes of best and worst harmones in the HM2, respectively.

Local search algorithm for FHSA. As a heuristic search algorithm, HSA is also easy to trap
into a local search and repeatedly evaluate some solution (sampling with repetition) in solving
the combinational optimization problems, which causes time-consuming due to these repeated
calculation (repeated sampling). To tackle this problem, we establish a tabu table (TT) to store
the evaluation state of each SNP-pair (If a SNP-pair has not been evaluated, its evaluation state
equals '0', otherwise, it is '1'.) and a local search algorithm is proposed to discover new disease
models that have not been evaluated. The TT is different from frequently-used linear tabu list,
which is a two-dimensional table for marking the state of each two-locus model, if a two-locus
model has been evaluated, its corresponding value on TT is set to "1"; otherwise it is equal to "0".
The advantage of the two-dimensional tabu table compared to linear tabu list is that it can get the
evaluation state of each two-locus model using one times search (time complexity is O(1)); how-
ever, linear tabu list requires a sequential search whose time complexity is O (n).

Local search algorithm is used to obtain a closest solution (that has not been visited) in the neigh-
borhood of current solution, for example Fig 2, if a new generated solution Hnew = (X7, X3) has been
visited, then one of the nearest solutions that have not been evaluated will replace it as new solution
Hnew = (X8, X2) to be evaluated. The local search algorithm has two advantages: First, it can avoid
evaluating the same one two-locus model twice; second, it can achieve the same performance as

exhaustive search if we set the maximummodel evaluation times (MMEs) equal to
N

k

 !
. Therefore,

the proposed FHSA algorithm is a global search algorithm for detecting two-locus disease model.
However, when most of the elements of TT have been marked, the efficiency of local search

algorithm will decrease because most of solutions nearby current solution Hnew have been eval-
uated, which will increase search times for near solutions. Thus we transform the two-dimen-
sional TT into a link Table. For each element TTij in two-dimensional Table can be denoted
with a link table element Y(k). The transformational formula is expressed as Eq (3). The Fig 2
can be transformed as Fig 3.

Y N � ði� 1Þ � iði� 1Þ
2
þ j� i

� �
 TTij ð3Þ

where, N is the number of SNP.
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Fig 2. Local search algorithm based on two-dimensional tabu table (TT). In Fig 2, Xi is the ith SNP locus, '1' denote the two-locus model has been
evaluated. '0' is otherwise.

doi:10.1371/journal.pone.0150669.g002

Fig 3. Doubly linked Table as tabu table (TT). All adjacent elements are linked each other. (b) When an element is just evaluated, one of near solutions of
the element is selected with a random step for evaluating in the next time.

doi:10.1371/journal.pone.0150669.g003
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In Fig 3, we establish a doubly linked list for storing Y, in which adjacent elements in row
major order are linked with doubly links at first (see Fig 3(A)). When one element (solution)
has been evaluated, it will be removed from the doubly linked list. Meantime, in the doubly
linked list, one of near elements of the solution will be chosen with a random step BW, which is
evaluated in the next time (see Fig 3(B)). The BW is changed dynamically with the increasing
of iterations, which is expressed as Eq (4). It can be seen from Eq (4) that the BW is between 1
and 10. In the beginning stage, there are most of the elements that have not been evaluated,
thus at this time it has a large probability that BW possesses a large value. Conversely, in the
later stage, it has a large rate that BW possesses a small value.

BW ¼ minð10;maxðrandð0; 1Þ �#E; 1ÞÞ ð4Þ

where, #E denotes the number of elements having not been evaluated in doubly linked list.

G-test
G-test is a likelihood-ratio test that is being progressively applied in different significance tests
(http://en.wikipedia.org/wiki/G-test#cite_note-2) [44]. The G-test and chi-squared (χ2) test
will lead to the same conclusions for a reasonable sample size with the Person chi-squared
tests. However, the Pearson χ2 test is inferior to the approximation to the theoretical chi-
squared distribution for the G-test [42]. And for testing goodness-of-fit, G-test statistical
method is more efficient than Pearson χ2 test method [45–47].

The general formula for the value of G is as follows

G ¼ 2
X
i¼1

Oi � ln
Oi

Ei

ð5Þ

where Oi is the observed frequency, Ei is the expected frequency under the null hypothesis, ln
denotes the natural logarithmic function.

For k-loci model detection, an I×J contingency table requires be adopted for calculating the
G value with the follow formula

G ¼ 2
XI

i¼1

XJ

j¼1
Oij � ln

Oij

Eij

ð6Þ

where, Oij and Eij are respectively the observed numbers and expected number of genotypes
when phenotype takes the state yj and genotypes take i-th k-combination. We can get the
observed number Oij from dataset by using simple counting statistics method. The expected
number Eij of genotype frequency could be obtained according to Hardy-Weinberg principle
[48].

The null hypothesis is that the k-combination of SNP set has no association with the pheno-
type. If the P-value of the G-test statistic is smaller than a significance level α0, the alternative
hypothesis is accepted, which means the k-combination of SNPs has a certain association with
phenotype. In order to control false positive rate (Type I error rate), we adopt Bonferroni-cor-

rected significance level a ¼ a0
N

k

 !,
to deal with multiple testing. Because sometimes the

number of some genotypes equals zero or very small (less than ε, ε is a small integer) we do a
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minor modification for calculating G-test value as follows,

G ¼ 2
XI

i¼1

XJ

j¼1
Oij � Pij

Pij ¼

(
ln
Oij

Eij

;Oij > 0

0; otherwise

ð7Þ

The degree of freedom d (d = (I−1)(J−1)) is also modified as follow:
For each i(i = 1,2,� � �,I)

If
XI

i¼1
Oij < ε, then the degree of freedom d = d−1.

End

Experiments and Results

Parameters and Environments Setting
To investigate of FHSA-SED algorithm, we evaluated its performance using 82 simulation
datasets with different type of disease models and compared its performance with two excellent
intelligent optimization algorithms (MACOED, CSE). The MACOED and CSE algorithm have
advantages over AntEpiSeeker, BEAM and BOOST on the detection of multi-locus disease
models in terms of power, sensitivity (true positive rate: TPR) or specificity (SPC) (true nega-
tive rate: TNR). The Matlab source codes of MACOED[4] and CSE[30] algorithms can be
downloaded from http://www.csbio.sjtu.edu.cn/bioinf/MACOED/ and http://lbb.ut.ac.ir/
Download/LBBsoft/CSE separately, in which we made some minor revisions on the source
codes of two methods in order to perform a fair comparison; the main body of the source
codes was unchanged.

In the experiments, parameters setting for the compared algorithms are shown in Table 1.
To make a fair comparison, we set the same termination condition and the same runtime envi-
ronment for three compared algorithms, where maximum model evaluation times (MMEs) is
less than the number by using exhaustive search algorithm. All the experiments were per-
formed onWindows XP 64 system with Intel(R) Xeon(R) CPU E5504 @2.0GHz, 8 GB
memory, and all the program codes were written in MATLAB R2014b (the source code of
FHSA-SED is in S5 File).

Performance evaluation criteria
In order to investigate the performance of the FHSA-SED algorithm comprehensively on
detecting two-locus disease models which is associated with disease states, we adopt seven

Table 1. The parameters setting of the three algorithms.

Algorithms Parameters

FHSA-SED HMCR=0.9; PAR=0.35; ||HM1||=100; ||HM2||=100; P-value=0.01/Ck
N; ||�|| denotes the size of

set; MMEs = 4500 for 100SNP markers; MMEs = 300000 for 1000SNP markers

MACOED τ0 = 1; T0 = 0.8; β = 0.9; λ = 2; Ant number =100;P-value=0.01/Ck
N; MMEs = 4500 for

100SNP markers; MMEs = 300000 for 1000SNP markers

CSE MaxLe’vyStepSize = 1; Number of SNPs in each Group is 5; Fraction of eggs discarded
each generation is equal to 0.25; The number of nest equals 30; MMEs = 4500 for 100SNP

markers; MMEs = 300000 for 1000SNP markers

doi:10.1371/journal.pone.0150669.t001
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metrics: power, evaluation times, computation time, sensitivity (true positive rate: TPR),
specificity (SPC) (true negative rate: TNR), Positive predictive value (PPV) and Accuracy
(ACC).

(1)MaximumModel evaluation times (MMEs): in the experiment, we set Maximum
Model evaluation times (MMEs) of SNP combinations as the terminal condition of algorithm,
in other words, the harmony search algorithm will be terminated if the current evaluation
times of two-locus models have been larger than MMEs. If the known disease-causing models
have been found, the searching algorithm would be terminated early, the number that two-
locus models have been evaluated currently is defined as Model evaluation times (MEs) and
the elapsed time from start to end is denoted as computation time.

(2) The TPR, SPC, PPV and ACC are defined as follows

TPR ¼ TP=ðTPþ FNÞ
SPC ¼ TN=ðFPþ TNÞ
PPV ¼ TP=ðTPþ FPÞ
ACC ¼ ðTPþ TNÞ=ðTPþ TNþ FNþ FPÞ

ð8Þ

where TP, FP, TN and FN denote the number of true positives, number of false positives, num-
ber of true negatives and number of false negatives, respectively.

The TPR, SPC, PPV and ACC in this study are employed to measure the statistical precision
of hypothesis testing method for having found disease-models in the screening stage. The TP is
equal to the number of disease-models that have passed threshold of testing method, FN is the
number of disease-models failed to pass the threshold of testing method. FP is the number of
non-disease-models passed the threshold, TN equals the number of non-disease-models failed
to pass the threshold.

(3) The power is defined as follow

power ¼ #ðSÞ
#T

ð9Þ

where #T denotes the number of datasets that are generated by the same model parameters
(#T = 100 in our experiment), #(S) is the number of datasets in which the true disease-causing
models are found and passed the corresponding evaluation criteria among all #T datasets. The
power of screening stage (1st power) denotes the rate that the true disease models have been put
into the candidate set in 1st stage. The power of testing stage (2nd power) is the rate that the true
disease models have been passed the significant threshold of G-test, which is equal to TP/#T.

Simulation datasets
Model-based data. We perform experiments on 82 simulated data sets to investigate the

performance of FHSA-SED algorithm. These data sets are divided into two categories: disease
loci with main effects (DME 1- DME 12) and disease loci without main effects (DNME 1 –
DNME 70).

(1) Simulation 1 (disease loci with main effects: DME).

The DME model has both main effects and interaction effects. Twelve disease models
(Model 1-Model 12) [4], which are composed of multiplicative model, threshold model and
concrete model, are adopted in Simulation 1.

DME 1- DME 4 (H2 = 0.005, MAF = 0.05, 0.1, 0.2 and 0.5) are multiplicative models with
two disease locus, in which the disease prevalence given the frequency of genotype combination
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increases multiplicatively with the incremental presence of the disease. The genetic heritability
(H2) of DME 1- DME 4 are all equal to 0.005, minor allele frequencies (MAF) of them equal
0.05, 0.1, 0.2 and 0.5, respectively.

It is very difficult to identify the disease locus from the four DME models due to having very
low genetic heritability. The fitness landscape of DME 1 is shown in [Fig E1 in S3 File], in
which the fitness value of disease-causing SNP-pair is more or less similar to those of some
non-pathogenic SNP-pairs. As seen from [Fig E1 in S3 File] that the disease-causing SNP-pair
(10, 80) has not very significant difference with some other two-locus models, which makes the
search algorithm easy to be deviated from correct direction and leads to the miss of the disease-
causing two-locus model.

DME 5- DME 8 (H2 = 0.02, MAF = 0.05, 0.1, 0.2 and 0.5) are the threshold models in which
the prevalence of genotype frequency does not increase until the number of disease alleles pass
the threshold). [Fig E2 in S3 File] is the fitness landscape of DME 8, which has strong marginal
effect and interaction effect. From [Fig E2 in S3 File], a SNP marker with strong marginal
effect (e.g. SNP marker 10 and SNP marker 80) would form many false disease models with
other SNP markers that are not truly associated with the phenotype state.

DME 9- DME 12 (H2 = 0.02, MAF = 0.05, 0.1, 0.2 and 0.5) are the concrete model [49].
[Fig E3 in S3 File] is the fitness landscape of DME 12, which shows the model with low mar-
ginal effect and strong interaction effect. It can be seen from [Fig E3 in S3 File] that a SNP-
pair with very weak marginal effect is just like an isolated point.

In Simulation 1, the parameters and the values of penetrance of 12 models are given in
[Table E-1 in S3 File]. The corresponding data sets are generated using the software GAM-
ETES_2.0 [50]. The disease loci of all generated datasets with GAMETES_2.0 are on the last
two SNP markers. In order to avoid position preference for an optimization algorithm, we
exchange the places of disease locus to other positions randomly. In each data set, 100 SNPs
and 1000 SNPs are respectively simulated.

(2) Simulation 2 (disease loci with no main effects: DNME)

The DNME model only has the interaction effects without the marginal effects. We adopt
70 epistatic models which have different genetic heritability H2 (0.01, 0.025, 0.05, 0.1, 0.2, 0.3
and 0.4), MAF (0.2 and 0.4) and different penetrance values. The data corresponding to the 70
models was downloaded from http://discovery.dartmouth.edu/epistatic_data [51]. These data
sets have 1000 attributes, the first two being functional, the remainder randomly generated.
[Fig E4 in S3 File] is the fitness landscape of a DNME model (MAF = 0.4, H2 = 0.025). It can
be seen from [Fig E4 in S3 File], the disease-causing SNP-pair is almost an isolated point with-
out any associated neighborhood that would make the heuristic search algorithm difficultly to
find the veritable disease model. The penetrance Tables of 70 DNME models are provided in
[Table E-2 in S3 File].

Results comparison and analysis on model-based data. In Simulation 1, we compare
FHSA-SED algorithm with MACOED and CSE.

Figs 4–7 present the power, evaluation times and computation time of three algorithms on
12 DME models for the datasets which have 100 SNP markers and quantitative comparisons
are also presented in Table 2. In order to further evaluate the performance of FHSA-SED algo-
rithm, we compared four performance metrics (TPR, SPC, PPV and ACC) of FHSA-SED and
MACOED algorithms on the DME models. Our results are presented in Fig 8 and Table 3.

In Fig 4 and Table 2, the powers of HS+ (K2-Score), HS+ (Gini-Score) and 1st FHSA-SED

are respectively equal to
#S1st

1

#T
,
#S1st

2

#T
and#S1st

#T
, where #T denotes the number of datasets that are gen-

erated by the same parameters (#T = 100 in our experiment), #S1st1 ,#S1st2 and #S1st denote the
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numbers of the true two-locus disease models (in #T simulate datasets) having been put into
HM1, HM2 and HM, respectively. Likewise, 1st MACOED is the union power of ACO
+(K2-Score and ACI-Score) in the screening stage. The powers of FHSA-SED and MACOED
are the rate that the true disease models have been passed the significant threshold P-value of
G-test and Chi-square test respectively.

It is indicated from Fig 4 and Table 2 that the FHSA-SED algorithm outperforms MACOED
and CSE methods on all 12 DME models, in which the HS algorithm with K2 Scoring criterion
(HS+K2-Score) has a higher power than HS+(Gini-Score) on DME 1–2, however, HS+(Gini-
Score) is more powerful on DME 3 and DME 4 than HS+(K2-Score) algorithm. This illustrates
that the two scoring criterions in 1st FHSA-SED can complement each other. We can found
from column 4 (1st FHSA-SED) and column 5 (FHSA-SED) in Table 2 that the power of
FHSA-SED, for DME 1 ~ DME 4, is lower than that of 1st FHSA-SED because part of short-
listed candidates of 1st FHSA-SED failed to pass the significant threshold of G-test, resulting in
type II errors. Which because, for DME 1 ~ DME 4, there are very small significant difference

Fig 4. The power comparison on three DMEmodels: (a) The left figure is the multiplicative model (H2 = 0.005); (b) The middle figure is threshold model
(H2 = 0.02); (c) The right figure is the concrete model (H2 = 0.02).

doi:10.1371/journal.pone.0150669.g004

Fig 5. The evaluation times on DME1 -DME 12 for three algorithms: FHSA-SED, MACOED and CSE. (1) The left figure illustrate the evaluation time of
three algorithm on DME 1~DME 4 (H2 = 0.005, P(D) = 0.1).(2) The middle figure presents the evaluation time of three algorithm on DME 5~DME 8 (H2 = 0.02,
P(D) = 0.1).(3) The right figure presents the evaluation time of three algorithm on DME 9~DME 12 (H2 = 0.02, P(D) = 0.1).

doi:10.1371/journal.pone.0150669.g005
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between case data and control data. If the significant threshold of G-test is relaxed, some false
disease models might pass the significant threshold for DME 7 ~ DME 12 (type I errors),
which error is generally even less acceptable. Nevertheless, the shortlisted candidates in 1st

FHSA-SED that have failed to pass the significant threshold of G-test are worth studying fur-
ther by employing or developing effective approaches.

As is illustrated in Fig 5, Fig 6, Fig 7 and Table 2, the evaluation times and the computation
time of our method are significantly less than other two methods. For three type of DME mod-
els (multiplicative model: DME 1–4, threshold model: DME 5–8 and concrete model: DME
9–12), the mean evaluation times of our method are less than 1500, 300 and 600, respectively,
and the mean computation time is less than 2s, 0.6s and 1s. Fig 7 presents the statistical
box plots of FHSA-SED about evaluation times and computation time (100�5 datasets are used
to test for each DME model). It can be seen from Table 2 that FHSA-SED algorithm only takes
a very small amount of evaluation times and spend very little computation time for most of the
datasets, for which the exhaustive search algorithm requires 4950 (100�99/2) evaluation times
using K2-scoring and Gini-scoring criterions respectively and takes approximate 5.2s for each

Fig 6. The computation time on DME1 -DME 12 for three algorithms: FHSA-SED, MACOED and CSE. (1) The left figure illustrate the computation time
(s) of three algorithm on DME 1~DME 4 (H2 = 0.005, P(D) = 0.1).(2) The middle figure presents the computation time (s) of three algorithm on DME 5~DME 8
(H2 = 0.02, P(D) = 0.1).(3) The right figure presents the computation time (s) of three algorithm on DME 9~DME 12 (H2 = 0.02, P(D) = 0.1).

doi:10.1371/journal.pone.0150669.g006

Fig 7. The statistical box plots of FHSA-SED algorithm. Illustrating the distribution of evaluation times and computation time (s). (1) The left figure
illustrates the statistical distribution of evaluation times for 12 DMEmodels for 100*5 datasets (100 datasets for each model, and FHSA-SED runs 5 times
repeatedly for each data set). (2) The right figure illustrates the corresponding statistical distribution of computation times.

doi:10.1371/journal.pone.0150669.g007
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dataset with 100 SNP markers. This illustrates that the FHSA-SED can effectively reduce the
evaluation times and decrease the computation time in solving DME models. However, we
find out that MACOED and CSE take more the computation time than exhaustive search algo-
rithm on DME models with 100 SNP markers, which demonstrates that MACOED and CSE
algorithms themselves are more time-consuming than FHSA-SED in the process of search.

A detailed view of Table 3 shows that the TPR of FHSA-SED on most of DME models is
larger than that of MACOED. Yet the TPR value on DME-4 is relatively smaller than that of
MACOED, which is because some SNP-pairs that have been obtained in the 1st FHSA-SED are
rejected in testing stage (see the Table 2, the powers of 1st FHSA-SED on DME 1~DME 4 are
equal to 93%, 89%, 93% and 100%, which are much larger than powers of 1st MACOED), which
makes the false negative rate a little high because the significantly difference (in multiplicative
models: DME 1~ 4) between case data and control data is not very obvious. However, on DME
5 ~ DME 12, the TPR, SPC, PPV and ACC of FHSA-SED algorithm are all better than or not
significant differences with those of MACOED.

As can be noticed in Table 3, for some models, the values of TPR are larger than or equal to
the values of power, which because some disease models have not been found in the 1st screen-
ing stage. For example, if in the 1st FHSA-SED, 55 true disease models have been found from
100 datasets (1st power = 55%), and 2 models among these 55 disease models failed to pass the

Table 2. Powers, evaluation times and computation time for FHSA-SED, MACOED and CSE algorithms (100 SNPmarkers).

power Mean evaluation Times computation time

Model HS
+(K2-Score)

HS
+(Gini-
Score)

1st

FHSA-SED
FHSA-SED 1st

MACOED
MACOED CSE FHSA-SED MACOED CSE FHSA-SED MACOED CSE

DME-1 93% 68% 93% 57% 53% 0% 16% 1475.00 2618.33 4389.9 1.82 38.64 26.65

DME-2 89% 85% 89% 32% 61% 2% 18% 1408.72 2560.04 4290.9 1.74 36.31 24.90

DME-3 85% 93% 93% 50% 61% 13% 18% 1149.08 2448.03 4367.4 1.41 35.73 25.18

DME-4 83% 100% 100% 44% 62% 23% 22% 460.65 2495.70 4200.0 0.58 35.60 24.04

DME-5 100% 100% 100% 99% 92% 53% 20% 495.77 2446.50 4232.0 0.61 36.80 24.30

DME-6 100% 100% 100% 98% 93% 91% 21% 303.11 2610.45 4245.9 0.37 39.48 23.14

DME-7 100% 100% 100% 100% 90% 90% 23% 248.43 2377.67 4233.3 0.30 35.82 24.11

DME-8 100% 100% 100% 100% 85% 85% 30% 232.16 2731.15 4114.5 0.29 41.78 24.80

DME-9 100% 100% 100% 100% 93% 93% 16% 241.46 2548.91 4362.0 0.30 40.20 25.91

DME-10 100% 100% 100% 100% 91% 91% 23% 247.45 2519.15 4321.5 0.30 35.77 26.22

DME-11 100% 100% 100% 100% 91% 91% 28% 693.27 2391.45 4101.9 0.85 34.40 25.32

DME-12 100% 100% 100% 100% 96% 96% 19% 295.48 2689.01 4287.3 0.42 40.61 25.78

doi:10.1371/journal.pone.0150669.t002

Fig 8. The performance (TPR, SPC, PPV and ACC) on DME1 -DME 12 for FHSA-SED and MACOED algorithms. TPR, SPC, PPV and ACC, which are
all multiplied by the corresponding power of each algorithm for 12 DMEmodels, are shown in four sub figures in Fig 8.

doi:10.1371/journal.pone.0150669.g008
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threshold of G-test in 2nd FHSA-SED (TP = 53, FN = 2), then TPR = TP / (TP + FN) = 96%,
power = 53%, and TPR>power.

As also can be found in Table 3, the CSE algorithm has not been contained, which because
the goal of CSE is to find the disease models using Cuckoo search algorithm and Bayesian eval-
uation criterion. For each simulation dataset, the output of CSE is Yes (if the only disease-caus-
ing has been found) or No (if the disease-model has not been found), and CSE does not
contain any statistical analysis for the output results. Therefore, to be fair, the TPR, SPC, PPV
and ACC are not included in CSE algorithm.

In order to make a fair comparison, we multiply TPR, SPC, PPV and ACC by corresponding
power of each algorithm for each model. Results are presented in Fig 8, indicating that our
method is more effective than MACOED on all 12 DME models.

We also perform our algorithm on 12 DMEmodels for datasets which have 1000 SNPmark-
ers; Fig 9 and Fig 10 present the power, evaluation times and computation time of three algo-
rithms on 12 DMEmodels and quantitative comparisons are presented in Table 4 and Table 5.

As shown in Fig 9, Fig 10 and Table 4, the FHSA-SED has much higher power than
MACOED and CSE for most of DME models, and the evaluation times and runtime of
FHSA-SED are also far less than those of MACOED and CSE. We can found from Table 5 that,

Table 3. The performance (TPR, SPC, PPV, FDR, ACC) comparisons for FHSA-SED and MACOED (100 SNPmarkers).

Model FHSA-SED MACOED

power TPR SPC PPV ACC power TPR SPC PPV ACC

DME-1 57% 51.16% 99.28% 98.61% 75.22% 0% 0.00% 100.00% 0.00% 81.56%

DME-2 32% 20.27% 98.76% 94.23% 59.51% 2% 4.55% 100.00% 100.00% 85.00%

DME-3 50% 41.34% 98.63% 96.80% 69.99% 13% 33.33% 99.20% 85.71% 90.91%

DME-4 44% 29.00% 98.12% 93.91% 63.56% 23% 68.75% 94.98% 62.86% 92.10%

DME-5 99% 98.00% 98.87% 98.86% 98.43% 53% 57.78% 100.00% 100.00% 81.82%

DME-6 98% 98.00% 95.75% 95.84% 96.87% 91% 96.81% 95.50% 94.79% 96.10%

DME-7 100% 100.00% 88.73% 89.87% 94.36% 90% 100.00% 90.09% 89.81% 94.71%

DME-8 100% 100.00% 78.72% 82.46% 89.36% 85% 98.94% 83.78% 83.78% 90.73%

DME-9 100% 100.00% 84.42% 86.52% 92.21% 93% 97.83% 81.74% 81.08% 88.89%

DME-10 100% 100.00% 87.63% 88.99% 93.81% 91% 97.85% 79.83% 79.13% 87.74%

DME-11 100% 100.00% 98.63% 98.65% 99.32% 91% 97.83% 100.00% 100.00% 99.06%

DME-12 100% 100.00% 95.36% 95.57% 97.68% 96% 98.94% 88.29% 87.74% 93.17%

doi:10.1371/journal.pone.0150669.t003

Fig 9. The power comparison on 12 DMEmodels with 1000 SNPmarkers.

doi:10.1371/journal.pone.0150669.g009
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for some models (e.g. DME 5 and DME 6), the TPR of MACOED is higher than that of
FHSA-SED, which because only part of disease-models with significant difference between
case and control have been discovered in 1st stage of MACOED, but many other unobvious dis-
ease-models that have low significant difference between case data and control data have not
been found. However, if we think about the value of power, the power×TPR in FHSA-SED is
much higher than that in MACOED, which illustrates that the FHSA-SED is more powerful in
detecting various disease-models than MACOED.

In Simulation 2, performance comparisons on 70 DNME models are performed. [Fig
E5-E6 in S3 File] display the powers of three algorithms, Fig 11 and [Table E-3 in S3 File]
present the evaluation times and computation time for three algorithms when the number of
SNP markers equals 100. Other four performance metrics (TPR, SPC, PPV and ACC) are also
shown in [Table E-4 in S3 File].

From Fig E5 and [Fig E6 in S3 File], we can find that the power of 1st FHSA-SED is higher
than CSE for all 70 DNMEmodels, and its power is better than that of 1st MACOED for most
of DNME models. FHSA-SED method has distinct advantages over MACOED and CSE

Fig 10. The computation time and evaluation times on 12 DMEmodels with 1000 SNPmarkers.

doi:10.1371/journal.pone.0150669.g010

Table 4. Powers, evaluation times and computation time for FHSA-SED, MACOED and CSE algorithms (1000 SNPmarkers).

power Mean evaluation Times computation time (s)

Model HS
+(K2-Score)

HS
+(Gini-
Score)

1st

FHSA-SED
FHSA-SED 1st

MACOED
MACOED CSE FHSA-SED MACOED CSE FHSA-SED MACOED CSE

DME-1 37% 25% 37% 13% 20% 0% 0% 67088.1 159627 300000 137.3 1598 995

DME-2 42% 39% 43% 0% 0% 0% 11% 66366.9 294749 288150 135.8 2744 1360

DME-3 56% 66% 66% 21% 20% 0% 13% 43360.8 146310 282450 93.7 1460 1427

DME-4 56% 82% 82% 4% 20% 0% 9% 23487.6 190546 298100 50.1 1917 1477

DME-5 98% 98% 98% 77% 50% 10% 15% 24765.8 205019 290100 37.2 2055 1459

DME-6 99% 99% 99% 98% 71% 55% 47% 9811.6 182828 231100 15.3 1848 761

DME-7 100% 100% 100% 100% 72% 72% 43% 2122.4 191243 231900 3.1 2184 764

DME-8 100% 100% 100% 100% 81% 81% 27% 2171.6 185136 267450 3.1 1850 902

DME-9 100% 100% 100% 100% 63% 63% 18% 2366.8 208807 277950 3.7 1850 956

DME-10 100% 100% 100% 100% 89% 89% 22% 2559.5 208357 279150 3.7 1850 1135

DME-11 93% 93% 93% 93% 63% 63% 21% 57318.2 238678 256950 89.9 2383 1242

DME-12 100% 100% 100% 100% 51% 51% 18% 3602.1 231101 277350 5.2 2243 1324

doi:10.1371/journal.pone.0150669.t004
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algorithm on power for DNME-1~DNME-5 and DNME-36~DNME-40 (the genetic heredit-
ability H2 = 0.01). For other DNME models, the FHSA-SED and MACOED have nearly equal
powers.

In addition, Fig 11 indicates that the FHSA-SED algorithm takes very less computation
time than MACOED and CSE. MACOED spends most time among three algorithms, which is
almost 10 times what FHSA-SED spends. It is indicated from Fig 11 that FHSA-SED requires
slightly less evaluation times than MACOED for DNME models.

Table 5. The performance (TPR, SPC, PPV, FDR, ACC) comparisons for FHSA-SED and MACOED (1000 SNPmarkers).

Model FHSA-SED MACOED

power TPR power×TPR SPC PPV ACC power TPR power×TPR SPC PPV ACC

DME-1 13% 35% 5% 98% 95% 98% 0% 0% 0% 100% 0 100%

DME-2 0% 0% 0% 99% 0% 98% 0% 0% 0% 100% 0 100%

DME-3 21% 32% 7% 98% 95% 98% 0% 0% 0% 97% 0% 97%

DME-4 4% 5% 0% 98% 74% 98% 0% 0% 0% 98% 0% 98%

DME-5 77% 79% 61% 100% 100% 100% 10% 100% 10% 100% 100% 100%

DME-6 98% 99% 97% 98% 98% 98% 55% 100% 55% 89% 71% 91%

DME-7 100% 100% 100% 92% 93% 92% 72% 100% 72% 50% 63% 73%

DME-8 100% 100% 100% 71% 77% 71% 81% 100% 81% 0% 67% 67%

DME-9 100% 100% 100% 82% 85% 83% 63% 100% 63% 59% 46% 70%

DME-10 100% 100% 100% 87% 89% 87% 89% 100% 89% 100% 100% 100%

DME-11 93% 100% 93% 99% 99% 99% 63% 100% 63% 100% 100% 100%

DME-12 100% 100% 100% 97% 97% 97% 51% 100% 51% 92% 83% 94%

doi:10.1371/journal.pone.0150669.t005

Fig 11. The evaluation times and computation time on 70 DNMEmodels for three algorithms (100SNPmarkers).

doi:10.1371/journal.pone.0150669.g011
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As shown in [Table E-4 in S3 File], the FHSA-SED algorithm has a close performance to the
MACOED algorithm for most of DNMEmodels. However, for DNME-2, DNME-36~DNME-
40, the TPR of FHSA-SED is lower than that of MACOED, which is because 1st FHSA-SED has
much higher power than 1st MACOED (See Table E-3 in S3 File), and small significant thresh-
old value (P-value = 0.01/4950) make some candidate solutions prone to obstructed pass the
threshold ofG-test in the testing stage, which means some true candidate solutions fail to pass
the G-test due to small significant threshold (P-value) although they have successfully passed the
screening in 1st FHSA-SED (these candidate solutions maybe filtered out in 1st MACOED), This
illustrates that candidate solutions in 1st FHSA-SED are very worth studying further, and which
are called for a good testing method that embrace the complex disease models in future work.

In order to investigate the performance of FHSA-SED on solving DNME models, we test it
using 70 DNME models which have 1000 SNP markers. The results are illustrated in [S3 File]
(Fig E7 ~ Fig E8 and Table E-5).

Experiments on AMD real data
According to the previous analysis for simulation experiments, the proposed algorithm has a
good performance on 70 simulation models. In this section, we conduct experiments on a real
data set (AMD: Age-related macular degeneration) [52] using our proposed algorithm. The
AMD dataset contains 103611 SNPs genotyped for 50 controls and 96 cases. Our goal of the
experiment is to find quickly the disease-causing two SNP loci in AMD dataset using
FHSA-SED algorithm.

Firstly, SNP loci with p-values from G-test less than 0.3 are removed from AMD dataset.
Subsequently, 31341 SNP loci remain in the AMD dataset.

The setting of parameters for FHSA-SED algorithm is as follows:

� ||HM1|| = 500; ||HM2|| = 500;

� maximum evaluation times for SNP-pairs is equal to 3E+6;

� The p-value threshold for SNP-pairs equals 0:05
,

31341

2

 !

� Other setting of parameters is the same as those of Table 1.

The experiment took 4 hours approximately. There are 638 SNP-pairs (See S4 File) survived
in the final output set.

All these 638 SNP-pairs are displayed in Fig 12, and the corresponding gene-pairs (mapped
from SNP) are presented in Fig 13. It can be seen evidently from Fig 12 that three SNPs
'rs380390', 'rs1329428' and 'rs10272438' are associated with more other SNPs. In Fig 13, CFH,
NA and BBS9 are linked with more other genes, where NA is not a gene, which means many
SNPs are not in a gene region.

Similar to literatures [53–54], we select 26 top SNPs whose frequency is larger than 5 in the
638 SNP-pairs. In Table 6, the top two highest frequency SNPs ('rs380390' and 'rs1329428')
which are all in an intron gene CFH, have been widely believed to be significantly associated with
AMD [54–55]. Eight high frequency SNPs ranked from third to tenth may be also genetic factor
contributing to the underlying mechanism of AMD. To our knowledge, 'rs10272438','rs1740752',
'rs1394608', 'rs1363688', ' rs7006908' and 'rs10492272' have been reported before; however,
'rs3775652' and 'rs10511467' have not been reported before, which need further to be studied
and confirmed whether these SNPs are truly associated with AMD by developing a more efficient
test method or using large scale samples.
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In Table 7, top-20 SNP-pairs are presented in terms of P-value of G-test. It is noted that
there are 15 SNP-pairs associated with three SNPs: 'rs380390', 'rs1329428' and 'rs10272438',
other five SNP-pairs are associated with two unreported SNPs 'rs3775652' and 'rs10511467'.

Discussion

Relationship between FHSA-SED and MACOED
In this study, we proposed a HS algorithm using Screening and Testing to identify the SNP-
pair diseasemodels among all SNP-pairs, which has nearly the same algorithmic framework as
MACOED. The key differences lie between FHSA-SED and MACOED:

1. MACOED employs two scoring functions (Bayesian network-based K2-score and logical
regression-based AIC-score) to screen the disease models in the first stage, in which logic
"and" operation is carried out between the two scoring functions. FHSA-SED also adopts
two scoring criteria (K2-score and Gini-score) to evaluate the association of two-locus

Fig 12. SNP-SNP network. There are 638 SNP-pairs having passed the screening and testing in final results. In Fig 12, a node denotes a SNP locus. Two
linked nodes represent one SNP-pair of final 638 SNP-pairs. The larger the node, the more nodes linked with it.

doi:10.1371/journal.pone.0150669.g012
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models with disease status, and the logic "or" operation is performed between two scoring
criteria. Therefore, in the screening stage, the MACOED algorithm adopts stricter criteria to
screen the disease models than FHSA-SED algorithm; however, MACOED will make some
true disease models be filtered out.

2. MACOED is intended to search disease models via ACO algorithm (employing large popu-
lation size). In FHSA-SED, HS algorithm is employed to detect disease-causing SNP-pairs
and a local search algorithm is presented to discover no-visited solutions in constant time.
In MACOED, logical regression-based AIC-score requires some iteration to calculate
regression coefficients, which take much more time than the Gini-scoring in FHSA-SED.

3. In MACOED, Pearson's χ2 test is performed on the no-dominant solutions obtained in the
screening stage. FHSA-SED employs the G-test to test the candidate solutions in the testing
stage.

We investigate the performance of FHSA-SED algorithm via three simulation experiments:

1. 12 DME models: the disease loci have both main effects and interaction effects.

2. 70 DNME models: the disease loci have only the interaction effects without the main effects.

3. AMD dataset that contains 103611 SNPs genotyped for 50 controls and 96 cases.

Fig 13. Gene-gene network. The gene in Fig 13 is mapped from SNP, each SNP loci corresponds to a gene.
A gene contains one or more SNPs, for example, 'rs380390' and 'rs1329428' are all mapped in gene: CFH.

doi:10.1371/journal.pone.0150669.g013
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Results of DME models indicate that FHSA-SED is more effective in seven performance
metrics than MACOED and CSE, especially, it takes very fewer evaluation times of SNP-pairs
and much less computation time than MACOED.

The simulation experiment on DNME models demonstrates that the performances of our
method on power, evaluation times, TPR, SPC, PPV, and ACC are better than or equivalent to
those of MACOED, and computation time of our method is much less than that of MACOED.

The real data AMD experiment also indicates that our method has found out the known dis-
ease loci successfully and also discovered some new suspected disease loci.

Advantages and Limitations of FHSA-SED
Advantages. FHSA-SED is a fast swarm intelligent optimization algorithm and is a

model-free method that assumes neither any prior distribution nor any particular disease mod-
els. Two scoring functions in FHSA-SED can complement with each other and enhance the
detection power of the two-locus disease models. Our algorithm detects the two-locus disease
models without evaluating all genotype combinations by using a tabu table, and it can achieve
the search performance of exhaustive search algorithm when maximum model evaluation
times (MMs) is equal to the number of genotype combinations. So it is a global optimization
algorithm for the detection of two-locus disease models. FHSA-SED can be easily implemented
using parallel computing via splitting the tabu table (TT) into some small tabu table and each
computing can be performed independently in a small tabu table.

Table 6. Top 26 high-frequency SNPs in 638 SNP-pairs on AMD dataset.

Order SNP P-value Chromosome Gene Frequency Reported in ref

1 rs380390 6.2E-07 1 CFH 121 [23, 28,54–58]

2 rs1329428 5.99E-06 1 CFH 98 [23, 28,54–58]

3 rs10272438 9.67E-06 7 BBS9 57 [56]

4 rs1740752 4E-05 10 NA 40 [54]

5 rs3775652 3.73E-07 4 INPP4B 38 no reported

6 rs1394608 4.21E-05 5 SGCD 38 [54,57–58]

7 rs1363688 3.84E-05 5 NA 36 [28,54]

8 rs10511467 2.91E-05 9 NA 24 no reported

9 rs7006908 0.000138 8 NA 19 no reported

10 rs10492272 0.000259 12 ANKS1B 19 [57]

11 rs6053291 0.000196 20 PROKR2 14 [62]

12 rs10512413 0.000211 9 ABL1 13 no reported

13 rs10512174 0.000194 9 ISCA1 13 [28, 54, 58–61]

14 rs7104698 0.000159 11 NA 12 [58]

15 rs6104678 0.000212 20 NA 11 [58]

16 rs200642 0.000368 20 TSHZ2 11 no reported

17 rs10254116 0.00014 7 BBS9 11 [23,56,59]

18 rs713392 0.001531 7 IMMP2L 10 no reported

19 rs3915771 0.000772 5 NA 9 no reported

20 rs3914244 1.44E-05 12 NA 9 no reported

21 rs1233255 0.000472 2 PMS1 8 [60]

22 rs10485193 0.004187 10 NA 8 no reported

23 rs1930022 2.37E-06 9 NA 7 no reported

24 rs10507949 0.000574 13 NA 7 [28]

25 rs9294603 9.7E-05 6 NA 7 no reported

26 rs206695 0.001028 6 LOC728275 5 no reported

doi:10.1371/journal.pone.0150669.t006
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Limitations. FHSA-SED consumes much large memory due to the considerable size of
tabu table (TT). The current version of FHSA-SED cannot deal with the detection of multi-
SNPs (>2) disease models. Facing various type of disease models, the balance between type I
errors and type II errors has not yet to be satisfactorily solved. For the DME models with small
genetic heritability H2 or minor allele frequency (MAF), the type II errors might occur, and for
the models with strong marginal effects, the type I errors might be generated.

Future work. To our knowledge, there does not exist a very powerful approach in detecting
high-order disease models at GWAS, therefore, at this moment, multi-loci interaction detection
have many room to explore. In addition, powerful identification algorithms and statistical meth-
ods are very needed for high-order disease models. We are also developing a fast niche harmony
search algorithm with small size of tabu table for detecting high-order disease models.

Supporting Information
S1 File. The method for Bayesian network scoring criteria and Gini scoring criteria. Includ-
ing the detail description of Bayesian network scoring and Gini index criteria.
(DOC)

S2 File. Standard Harmony algorithm. Including the introduction of standard Harmony
algorithm and the flow chart of FHSA-SED algorithm.
(DOC)

S3 File. The experiments results. All the supplementary experiment data, experiment results
and figures.
(DOC)

Table 7. Top 20 SNP-pairs in terms of P-value of G-test.

Order of P-Value SNP1 SNP2 P-VALUE of G-TEST (SNP1-SNP2)

Name Index in AMD P-VALUE Name Index in AMD P-VALUE

1 rs380390 43748 6.20E-07 rs2224762 97535 1.99E-02 2.44471E-12

2 rs380390 43748 6.20E-07 rs2402053 57476 8.05E-03 2.65932E-12

3 rs380390 43748 6.20E-07 rs10512937 77802 2.52E-03 4.67459E-12

4 rs380390 43748 6.20E-07 rs1926489 7026 1.09E-01 5.68912E-12

5 rs380390 43748 6.20E-07 rs10497346 94452 2.96E-01 8.46601E-12

6 rs380390 43748 6.20E-07 rs2380684 75884 4.56E-02 9.2214E-12

7 rs1329428 54108 5.99E-06 rs9328536 31604 3.34E-03 2.02139E-11

8 rs1329428 54108 5.99E-06 rs7467596 79546 3.34E-03 2.02139E-11

9 rs1329428 54108 5.99E-06 rs3775652 12147 3.73E-07 2.17868E-11

10 rs3775652 12147 3.73E-07 rs725518 46516 4.87E-05 2.44424E-11

11 rs380390 43748 6.20E-07 rs10483314 16459 1.89E-03 2.87683E-11

12 rs380390 43748 6.20E-07 rs1363688 80178 3.84E-05 3.07928E-11

13 rs10511467 76784 2.91E-05 rs1046592 65049 2.14E-03 3.43886E-11

14 rs10511467 76784 2.91E-05 rs12046095 68566 2.14E-03 3.43886E-11

15 rs10511467 76784 2.91E-05 rs10489581 14227 2.14E-03 3.43886E-11

16 rs10511467 76784 2.91E-05 rs10502376 22505 2.14E-03 3.43886E-11

17 rs380390 43748 6.20E-07 rs10511145 18229 1.64E-02 3.57226E-11

18 rs10272438 33990 9.67E-06 rs1510134 82857 7.78E-04 3.86354E-11

19 rs1329428 54108 5.99E-06 rs356054 44601 6.61E-02 3.95542E-11

20 rs380390 43748 6.20E-07 rs724972 76613 9.95E-03 4.03304E-11

doi:10.1371/journal.pone.0150669.t007
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(XLS)
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