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Abstract

Multidrug-resistant Enterobacteriaceae are emerging as a serious infectious disease challenge. These strains can accumulate
many antibiotic resistance genes though horizontal transfer of genetic elements, those for b-lactamases being of particular
concern. Some b-lactamases are active on a broad spectrum of b-lactams including the last-resort carbapenems. The gene
for the broad-spectrum and carbapenem-active metallo-b-lactamase NDM-1 is rapidly spreading. We present the complete
genome of Klebsiella pneumoniae ATCC BAA-2146, the first U.S. isolate found to encode NDM-1, and describe its repertoire
of antibiotic-resistance genes and mutations, including genes for eight b-lactamases and 15 additional antibiotic-resistance
enzymes. To elucidate the evolution of this rich repertoire, the mobile elements of the genome were characterized,
including four plasmids with varying degrees of conservation and mosaicism and eleven chromosomal genomic islands.
One island was identified by a novel phylogenomic approach, that further indicated the cps-lps polysaccharide synthesis
locus, where operon translocation and fusion was noted. Unique plasmid segments and mosaic junctions were identified.
Plasmid-borne blaCTX-M-15 was transposed recently to the chromosome by ISEcp1. None of the eleven full copies of IS26, the
most frequent IS element in the genome, had the expected 8-bp direct repeat of the integration target sequence,
suggesting that each copy underwent homologous recombination subsequent to its last transposition event. Comparative
analysis likewise indicates IS26 as a frequent recombinational junction between plasmid ancestors, and also indicates a
resolvase site. In one novel use of high-throughput sequencing, homologously recombinant subpopulations of the bacterial
culture were detected. In a second novel use, circular transposition intermediates were detected for the novel insertion
sequence ISKpn21 of the ISNCY family, suggesting that it uses the two-step transposition mechanism of IS3. Robust
genome-based phylogeny showed that a unified Klebsiella cluster contains Enterobacter aerogenes and Raoultella,
suggesting the latter genus should be abandoned.
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Introduction

Carbapenems are one of few antimicrobials that have been

effective against multidrug-resistant bacteria, but their utility is

threatened by the emergence of carbapenem-resistant Enterobacte-

riaceae (CRE). Klebsiella pneumoniae is the most common CRE species

in the United States, typically encountered as a hospital-acquired

infection with high morbidity and mortality, and resistant to nearly

all available antibiotics [1–4]. Enzymes that inactivate carbape-

nems are a major mechanism of resistance. The serine b-lactamase

KPC, known since 2001, has become the most common

carbapenemase in the U.S. and other countries [1]. A more

recent concern is the carbapenem-active metallo-b-lactamase

NDM-1, first identified in a K. pneumoniae isolate from 2008 [5].

Alarmingly, blaNDM-1 is often found on large conjugative plasmids

along with additional antibiotic resistance determinants [6]. In

some settings the gene region can form tandem repeats, elevating

copy number [7]. The recent spread of blaNDM-1 both among

different species and across a large geographic area has been

remarkable and well documented [5–11].

Non-carbapenemase mechanisms of carbapenem resistance are

also known. These include increasing efflux pump activity [10]

and altering the profile of outer membrane porins that control

access of carbapenems to the cell wall [12,13].

K. pneumoniae strain ATCC BAA-2146 (Kpn2146) was the first

U.S isolate found to encode NDM-1 together with a wide variety

of additional antibiotic resistance determinants [14]. Susceptibility

testing performed at ATCC found Kpn2146 to be resistant to

every one of the 34 antimicrobial and antimicrobial/inhibitor

combinations tested. While Kpn2146 resistance genes have been

analyzed by both microarray [15] and (incomplete) genome

sequencing [16,17], neither approach fully elucidated the complex

Kpn2146 antibiotic resistance gene repertoire. For example some

Kpn2146 antibiotic resistance genes were unrecognized in the

previous work, and duplicated genes were counted only once by

microarray and on one contig in the incomplete genome. Even

when an incomplete genome does deliver the complete gene list,
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the question of how a pathogen accumulates such large collections

of resistance genes requires the contextual information that comes

from completing the genome. The complete genome is required to

reveal gene duplication events, to determine plasmid vs. chromo-

somal gene location, and to apply phylogenomic methods to

understand the evolution of the genome. In this study, we present

the completed Kpn2146 genome, identifying four plasmids, and

enabling a detailed survey of its antibiotic-resistance determinants

that fully explains its resistance profile. These determinants include

23 primarily plasmid-borne genes encoding antibiotic-resistance

enzymes, eight of which are b-lactamase genes. It is crucial to

understand how such richly endowed pathogens arise, which

requires analysis of the mobile fraction of the genome. Accord-

ingly, we surveyed genomic islands in the chromosome, mosaicism

in the plasmids, and transposable elements throughout the

genome.

Materials and Methods

DNA preparation and sequencing
Klebsiella pneumoniae ATCC BAA-2146 (Kpn2146) was isolated in

2010 from the urine of a U.S. hospital patient who had recently

received medical care in India [14]. Genomic DNA was obtained

from American Type Culture Collection (ATCC), and re-

suspended in water. A previously described Illumina paired-end

genomic sequence dataset from a single MiSeq run, after quality

and primer sequence trimming, consisted of 3,023,757 read pairs,

with reads averaging 88.3 bp [17]. A Pacific Biosciences sequence

dataset (PacBio) was generated from 2 mg genomic DNA at the

Yale Genome Sequencing Center, which performed the 5 kb

template preparation and sequenced the library on two SMRT

cells, yielding 88,073 direct reads and 1744 circular consensus

sequences (size distribution: mean 2408; median 1948; range 50-

18951; N50 3254 bp).

Genome assembly
As detailed in File S1, the above MiSeq and PacBio datasets

were sufficient for unambiguously assembling the complex genome

with no need for additional PCR-based finishing. Novel software

available at http://bioinformatics.sandia.gov/software/index.

html was useful for visualizing MiSeq coverage and assembly

branch points in the more challenging regions (Fig. S1 in File S1).

Annotation
Protein-coding genes were initially identified and annotated

using RAST [18], and RNA genes were annotated with careful

attention to tRNA, tmRNA and rRNA genes; Rfam/Infernal [19]

found 118 additional RNA genes and motifs that helped identify

certain regulatory genes and sites, mobile elements, plasmid

replication origins, and toxin/antitoxin systems. The Antimicro-

bial Resistance Database (ARDB) [20] was used to annotate

antimicrobial resistance genes among the initially-called genes,

testing that hits did not have better matches to other gene families;

the more recently updated ResFinder [21] added only blaNDM-1 to

this list of resistance genes. Explaining the Kpn2146 antibiotic

resistance profile required the identification of additional genes not

called by RAST. ISs were annotated using ISFinder [22]. Intact

integrons were named according to INTEGRALL [23]. The

chromosomal origin of replication oriC was identified according to

[24] and PCR tests [25,26] were adapted for in silico plasmid

replicon-typing. Observations on a high-copy group II intron,

insertion sequences, and the lack of a CRISPR system are

presented in File S1.

Phylogenetic analysis
The Kpn2146 genome was used for phylogenetic analysis, along

with the 182 other Klebsiella reference genomes that were available

at NCBI on December 20, 2013, and with five additional genomes

(Enterobacter cloacae SCF1, Yokenella regensburgei ATCC 43003,

Raoultella ornithinolytica B6 and two Enterobacter aerogenes genomes)

included because they were originally placed in Klebsiella, or

because a phylogenetic tree at PATRIC [27] showed that they are

the closest available outgroup or fall within the Klebsiella clade.

Multilocus sequence typing (MLST) was performed using K.

pneumoniae data from http://www.pasteur.fr/mlst. Preliminary

results showed that the 84 genomes of sequence type (ST) 258

formed a large tight clade together with the single ST512 genome;

the five most divergent members of this clade were retained while

the other 80 genomes of this clade were excluded from further

analysis. The 108 remaining genomes were aligned into 234,232

DNA sequence blocks using default Mugsy v1.2.3 [28]. Blocks

representing all ingroup genomes were selected and processed

using Gblocks v0.91b [29] with the b5 = h option to remove

ambiguously aligned regions, leaving 3476 blocks with a total of

2,118,733 aligned positions averaging 99.3% occupancy, which

were concatenated into a supermatrix. A maximum likelihood tree

was produced with RAxML v7.2.8 [30] using the GTRGAMMA

substitution model. Node support values were from a bootstrap set

of 150 trees produced similarly, using the fast (-x) bootstrapping

function and autoFC bootstopping.

Genomic islands
Three methods were used to find chromosomal genomic islands.

i) Islander identified att sites for islands integrated into a tRNA/

tmRNA gene [31]. ii) PHAST identified regions enriched for

phage genes [32]. We also developed iii) a novel phylogenomic

method termed Learned Phyloblocks (http://bioinformatics.

sandia.gov/software/index.html), in which the genome is divided

into regions of shared evolutionary history termed ‘‘phyloblocks’’,

and those phyloblocks that are ‘‘learned’’, on the basis of their

enrichment among the training set of Islander and PHAST

islands, are used to indicate additional islands. The chromosomes

of Kpn2146 and the 11 other complete reference Enterobacter

aerogenes and Klebsiella genomes were aligned using mugsy. This

alignment determined the ‘‘phylotype’’ for each position on the

Kpn2146 chromosome, i.e., the presence/absence pattern of the

nucleotide among the reference genomes. This partitioned the

Kpn2146 chromosome into phyloblock intervals defined as regions

of uniform phylotype. Nonbiquitous phylotypes (those in which the

sequence is not present in all 11 reference genomes) account for

much (47.5%) of the Kpn2146 chromosome. This suggests that

gene flux is high in Klebsiella, and not entirely explained by

integrative genomic islands. We reasoned that some nonubiquitous

phylotypes might be more indicative than others of horizontally

transferred islands, if there are particularly common ‘‘highways’’

of island transfer among Klebsiella strains, as have been found in

broader studies of horizontal gene transfer [33]. Phylotypes were

ranked by the fraction of their nucleotides in the Islander and

PHAST training islands. Phylotypes whose occurrence in training

islands was .25% were termed ‘‘learned phyloblocks’’, and

accounted for 7.6% of the chromosome.

Phylotypes were analyzed with Mowgli [34], parsimoniously

counting gain/loss events required to reconcile our robust genome

tree (Fig. 1) with its subtree of only the phylotype taxa. This

allowed us to classify nonubiquitous phylotypes as either simple

(explainable by a single gain/loss event), or complex (requiring

multiple gains/losses). The complex class was significantly

overrepresented among the learned phylotypes (36 of 38) relative

K. pneumoniae BAA-2146 Resistome and Mobilome
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Figure 1. Klebsiella phylogeny. Tree for 108 genomes based on a 2.93-Mbp alignment, rooted at the midpoint of the outgroup (Ecl/Yre) branch.
Nodes with ,30% bootstrap support were combined forming the multifurcated dashed line; otherwise support values are shown only when ,100%.
Brackets: Kpn multilocus sequence type (ST). Inset: enlargement of the ‘‘core Kpn’’ phylogeny. Kpn2146 falls in a clade containing fellow ST11 strains
Kpn JM45 and Kpn HS11286 and a tight clade (circled) of ST258 and ST512 strains. The ST258/ST512 clade is heavily sequenced, and represented here
with only five of its most diverse members. Bold: complete genomes used for phyloblocks analysis. Species name abbreviations: Kpn, K. pneumoniae;
Ksp, K. sp.; Kpl, K. cf. planticola; Kox, K. oxytoca; Kva, K. variicola; Eae, Enterobacter aerogenes; Ecl, E. cloacae; Ror, Raoultella ornithinolytica; Yre, Yokanella
regensburgei.
doi:10.1371/journal.pone.0099209.g001
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to the remaining phylotypes (183 of 246) (one-sided x2 test of

proportions: P,0.005). Only two learned phylotypes were simple:

Kpn2146-only and Kpn2146/KpnHS11286-only.

PCR-based analysis of ISKpn21
While abundant sequence data mapped one ISKpn21 copy to

the chromosome and a second to pKpn2146c, less abundant

sequence data suggested additional copies either in tandem repeat

form or as free circles. PCR tests to distinguish these possibilities

first re-examined each genomic locus. The chromosomal copy was

amplified using primers Cf (CGGTC ATAGT GTTGA

TGTGGG) and Cr (CATGT CTATT TGGTC AGAGA

CGG), while the plasmid copy was amplified using Pf (GCTTC

CATGA CTGGT TGCTG) and Pr (GATGC CAAGC CGGTA

AAGTTC). Cross-copy PCRs (i.e., Pf/Cr and Cf/Pr) tested for

artifacts. Other primers tested for circular ISKpn21: ISf (GCGGT

TACAG GGCAT TTG) and ISr (GCTCT TTGAC CAGAC

GATCC TG). PCR employed FailSafe enzyme mix in buffer E

(Epicentre) and scheduled 2 min at 95uC, 25 cycles (15 s at 95uC,

30 s at 55uC, 3 min at 68uC), and 7 min at 68uC. Products were

run on 1.2% agarose E-gels (Life Technologies).

Plasmid mosaicism
The four plasmid sequences were queried against the July 29,

2013 nt database using BLASTN in default mode (i.e., task

‘‘megablast’’), hitting 899 complete natural plasmids. Each query

and subject was self-concatenated (to avoid circular origin issues),

and BLASTN was repeated, identifying regions unique to each

plasmid. To define unique mosaic junctions, each query hit

boundary was tested for other hits spanning the boundary (beyond

10-bp tolerance windows).

Accession
Raw MiSeq and PacBio reads were deposited at SRA

(accessions SRR931757 and SRR1185120, respectively). Genomic

sequences have GenBank accessions CP006659-CP006663 and

can also be browsed at http://bioinformatics.sandia.gov/klebs/.

Results and Discussion

Genome assembly using combined MiSeq and PacBio
reads

We sequenced the genome of Klebsiella pneumoniae strain ATCC

BAA-2146 (Kpn2146), the first U.S. isolate found to encode the

NDM-1 metallo-b-lactamase. Assembly with an Illumina dataset

alone was limited by poor coverage in GC-rich regions and by

ambiguity at long repeats (Table S1 in File S1). However, adding a

dataset of long but low accuracy PacBio reads, together with

custom software for visualizing Illumina reads (Fig. S1 in File S1),

allowed unambiguous assembly into five circular replicons: a

chromosome and four plasmids (Table 1).

Antibiotic resistance determinants
ATCC has reported resistance of Kpn2146 to each of the 34

antimicrobial and antimicrobial/inhibitor combinations tested,

including tests for 23 b-lactams (penicillins with or without

inhibitors, cephalosporins, carbapenems and aztreonam), five

fluoroquinolones, three aminoglycosides (tobramycin, amikacin

and gentamicin), and four others (tetracycline, tigecycline, nitro-

furantoin, and trimethoprim/sulfamethoxazole); see http://www.

atcc.org/,/media/BA6C8F7C7C4C4649B2AEF501E51D76B8.

ashx for the full list. Kpn2146 resistance genes have also been

surveyed with a combination of microarray and amplicon
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sequencing [15]. The genome sequence fully rationalized the

resistance profile, with ample evidence for one or more mechanisms

explaining each observed antibiotic-resistance, and supported the

gene survey. It further identified previously untested genes (like

qnrB9), allelic multiplicity (aac(69)-Ib, sul1, blaSHV-11 and blaCTX-M-

15) and location (plasmid vs. chromosome), as well as housekeeping

gene mutations (Table 2). These gene duplications can increase

resistance; duplication of blaSHV-11 has been shown to increase

amoxicillin-resistance 16-fold [35].

Eight genes for b-lactamases representing all four Ambler

classes were identified; together these explain the broad b-lactam

and inhibitor resistance of Kpn2146. We further identified specific

resistance genes for tetracycline, trimethoprim, sulfonamides,

macrolides, and multiple aminoglycoside resistance genes [36],

including three aac(69)-Ib variants, one shown to confer additional

low-level resistance to quinolones [37] in addition to the usual

spectrum of aminoglycosides inactivated by AAC(69)-Ib which

includes tobramycin, amikacin, and gentamicin C1a and C2.

The complete genome also reveals certain housekeeping gene

mutations that are related to drug resistances. Its GyrA Ser83.Ile

and ParC Ser80.Ile combination has previously been found in K.

pneumoniae isolates with high-level resistance to several fluoroquin-

olones [38]. QnrB9 of Kpn2146, like other plasmid-encoded

quinolone resistance enzymes, confers low-level resistance to

fluoroquinolones, and may facilitate selection of mutations in gyrA

and parC associated with high-level resistance [39–42]. A

frameshift mutation in the nitroreductase gene nfsA is likely

responsible for the observed resistance to nitrofurantoin [43].

The above observations explain the entire known resistance

profile, except the tigecycline resistance. Mechanisms previously

suggested for tigecycline resistance are mutations in the gene for

the ribosomal protein S10 (Kpn2146 has the wild type allele) and

mutations increasing the expression of the AcrAB/TolC efflux

system [44,45]. One mutation class causing overexpression of this

efflux system is inactivation of its repressor RamR; Kpn2146 has

such a ramR disruption (insertion of ISKpn18) that can thereby

explain the observed tigecycline resistance. Additional efflux

systems (Table 2), such as the macrolide-specific efflux system

MacAB/TolC [45], may contribute to the intrinsic spectrum of

resistance, especially if overexpressed.

We also detected an early nonsense mutation that disrupts the

porin gene ompK35, fitting with many ESBL-producing K.

pneumoniae strains that lack OmpK35 [12]. We do not however

observe the concomitant loss of OmpK36 that significantly

decreases susceptibility for meropenem and several cephalosporin

b-lactams; ompK36 and ompK37 appear to be intact [46,47]. In a

recently reported Klebsiella carbapenem resistance mode, the marR

regulatory gene is inactivated and the yedS porin gene is active

[13]; this mode is unlikely to pertain here since marR is intact and

yedS is lacking in Kpn2146.

Class 1 integrons and integron fragments
One third of the antibiotic resistance enzyme genes listed in

Table 2, including all three of the aac(69)-Ib alleles, are associated

with five scattered class 1 integrons or integron fragments (Fig. S2

in File S1). Four of these are on plasmids, often within

recognizable fragments of transposons, and the fifth is within a

genomic island on the chromosome. We discuss below a case of

cassette swapping where comparative analysis suggests the swap

may have been mediated by homologous recombination rather

than class 1 integron integrase action.

Plasmid overview
Plasmid copy numbers were measured relative to the chromo-

some from the MiSeq reads, taking unique 21-mers; extremely

small pKpn2146a was high-copy, while pKpn2146b, pKpn2146c

and the blaNDM-1 plasmid, pNDM-US, were large and low-copy

(Table 1). The large plasmids carry most of the antibiotic

resistance enzyme genes in the genome (Table 2). Some mobile

genes with currently unknown function may eventually prove to be

new virulence or resistance genes; hypothetical genes are enriched

in the two largest plasmids relative to the total genome (Table S2

in File S1).

Conserved blaNDM-1 plasmid pNDM-US
The pNDM-US plasmid carrying blaNDM-1 (Fig. 2) was replicon-

typed as IncA/C; it bears the IncA/C rep gene and iteron region,

and encodes a ParAB partitioning system. Moreover, it encodes

the complete set of proteins (TraABCDEFGHIKLNUVW, TrhF,

DsbC, s043, s063, 123, 234, and 345) for the F-type conjugation

pilus/Type IV secretion system, of the MOBH12 mobility class

[47].

pNDM-US (140.8 kbp) is highly similar to numerous recently-

sequenced plasmids, yet unique in bearing a copy of the relatively

rare IS3000 between ter and krfA. Recent insertion of IS3000 is

further supported by its 5-bp direct repeat of target sequence (DR),

the first clear measurement of its DR length, in agreement with its

membership in the Tn3 family [48]. We describe the rather few

differences, each discernable as distinct DNA mobility events,

between pNDM-US and its two closest known relatives: pNDM-

KN (JN157804: 162.7 kbp) [49] and pNDM102337 (JF714412:

166.0 kbp), which each in total share 137 kbp at .99.98%

identity with pNDM-US. pNDM-KN has three large segments

missing in pNDM-US: i) an ISEc23 insert, ii) a Tn7/restriction

system segment, and iii) a 4-cassette integron in place of the single

(aac(69)-Ib) cassette integron. The second reference plasmid

pNDM102337 has i) the same 1-cassette integron as pNDM-US,

ii) the Tn7/restriction system segment of pNDM-KN and iii) bears

a segment missing from both pNDM-US and pNDM-KN that

carries additional resistance determinants and a full length

ISAba125 [50].

The integron in pNDM-KN and pNDM102337 is in a

fragment of Tn1696 that has IS4321 inserted in its remaining

IR. The presence of different gene cassettes in pNDM-KN (In578),

pNDM-US (In46), and other Tn1696 variants might suggest

recent integrase activity at this integron. However an alternative

explanation for integron cassette swapping is by double homol-

ogous recombination in the long cassette-flanking regions that are

conserved in most integrons, namely, the upstream integrase gene

(59-CS, 1352 bp) and the downstream DqacE-sul1-orf5 unit (39-CS,

1616 bp) [51]. This latter suggestion is supported by the presence

of three of the very few point mutational differences between

pNDM-US and pNDM-KN near the att sites in these two flanks.

In the 136,910 bp shared between pNDM-US and pNDM-KN

there are ten sites of small-scale indel or base-substitution; three of

these are in the 59-CS and 39-CS, for an enrichment of (3/2968)/

(7/133942) = 19.3 fold.

ISEcp1 has transposed into pNDM-US, bringing its 2832-bp

flanking segment bearing blaCMY-6, and has been inserted

intergenically into the transfer operon tra. The pNDM-US

blaNDM-1 region is found as in pNDM-KN and in many other

Klebsiella plasmids; its interpretation as an immobile derivative of

the mobile Tn125 of Acinetobacter baumannii strains has been

discussed [52,53]; here Tn125 is truncated at one end by ISKpn14

and within the ISCR21 unit at the other end.

K. pneumoniae BAA-2146 Resistome and Mobilome
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Mosaic plasmid pKpn2146c
pKpn2146c (Fig. 3) was replicon-typed as both IncFIIA and

IncFIB. It was typed to IncFIIA using the copA RNA gene and copB

and rep protein genes, and to IncFIB through its IncFIB iteron

region and rep gene. An iteron region IncD like that of the F

plasmid was also identified.

pKpn2146c is a large mosaic plasmid, which shares much of its

sequence with the blaNDM-1 containing plasmid pKPX-1, including

both the large copper/arsenic resistance region and the resistance

gene mph(A) region. pKpn2146c is also enriched for hypothetical

genes (Table S2 in File S1). Three of the eleven IS26 copies in the

Kpn2146 genome occur in this plasmid (Table S3 in File S1).

Table 2. Enzymes, efflux pumps, and mutations expected to confer resistance to antibiotics of clinical relevancea.

Enzymeb Gene location(s) Coordinates Resistance phenotype

NDM-1 (class B) pNDM-US Tn125 122191–123003 Penicillins, cephalosporins, carbapenems, inhibitor-resistant

SHV-11 (class A)c 1. pKpn2146b 36313–37173 Penicillins, some cephalosporins, inhibitor-sensitive

2. Chromosome 2612996–2613856

CTX-M-15 (class A) 1. pKpn2146b ISEcp1 47130–48005 Penicillins, some cephalosporins, aztreonam,

2. Chromosome ISEcp1 5407530–5408405 inhibitor-sensitive

TEM-1 (class A) pKpn2146b Tn2 50827–51687 Penicillins, some cephalosporins, inhibitor-sensitive

CMY-6 (class C) pNDM-US ISEcp1 72203–73348 Penicillins, some cephalosporins, inhibitor-resistant

OXA-1 (class D) pKpn2146b DIn37 38798–39673 Penicillins, inhibitor-resistant

AAC(3)-IIe pKpn2146b 41116–41976 Gentamicin, tobramycin, netilmicin, sisomicin

AAC(69)-Ib (43) pNDM-US In46 115114–115737 Tobramycin, amikacin, netilmicin, sisomicin

AAC(69)-Ib (1) pKpn2146b DInTn1331 82745–83350 Tobramycin, amikacin, netilmicin, sisomicin

AAC(69)-Ib-cr (29) pKpn2146b DIn37 38113–38712 Tobramycin, amikacin, netilmicin, sisomicin, quinolones (low-
level)

ANT(30)-Ia Kpn23SapB In127 2297711–2298502 Streptomycin, spectinomycin

APH(30)-Ib (StrA) pKpn2146b ISCR2 53244–54047 Streptomycin

APH(6)-Id (StrB) pKpn2146b ISCR2 52408–53238 Streptomycin

Sul2 pKpn2146b ISCR2 54108–54923 Sulfonamides

RmtC pNDM-US ISEcp1 120100–120945 Aminoglycosides (via rRNA modification)

Sul1 1. Kpn23SapB In127 2299007–2299846 Sulfonamides

2. pNDM-US In46 116245–117084

DfrA14 pKpn2146b In191 8281–8754 Trimethoprim

QnrB9 pKpn2146b 26074–26742 Quinolones, fluoroquinolones

Mph(A) pKpn2146c 16503–17408 Macrolides, Erythromycin

FosA Chromosome 667960–668379 Fosfomycin

Efflux pump Gene Location Probable substrate(s)d

AcrAB-TolC Chromosome 1249681–1254043 Aminoglycosides, b-lactams, tigecycline, macrolides

AcrEF-TolC Chromosome 4936203–4940465 Minor role

EefABC Chromosome 5354323–5329922 Chloramphenicol, tetracyclines, ciprofloxacin

MacAB-TolC Chromosome 1857393–1860445 Macrolides

MdfA Chromosome 1781588–1782820 Aminoglycosides, fluoroquinolones, chloramphenicol

MdtG,H,K,L,M,NOP Chromosome e Many possible substrates (MFS superfamily pumps)

OqxAB Chromosome 4169609–4173960 Chloramphenicol, fluoroquinolones, trimethoprim

EmrAB Chromosome 4218886–4221612 Nalidixic acid, hydrophobic compounds

TetA(A) pKpn2146c Tn1721 19168–20367 Tetracyclines

Gene Mutation Resistance phenotype

gyrA Gyrase Ser83TTC R IleATC 3763583–3766216 Quinolone, fluoroquinolones

parC Topo IV Ser80AGC R IleATC 4689294–4691552 Quinolone, fluoroquinolones

nfsA Nitroreductase Frameshift 1826275–1826998 Nitrofurantoin

aExcluding the resistance enzyme for bleomycin, an antibiotic used clinically only as an antitumor agent.
bVariant number from Table 1 of Ramirez et al. [37] is used to distinguish the AAC(69)-Ib variants.
cTwo silent differences between the two copies.
dProbable efflux substrates identified from literature sources including ARDB; the substrates list is not comprehensive and in many cases has been deduced from
organisms other than K. pneumoniae.
eMdt genes are scattered over the chromosome.
doi:10.1371/journal.pone.0099209.t002
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Directly adjacent to the mph(A) and IS26 region is a Tn1721 [54]

fragment bearing the tetA(A) resistance gene. This transposition

junction is unique among plasmids in public databases. The other

end of DTn1721 is truncated by an IS26 insertion.

Highly mosaic plasmid pKpn2146b
pKpn2146b (Fig. 4) was replicon-typed as both IncFIA (iteron

unit, oriS and rep gene) and IncR. It has a largely intact IncR repeat

region located 34.5 kbp apart from a locus with the rep, parA and

parB genes and parS site. pKpn2146b additionally has a region of

the iteron from the IncN plasmid R46 which is repeated 30.6

times, but without the IncN rep gene. apparently lost through IS26

insertion followed by homologous recombination.

pKpn2146b is the richest of the plasmids in resistance

determinants (12 determinants; Table 2), and the most highly

mosaic, with the highest number (six) of IS26 copies. Comparison

with other plasmids shows evidence for an illegitimate recombi-

nation at the resolution site of the plasmid-encoded resolvase ResD

(see Fig. 4 at coordinate 78900), where the IncR control region

joins unusual sequence found elsewhere only in pK245

(DQ449578). Comparison also shows a particular pattern that

we call ‘‘IS-flank switch’’; one example is marked as ‘‘HR’’ near

coordinate 38000 on Fig. 4, where homology to one reference

(plasmid pRMH712) begins precisely at one end of a long repeated

region (IS26) and extends through the IS and well into one flank,

while the same pattern occurs for the other flank with a second

reference (plasmid pKDO1). We hypothesize that this IS-flank

switch pattern resulted from homologous recombination between

IS26-containing parents as proposed previously [55]. This

hypothesis of homologous recombination subsequent to two

independent transposition events is supported by failure to find

the 8-bp target sequence direct repeat (DR) expected for a recent

transposition of IS26. In fact none of the six copies of IS26 in

pKpn2146b, nor any of the other five copies elsewhere in the

genome, contain the DR expected for recent insertion (Table S3 in

File S1), suggesting that every IS26 copy in the genome has

undergone homologous recombination more recently than trans-

position. We find another IS-flank switch pattern (‘‘HR’’ at the top

of Fig. 4), that we suspect provides an explanation of how the IncN

iterons lost their associated IncN rep gene.

The blaSHV-11 gene originated in situ in the K. pneumoniae

chromosome, and has been transferred to plasmids at least twice,

in both cases as a chromosomal fragment flanked by directly

repeated IS26 copies [56,57]. The pKpn2146b copy of blaSHV-11 is

like the prototype in plasmid pKPN4 (CP000649), except that one

of the IS26 copies used to transmit this segment has been

truncated by insertion of IS3000, which was then uniquely

interrupted by ISEc22.

pKpn2146b has much of the blaTEM-1-containing Tn2 [58],

(truncated by IS26 at one end as found in other plasmids [55]),

and further disrupted by a blaCTX-M-15/ISEcp1 transposition unit

Figure 2. pNDM-US. Key, color coding of genes, mobile elements, and unique regions and juxtapositions, with additional colors for non-gene
features. Inner ring, representative long matches to other plasmids. abR, antibiotic resistance.
doi:10.1371/journal.pone.0099209.g002
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[59]. This pKpn2146b ISEcp1 copy has spawned a recent

tranposition event moving blaCTX-M-15 to a chromosomal site.

Chromosomal blaCTX-M-15 has not been identified in any complete

genome, but has been reported at an undetermined locus in a

different multilocus sequence type [60]. This recent transposition

event from the plasmid used a different right end for the

transposing unit (1618 bp flank) than did the earlier insertion into

the plasmid Tn2 (1315 bp flank); the resulting chromosomal copy

has 100% identity with the plasmid parent and is flanked by a 5-bp

DR. A partial ISCR2 (disrupted tnp and ori) is found with its

frequently associated strA, strB and sul2 genes. The mercury-

resistance operon-carrying DTn6187 is only one arm of the full-

length Tn6187, but nonetheless has the same inverted repeats at

both ends as the full-length, suggesting that it alone could be a

transposing element; it however lacks the expected flanking direct

repeats, and thereby conforms to the IS-flank switch pattern,

suggesting that its flanks may have been shuffled by homologous

recombination. The integron within Tn1331 (Fig. S2 in File S1)

[61] is found truncated at one end by IS26, and at the other end

by ISKpn14 leaving aac(69)-Ib as its only intact resistance gene.

Mysterious plasmid pKpn2146a
pKpn2146a (Fig. S3 in File S1) was replicon-typed as ColE,

encoding RNAs I and II. The ColE1 mobilization site (bom) was

determined by comparison to other ColE1 plasmids. The typical

short ColE1 proteins that affect ori (Rom protein) or bom-site (Mob

proteins) function could not be identified; indeed, none of its

potentially encoded proteins show homology to any proteins in

public databases. The most closely related known plasmid pB1021

(NC_019989), from K. pneumoniae BB1090, shares the common

RNAII region and uniquely shares a second large portion of

pKpn2146a. This surprisingly short (2014 bp) plasmid was

supported by MiSeq coverage and verified by PCR (data not

shown).

Genomic islands determined by multiple approaches
Plasmids frequently disseminate antibiotic resistance genes in

Klebsiella, but genomic islands are also potential vehicles. Our

program Islander [31] found six islands in tRNA/tmRNA genes,

including a tandem island pair at a tRNALeu gene. PHAST [32]

confirmed three of these and identified four additional prophage-

like islands, one precisely within the gene for the short regulatory

RNA RybB. The 10 resulting islands accounted for 6.3% of the

Kpn2146 chromosome. We used these 10 Islander/PHAST

Figure 3. pKpn2146c. Key, color coding of genes, mobile elements, and unique regions and juxtapositions, with additional colors for non-gene
features. Inner ring, representative long matches to other plasmids. Innermost black arrows, recent recombination events. HR, homologous
recombination; abR, antibiotic resistance.
doi:10.1371/journal.pone.0099209.g003
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islands (Table 3) as a training set for a phylogenomic approach to

find additional islands, based on the principle that islands tend to

occur sporadically among closely related strains. The Kpn2146

chromosome was partitioned into ‘‘phyloblocks’’, which we define

as DNA intervals where all positions share the same phylotype, i.e.,

the same presence/absence profile among a given set of closely

related genomes. We selected phyloblocks that were enriched in

(i.e., ‘‘learned’’ from) the training islands. These learned phylo-

blocks pointed to the island Kpn23SapB, with an integrase gene

and att site pair, that was missed by Islander and Phast. Learned

phyloblocks also pointed to the non-island genomic locus cps-lps,

described further below. An overview of learned phyloblocks

across the chromosome (Fig. 5) shows the tight mapping to cps-lps,

mobile islands and ISs.

To summarize, the 11 islands identified here (Table 3) amount

to 365 kbp. Ten islands were precisely determined, having found

an integrase gene and both attL and attR sites. Two islands had

damage in the attR tRNA fragment, as has been previously

observed [27]. Only five of these islands were found in the closely

related strain K. pneumoniae HS11286.

The island Kpn23SapB has an In127 integron fragment

containing an aadA2 cassette (Fig. S2 in File S1). An upstream

IS26 insertion has displaced the integron Pc promoter, yet

generated a new plausible promoter with the 235 TTGCA from

IS26, a 17 bp spacer, and a 210 TTTCAT from the integron.

This aadA2 is the only island-borne resistance determinant

identified here. However, some mobile genes with currently

unknown function may eventually prove to be new virulence or

resistance genes; the islands are enriched in hypothetical genes

(Table S3 in File S1). Considering non-hypothetical genes, nine

islands primarily possess phage genes, while Kpn55F encodes

plasmid-like ParAB and some type IV secretion system functions

indicative of an integrative conjugative element (ICE). Islands

contain five of the six chromosomal group II intron copies.

Operon fusion and translocation at the cps-lps
polysaccharide synthesis locus

Learned phyloblocks indicated, in addition to a new island, the

genomic locus of capsular polysaccharide (cps) and lipopolysac-

charide (lps) synthesis genes (Fig. 6). This region is not an integrase-

Figure 4. pKpn2146b. Key, color coding of genes, mobile elements, and unique regions and juxtapositions, with additional colors for non-gene
features. Inner ring, representative long matches to other plasmids. Innermost black arrows, recent recombination events. HR, homologous
recombination; abR, antibiotic resistance.
doi:10.1371/journal.pone.0099209.g004
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mobilized genomic island, yet the cps cluster is known to be so

highly varied as to suggest horizontal transfer of genes within the

array [62]. The capsule is the outermost cell surface, a key Klebsiella

pathogenicity determinant subject to immune surveillance. In

other Enterobacteriaceae, the large cps and lps gene clusters are

typically separate, but in Klebsiella, lps is found immediately

downstream of cps. Nevertheless there normally appears to be

transcriptional separation between Klebsiella cps and lps; cps

terminates with the reverse-oriented gene uge, and an lps promoter

has been found in the large intergenic space between uge and lps

(Fig. 6A) [62]. The Kpn2146 cps-lps region has undergone a major

rearrangement with gene-regulatory consequences (Fig. 6B). The

terminal cps P3 transcription unit is deleted from its usual site,

fusing the lps operon to the main cps operon. Morever this cps P3

unit has translocated to a nearby location, within a complex array

of insertion sequences. In this new location the P3 unit is

transcriptionally isolated, whereas at the usual location transcrip-

tion could be supplemented by the upstream P2. Deletion of a

polysaccharide synthesis gene cluster by homologous recombina-

tion between repeated manCB units has been noted before [63], but

in our case the translocation has preserved the deleted cps

subcluster.

Circular transposition intermediates of ISKpn21
Above we demonstrated transposition of blaCTX-M-15 from a

resident plasmid to the chromosome by sequence comparison.

Another way to assess the potential of a transposon to disseminate

antibiotic resistance genes is to identify active transposition

intermediates. Such intermediates have previously been found in

vivo as free molecules unintegrated into chromosomes or plasmids,

in circular, linear or tandem repeat linear forms [64], in the two-

step transposition mechanism used by elements of the IS3, IS30,

IS21 and IS256 families. We present here a novel approach for

detecting circular transposition intermediates, through high-

throughput sequencing. Examining the termini of ISKpn21, we

found MiSeq reads where ISKpn21 ends were linked, and

separated by 5-bp direct repeat from one of the two integrated

copies (Table S3 and Fig. S4 in File S1). Possible explanations for

these sequences are i) that what we had assembled as single copies

were instead tandem genomic repeats, or ii) that these are from

circular molecules free from the genome. We tested the integrated

ISKpn21 copies by PCR and found each to be present as a single

unit, not as a tandem (Fig. S4 in File S1). We also tested for a

genome-free circle (or possibly genome-free tandem) and observed

the indicated PCR product. The copy number of each circle and

each end of its integrated parent ISKpn21 copy was measured,

yielding an average circle:parent ratio of 3.72%60.84%, presum-

ing no sequencing bias. The pKpn2146c copy of ISKpn21 has

different direct repeat sequences at its two flanks, perhaps due to

recombination between different ancestral copies. Finding only the

left end direct repeat in its circle sequence suggests, without

achieving statistical significance, that the left end of ISKpn21

preferentially attacks the right end during circularization. We

propose that ISKpn21 and perhaps the entire ISNCY family use the

two-step transposition mechanism of the IS3 family.

Using PacBio reads to detect homologously recombinant
subpopulations

Above we used sequence comparison to demonstrate homolo-

gous recombination at high copy repeats as a mechanism for

reassorting resistance determinants. Here we present a new

method for measuring recombinant subpopulations in a bacterial

culture. Small numbers of PacBio reads disagreed with the

preponderant assembly pattern across the 8 copies of the rRNA

operon and the 8 copies of a group II intron (Fig. S5 in File S1).

To the extent that the PCR-free PacBio method is not expected or

known to produce in vitro homologous recombination artifacts,

our data indicated that approximately ,4% of this bacterial

culture was recombinant across these repeats.

Klebsiella phylogeny revises taxonomy
We expanded the phylogenetic analysis used in our learned

phyloblocks analysis, to produce a robust genome-based phyloge-

netic analysis of Klebsiella (Fig. 1). This reveals a clade with

Kpn2146 and fellow members of multi-locus sequence type (ST)

11, K. pneumoniae HS11286 and K. pneumoniae JM45, from which

sprang a tight clade of heavily sequenced K. pneumoniae ST258 and

ST512 hospital strains; Kpn2146 is the only blaNDM-1-containing

cps-lps

Figure 5. Learned phyloblocks identify a new island and the highly variable capsular polysaccharide and lipopolysaccharide
synthesis gene cluster (cps-lps). Nonubiquity phyloblocks: those missing in at least one of the 11 reference chromosomes. Complex phyloblocks:
those requiring more than one gain/loss event to reconcile the phylotype with the genome tree of Fig. 1. As a percentage of their combined 411 kbp,
the learned phyloblocks mapped either to the training islands (81.9%), the two newly indicated regions (12.0%), insertion sequences (2.1%), or to
small scattered regions that did not show hallmarks of islands (4.0%). Red segments: the 11 final islands (including a tandem array of Kpn21L and
Kpn11L). Circles, the two newly indicated regions.
doi:10.1371/journal.pone.0099209.g005
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member of this clade (or indeed our entire tree). The surrounding

and subtending of Enterobacter aerogenes and Raoultella with Klebsiella

taxa of long standing, with 100% bootstrap support, suggests that

all should be subsumed under Klebsiella and that the genus

Raoultella, defined based on analysis of only two genes [62], should

be abandoned.

Conclusions

A single relatively small Illumina read set, combined with a

PacBio set of longer but less accurate reads, was sufficient to

assemble the genome despite the numerous repeat and high-GC

regions, with no need for gap closure by PCR. Moreover we

demonstrated direct detection of an active transposable element by

high-throughput sequencing. Our novel read-visualization tools

(http://bioinformatics.sandia.gov/software/index.html) were use-

ful for working through problematic areas, and this software was

developed into a greedy contig assembler.

The known extensive antibiotic-resistance profile of Klebsiella

pneumoniae ATCC BAA-2146 (Kpn2146) was explained and

additional resistances, which remain to be tested experimentally,

were suggested by the genome sequence. Several mechanisms

were identified for the mobility of resistance genes: i) acquisition of

plasmids and genomic islands, ii) integron cassette swapping

(whole or partial integrons account for eight antibiotic-resistance

genes), iii) transposition events from chromosome to plasmid

leading to greater disseminability of resistance, and vice versa

leading to greater stability in the genome, and iv) homologous

recombination at high copy repeats. Gaining more insight into

such key evolutionary mechanisms, beyond simply identifying

them, often comes through technological advances. Here we have

made novel use of high-throughput sequencing technologies to

inform both transposition and homologous recombination.

Numerous mobile genetic elements were identified. The eleven

genomic islands were identified by three different methods that

were based on the preference of islands for tRNA gene integration

Figure 6. Operon translocation and fusion at the cps-lps polysaccharide synthesis locus. The cps P1, P2 and P3 promoters are taken from
[68], while a promoter (Plps) has been mapped in K. pneumoniae MGH 78578 to the intergenic space between uge and the first lps gene [69]. A) The
cps-lps region of K. pneumoniae 342, which is typical of Klebsiella. Genes of cps are in yellow (common in most strains) or blue (varying in gene
identity, count, and order); genes of lps are in red. The manCB unit (orange arrows) is occasionally found in cps, and occasionally in lps, and here
unusually in both. The diamond represents the JUMPstart DNA/RNA motif at whose ops sequence RfaH is loaded onto the elongating RNA
polymerase in place of NusG, preventing Rho-based termination for the small number of long transcription units that are controlled by ops-RfaH, and
physically coupling the elongating RNA polymerase to the trailing ribosome [70]. B) Kpn2146 cps-lps. The boxed cps P3 unit has been deleted from its
usual site, and moreover translocated to a nearby position, apparently by transposition and/or homologous recombination mechanisms; note the
complex pattern of surrounding IS insertions and the directly repeated flanking sequence copies (gray arrows).DIS, incomplete IS copy; dotted lines,
gene or IS interrupted by ISs; GT, glucosyl transferase, Hyp, hypothetical.
doi:10.1371/journal.pone.0099209.g006
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sites [31], clustering of phage genes [32], and a novel

phylogenomic approach introducing phyloblocks, DNA segments

with shared phylogenetic profiles that may be applicable in more

general studies of horizontal gene transfer (Fig. 6). A recent study

of the closely related ST258 K. pneumoniae, published while our

manuscript was under review, also found numerous islands and

indicated the cps locus as the major non-island chromosomal site of

variation among strains [65].

The Kpn2146 genome illustrates the massive arsenal of

antibiotic-resistance genes, and agile repertoire of mobile genetic

elements, that the emerging CRE bacteria have at their disposal

for adapting to new challenges. Homologous recombination at

multicopy sequences [66], site-specific recombination by resolvases

[67], switching of integron cassettes, and transpositions have

shaped Klebsiella plasmid mosaicism.
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