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Abstract 

Background:  During the COVID-19 outbreak in Taiwan between May 11 and June 20, 2021, the observed fatality 
rate (FR) was 5.3%, higher than the global average at 2.1%. The high number of reported deaths suggests that many 
patients were not treated promptly or effectively. However, many unexplained deaths were subsequently identified as 
cases, indicating a few undetected cases, resulting in a higher estimate of FR. Whether the true FR is exceedingly high 
and what factors determine the detection of cases remain unknown. Estimating the true number of total infected 
cases (i.e. including undetected cases) can allow an accurate estimation of FR and effective reproduction number ( Rt).

Methods:  We aimed at quantifying the time-varying FR and Rt using the estimated true numbers of cases; and, 
exploring the relationship between the true case number and test and trace data. After adjusting for reporting delays, 
we developed a model to estimate the number of undetected cases using reported deaths that were and were not 
previously detected. The daily FR and Rt were calculated using the true number of cases. Afterwards, a logistic regres‑
sion model was used to assess the impact of daily testing and tracing data on the detection ratio of deaths.

Results:  The estimated true daily case number at the peak of the outbreak on May 22 was 897, which was 24.3% 
higher than the reported number, but the difference became less than 4% on June 9 and afterwards. After taking 
account of undetected cases, our estimated mean FR (4.7%) was still high but the daily rate showed a large decrease 
from 6.5% on May 19 to 2.8% on June 6. Rt reached a maximum value of 6.4 on May 11, compared to 6.0 estimated 
using the reported case number. The decreasing proportion of undetected cases was found to be associated with 
the increases in the ratio of the number of tests conducted to reported cases, and the proportion of cases that are 
contact traced before symptom onset.

Conclusions:  Increasing testing capacity and contact tracing coverage without delays not only improve parameter 
estimation by reducing hidden cases but may also reduce fatality rates.
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Introduction
Knowing the actual number of coronavirus disease 2019 
(COVID-19) cases throughout an outbreak is critical in 
order  to provide an accurate estimate of epidemiologi-
cal parameters such as the fatality rate (FR) and effec-
tive reproduction number ( Rt ). These parameters aid in 
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making proper public health decisions, assessing health 
care system performance, and predicting the trend of 
COVID-19 spread. However, the number of undetected 
cases can be large and may vary during an outbreak. Lim-
ited capacities of contact tracing and testing often result 
in underestimation of true infections [1, 2]. The propor-
tion of undetected cases may reduce after such capaci-
ties improve. Hence, estimating this constantly changing 
proportion of undetected cases throughout an outbreak 
is important.

After several months of zero confirmed community-
acquired cases, quarantine exemption for flight crews, 
and super spreader events in tea parlors in Wanhua 
in Taipei in late April and early May 2021, triggered a 
fresh wave of local spread of the Alpha variant [3]. This 
resulted in 14,005 total reported cases between May 11 
and June 20, 2021 [4]. Approximately 5% of cases resulted 
in death. This  case fatality rate (CFR)  was apparently 
higher than  the average  global rate (obtained by divid-
ing the total number of deaths by the total number of 
cases worldwide), which has been consistently below 
2.5% since November 16, 2020 [5]. Whether this high 
CFR was mainly due to insufficient hospital capacity and 
treatment, or a massive proportion of undetected cases is 
still not known.

Early in the outbreak, testing capacity was insufficient 
to cope with the rising cases among initial transmission 
clusters. The daily number of new cases grew to more 
than 200 within a week and continued to increase until 
reaching a plateau at the end of May 2021 (i.e., 596 cases 
on average per day from May 22 to 28). Because of the 
emerging outbreak, Taiwan had been under Level 2 alert 
since May 11, 2021 [6], followed by escalation to Level 
3  restrictions on May 19, 2021 [7].  Under the stricter 
restrictions, people were required to wear masks out-
doors; gatherings of more than four people indoors and 
more than nine people outdoors were banned; and all 
schools were closed. Social distancing measures reduced 
individual mobility [8–10] and effectively lowered Rt . At 
the same time, the daily number of tests conducted con-
tinued to increase, presumably allowing more cases to be 
identified.

During the outbreak, many confirmed cases failed 
to be detected when alive but were tested because of 
their death, indicating that a certain number of unde-
tected cases existed. The number of undetected cases 
who eventually died (referred to as undetected deaths), 
together with the number of deaths who were known to 
have COVID-19 (referred to as detected deaths), can be 
used to infer the proportion of undetected cases if their 
fatality rates are known. Presumably, the probability of 
death among undetected cases is similar to that among 

detected cases during the early period of the outbreak 
when hospital capacity or treatment is not sufficient.

Although knowing the numbers of detected and unde-
tected deaths helps to estimate the proportion of unde-
tected cases and hence to guide interventions, a challenge 
exists that many deaths from infection usually happen 
several weeks after symptom onset. This highlights the 
importance of early estimation of the true number of 
total cases and the number of associated deaths without 
reporting delay. Hence, it is important to know whether 
the changes in the proportion of detected deaths can be 
predicted by daily testing and tracing data.

We quantified time-varying FR and Rt by taking into 
account the proportion of undetected cases estimated 
using death data. We then developed a model based on 
logistic regression to predict the proportion of unde-
tected cases using daily data related to testing and tracing 
capacity.

Methods
Data sources
We collected the date of symptom onset time and testing 
date for each reported death of COVID-19 between May 
28 and July 22, 2021 from Taiwan Centers for Disease 
Control [11]. The daily number of deaths reported before 
May 28 was obtained from the media [12, 13]. Daily 
number of confirmed cases was collected from Taiwan 
National Infectious Disease Statistics System [4]. We col-
lected the daily number of tests conducted from the Gov-
ernment Information Open Platform, Taiwan [14, 15].

Estimating true total cases and fatality rate
Deaths from COVID-19 were classified into two cat-
egories, detected and undetected deaths, depending on 
whether testing was performed before the death or not, 
respectively (see the schema in Fig. 1A). To estimate the 
number of true total cases, we first considered the fol-
lowing ratio of undetected to detected deaths using the 
numbers of detected and undetected cases and their 
respective FR:

where dd refers to the number of detected deaths, while 
dud refers to the number of undetected deaths; cd(t) and 
cud(t) represent the number of cases that are detected 
and undetected at day t , respectively. Note that t refers to 
the reporting date for detected cases or detected deaths; 
For undetected cases or undetected deaths, t refers to the 
adjusted reporting date such that the reporting delay (i.e., 
the time elapsed between symptom onset and report-
ing) is adjusted to be the same as that of detected cases. 

(1)
dud(t)

dd(t)
=

cud(t)× FRud

cd(t)× FRd(t)
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Thus, dd(t) represents the number of deaths among 
the detected cases who are reported at day t . Similarly, 
dud(t) is the number of deaths among the undetected 
cases whose adjusted reporting date is at day t . FRd(t) , 
which is likely to be affected by the change in hospital 
capacity or treatment, represents the daily FR among the 
detected cases at day t . FRud represents the FR among the 
undetected cases. FRud was assumed to be a constant, 
estimated as the average FRd(t) during the initial two 
weeks (from May 11 to May 24) of the outbreak when the 

hospital capacity or treatment was not sufficient. Unde-
tected deaths who are tested later are identified as “late-
detected” cases ( cld) (See Fig.  1A). We back-projected 
the number of late-detected cases from their late report-
ing time to their adjusted reporting date t [16], using 
the mean and standard deviation of the reporting delay 
among detected cases. Our aim was to estimate cud(t) . 
After rearrangement, the following formula was derived:

Fig. 1  Types of infected cases and the fatality rate (FR). A Schema of different types of cases and deaths in relation to their testing and death time. 
At the time of reporting detected cases, the number of undetected cases is estimated using Eq. (2) (see “Methods”). FRd is the FR among detected 
cases, and FRud is the FR among undetected cases. Reported cases include both detected and late-detected cases (after undetected deaths are 
tested and confirmed), while total cases include both detected and undetected cases. B Time-varying FRs among reported and total cases. The 
solid red line represents the proportion of reported deaths (i.e., detected and undetected deaths) among the total reported cases. The solid blue 
line represents the proportion of reported deaths among the total cases. The dashed red line represents the average FR among the reported cases 
(5.3%), whereas the blue dashed line shows the average FR among the total cases (4.7%). Note that the FR of the total cases was higher than that of 
the reported cases in the first few days because FRud was assumed to be same as the mean FRd between May 11 and May 26. Data points during the 
earliest dates when the number of detected or undetected cases was zero are not shown
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The value can be solved because all of the terms on the 
right are either known or can be estimated. We assumed 
that most of the undetected deaths were identified as 
“late-detected” cases ( cld) . Therefore, the number of 
undetected deaths was approximated by the number of 
late-detected cases ( dud ≈ cld ) and then the ratio dd(t)

dud(t)
 

was obtained. At the same time, the proportion of 
detected deaths (i.e., the detection ratio among death 
cases; dd(t)

dd+dud(t)
 ) was also calculated. Finally, the true 

number of total cases was derived empirically as the sum 
of detected and undetected cases (i.e., cd + cud ). Note 
that these ratios among deaths were also predicted by a 
regression model using data related to testing and tracing 
and hence a model-predicted number of total cases was 
obtained (see later sections).

The FRs of reported cases (including both detected and 
late-detected cases; cd + cld ) and total cases were esti-
mated at the reporting time (or the adjusted reporting 
time for undetected cases) using the following equations.

FRreported is commonly known as the case fatality rate, 
and FRtotal is the infection fatality rate.

Estimating the proportion of detected deaths using 
a predictive model
We predicted the detection ratio among death cases 
using daily values of five indicators related to testing, 
tracing, and hospital capacities as candidate predictors. 
These indicators are: the proportion of cases without con-
tact tracing delay, ratio of the number of tests conducted 

(2)cud(t) = cd(t)×
FRd(t)

FRud
/
dd(t)

dud(t)

(3)FRreported(t) =

(

dd(t)+ cld(t)

cd(t)+ cld(t)

)

(4)FRtotal(t) =

(

dd(t)+ dud(t)

cd(t)+ cud(t)

)

to reported cases, testing delay, reporting delay and death 
delay (for definitions, see Fig. 2). We calculated the delay 
periods in testing, reporting and death by subtracting 
the date of symptom onset from the dates of these three 
events. Starting  testing (the first test) earlier than or on 
the same day as symptom onset implied that cases were 
contact traced without delay. If cases were tested after 
symptom onset, they were either contact traced with 
delay or were not contact traced. The proportion of 
death cases that were contact traced without delay was 
calculated.

To investigate the factors that influence the proportion 
of detected deaths, we developed a logistic regression 
model. We assumed that the number of deaths that were 
previously detected on day t follows a binomial distribu-
tion, i.e. dd(t) ∼ binomial(d(t),m(t)), where 
m(t) =

dd(t)
dd(t)+dud(t)

 is the expected proportion of detected 
deaths on day t.

The full predictive model is:

where Rtc is the daily ratio of tests conducted to 
reported cases; Pntd represents the daily proportion of 
cases (among detected deaths) without contact trac-
ing delay. Cd , Td and Dd are daily reporting, testing and 
death delays, respectively. α is the intercept and βi is the 
regression coefficient of each covariate. The proportion 
of undetected COVID-19 cases can be calculated using 
Eqs. (1) and (5) after m(t) is estimated:

where m(t)
1−m(t) =

dd(t)
dud(t)

 is the odds of being detected.

(5)
log

(

m(t)

1−m(t)

)

=α + β1Rtc + β2Pntd

+ β3Cd + β4Td + β5Dd

(6)
cud(t)

cud(t)+ cd(t)
= 1/

(

1+
m(t)

1−m(t)
×

FRud

FRd(t)

)

(See figure on next page.)
Fig. 2  A Statuses of infection and testing of individual deaths. The gray bar represents the infection statuses of an infected case who later died 
after the start of infection. Orange and blue bars represent the flow of testing from the first test T1 until the infected case was reported R . The 
infected case was categorized as Detected if the first test was performed before death. A case that was tested on the same date of or after death 
was categorized as Undetected. Among detected cases, we assumed that a case was contact traced without delay if the first test T1 was performed 
before symptom onset O; otherwise, contact traced with delay or not contact traced if the T1 was performed after symptom onset. Testing delay 
refers to the time between symptom onset and the final (last) test Tf . Similarly, the reporting delay and death delay are defined as the time 
differences between symptom onset and reporting R , and death D , respectively. The reporting time among an undetected death was adjusted 
to an earlier time to have the same reporting delay as detected deaths. B Estimation of total number of COVID-19 cases (sum of detected and 
undetected) using a regression model. With the best-fitting model (see Table 2), we estimated the percentage of deaths that are detected, m(t) . 
Undetected proportion of cases was estimated based on the relationship between m(t) and fatality rates (see Eq. 6). Gray dashed lines represent the 
predictors that were not included in the best-fitting model while estimating m(t)
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Model selection
To obtain the best model, the variables in Eq.  5 were 
added to the model iteratively. First, model fit was meas-
ured for each of the variables separately using the Akaike 

information criterion (AIC) [17]. The model contain-
ing the lowest AIC value was selected as the best model 
candidate in this batch. Next, we added one additional 
variable to the candidate model from the remaining four 
variables in the next batch. Among the two-variable 

Fig. 2  (See legend on previous page.)
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models, the model with the lowest AIC value was selected 
as the best model candidate again. We obtained the best 
model candidates among three-variable, four-variable 
and full models. The final best model was obtained by 
comparing the best model candidates in different batches 
with the lowest AIC.

Model validation
To evaluate whether the predictive  model achieved its 
intended purpose (i.e., to improve the accuracy of epi-
demiological parameter estimation), we explored the 
relationship between Rt estimated from the total cases 
predicted by the best model and daily mobility data. 
Cases were back-projected to infection time. The result 
was compared with Rt estimated using total cases that 
were empirically derived or using reported cases. Rt esti-
mated from four scenarios of infections were compared:

Scenario 1 (S1) Total cases (at infection time) estimated 
using an empirical detection ratio—these cases include 
both the reported and undetected cases at their infec-
tion time. The number of undetected cases was estimated 
empirically assuming reporting delay was the same for 
detected and undetected cases.

Scenario 2 (S2) Total cases (at infection time) estimated 
from a model-predicted detection ratio—these cases 
include both the reported and undetected cases at their 
infection time. The number of undetected cases was esti-
mated from the model assuming reporting delay was the 
same for detected and undetected cases.

Scenario 3 (S3) Reported cases (at infection time)—
cases that were detected before death and late-detected 
after death at their infection time.

Scenario 4 (S4) Reported cases (at reporting time)—
cases that were detected before death and late-detected 
after death at their reporting time. Late-detected cases 
were back-projected to the adjusted reporting time.

Estimating the effective reproduction number
The effective reproduction number Rt was estimated 
from the daily new cases of infection using the statisti-
cal package EpiEstim [18]. To estimate the daily number 
of new cases, we assumed that both the incubation time 
and reporting delay followed gamma distribution [19, 
20]. The mean incubation time for the circulated strain 
in Taiwan was 3.53 days [21], and we estimated the mean 
reporting delay as 4.45 days. Assuming the standard devi-
ations were equal for both the distributions (estimated as 
3.93 days for the reporting delay), the distribution of time 
between infection and reporting was gamma distribu-
tion with a mean of 7.98 days and a standard deviation of 
5.28 days. The mean of the distribution was estimated as 
the sum of mean incubation time and confirmation delay. 
In contrast, the standard deviation was obtained from 

weighted means and pooled standard deviation for the 
period between infection and reporting using the follow-
ing formula:

where, m1 and m2 are mean incubation time and confir-
mation delay and mw refers weighted mean of these two. 
sdpooled represents the pooled standard deviation for the 
period between infection and reporting.

We then estimated total cases at infection time using 
the empirical detection ratio (S1) and the model-pre-
dicted detection ratio (S2), and reported cases at infec-
tion time (S3) using a back-projection method [16].

We set initial conditions for estimating Rt . Before 
May 11, we assumed that there were 15 cases each day 
between May 6 and 10, which was the average number of 
reported cases at infection time during this 5-day period.

Results
Time-varying FR among true total cases (Eq. 4) was first 
quantified after taking into account undetected cases and 
was compared with that of reported cases. The number 
of total cases was also predicted using polymerase chain 
reaction (PCR) testing data (Eqs. 5 and 6). To assess the 
impact of including undetected cases, we investigated the 
relationship between Rt generated using total cases and 
mobility data and then determined whether the relation-
ship improved, compared with Rt from reported cases.

After the number of undetected cases was considered, 
the estimated FR was lower than using reported cases but 
was still high during the initial period of the outbreak. 
The mean FR of total cases was estimated to be 4.7%, 
which was lower than the mean FR of 5.3% for reported 
cases (Fig. 1B). The FR increased rapidly from 4.7% and 
peaked at 6.5% on May 19, but then continued decreas-
ing, reaching 2.8% on June 6. Since then, the rate was 
generally maintained.

From May 24 to June 3, the 5-day moving average 
numbers of reported cases reached a plateau and then 
declined thereafter (Fig.  3A). The estimated true daily 
case number at the peak of the outbreak on May 22 was 
897, which was 24.3% higher than the reported number, 
indicating 19.5% of infections were not detected. The dif-
ference became less than 4% on June 9 and afterwards.

Until June 20, a total of 105 late-detected cases were 
reported, indicating many undetected deaths. Similarly, 
daily detected deaths also reached a plateau around 
May 24 (Fig. 3B). However, the number of late-detected 
cases (at adjusted reporting time), reached a peak (7 per-
sons per day) on May 21 and started to decline immedi-
ately, approaching zero after June 8. This indicated the 

(7)sdgamma = sdpooled

√

(

m1 +m2

mw

)



Page 7 of 11Yuan et al. BMC Infectious Diseases          (2022) 22:271 	

improvement of the detected ratio among deaths. The 
detection ratio among deaths, which was about 50% ini-
tially, exceeded 95% after the end of May (Additional 
file 1: Figure S1B). This ratio was very different from the 
observed ratio (a V-shaped pattern) without back-projec-
tion (Additional file 1: Figure S1A).

Predicting detection ratio using testing data
We next investigated whether the improvement in the 
proportion of detected cases was related to the improved 
capacity of testing and tracing. The indicators of the 
capacity were explained by the schematic of individual 
infection and testing statuses of each case among deaths 
(for definitions, please refer to Fig.  2 and its legend). 
Depending on the time of testing, the case can be catego-
rized as a detected death (contact traced without delay 
or tested after symptom onset but before death) or an 
undetected death (tested after death). More efficient con-
tact tracing allowed more cases to be traced and tested 
before symptom onset and was indicated by the propor-
tion of cases without contact tracing delay. This propor-
tion fluctuated between 25 and 75% throughout the study 
period, with an increasing trend from late May (below 
50%) to late June (above 60%) (Fig. 4A). The testing delay 
gradually increased, from approximately two days to up 
to 4–6 days, until June 14, a few weeks after the outbreak 
started to decline (Fig. 4B). The reporting delay from the 
day of symptom onset ranged mostly between 2.5 and 
7.5  days (Fig.  4E), whereas the death delay continued 
increasing from 5  days to more than 18  days (Fig.  4C 

& Additional file  1: Figure S3B). The ratio of the num-
ber of tests conducted to reported cases increased from 
less than 50 to more than 200 (Fig.  4D), demonstrat-
ing the improvement in testing capacity throughout the 
outbreak.

We compared models starting from the most basic to 
more complex ones by their AIC values to identify the 
best-fitting model. The model with the predictor, the pro-
portion of cases without contact tracing delay and the 
ratio of tests conducted to reported cases, was selected as 
the best-fitting model because of its lowest AIC value of 
91.0 (Model 2 in Table 1).

The model successfully captured the trend in the pro-
portion of detected deaths (Fig.  4F). 20 out of 34 daily 
values were successfully predicted within the confidence 
interval (CI). Among the values outside the interval, most 
of them were in the near distance; only two dots have 
errors larger than two times the intervals.

We further validated the best-fitting model by using 
past data as training sets (from the first 50, 60 to 70% of 
the full data sets) to predict future results. The model 
captured the observed trend of the number of detected 
deaths in each validation set (Additional file 1: Figure S5). 
Moreover, the model predicted most data points within 
CI. For 95% CI 89–93% of data were predicted correctly.

The results suggest that a higher detection ratio among 
deaths was determined by a larger proportion of cases 
who were contact traced without delay and a higher 
number of tests conducted relative to the number of 
cases (Table 2).

Fig. 3  Daily numbers of reported, total cases and deaths. Data are plotted on their reporting date. A Daily number of cases that are reported. Daily 
number of total cases, including both the detected and undetected cases at their reporting date (green). The reporting delay of undetected cases 
is adjusted to be the same as that of the reported cases. The dashed vertical lines represent the implementation of level 2 and level 3 restrictions in 
May and June. Level 2 restrictions started on May 11 and lasted until June 8, whereas level 3 restrictions started on May 19 and lasted until May 28. 
B Daily number of deaths, plotted separately for detected deaths at their reporting time following case confirmation (red), late-detected cases at 
adjusted reporting time (dark green) and late-detected cases at their late reporting time (blue). Dots represent daily numbers. Solid lines represent 
moving averages using a 5-day sliding window, centered at day 3 (except dark green line in (B)). The shaded area represents 95% confidence 
interval
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Comparing effective reproduction number and mobility 
index
Comparisons were made between Rt estimated using (i) 
total cases that were estimated using the empirical detec-
tion ratio; (ii) total cases that were estimated from the 
model-predicted detection ratio using testing data; and 
(iii) reported cases only (see Fig. 5A, B, Additional file 1: 

Figure S2 and Methods). When the total case number was 
used,Rt was higher during the earlier dates. The number 
reached a maximum value of 6.4 on May 11, compared 
to 6.0 estimated using the reported case number. We fur-
ther evaluated the relationship between Rt and mobility 
data during the period when Rt reduced from the max-
imum value to 1 (May 11 to May 24) (Additional file  1: 

Fig. 4  Candidate predictors that influence detected deaths. Dots in each plot represent observed values, whereas solid lines show moving 
averages using a 5-day sliding window, centered at day 3. A Proportion of cases without contact tracing delay was defined as the proportion of 
cases that were tested (the first test) earlier or on the same day as symptom onset. B Testing delay is the time delay between symptom onset and 
the final test. It was estimated by subtracting these two time points. C Death delay was defined as the difference between the time of death and 
symptom onset. D Ratio of tests to cases was calculated as the daily number of tests divided by the daily number of reported cases. E Reporting 
delay refers to the time delay between symptom onset and reporting. F Percentage of deaths that are detected using adjusted reported data and 
model prediction. Red circles represent the adjusted reported data. The blue dashed line represents the prediction results using the best-fitting 
model. The gray shaded area represents 95% confidence interval
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Table S1). We found that when the total case number was 
used (either estimated using the empirical detection ratio 

or predicted using the testing data), a lower AIC was pro-
duced, indicating a better fit to the mobility data.

In summary, efficiencies of testing and contact tracing 
changed during the outbreak and were useful in predict-
ing the proportion of undetected cases. After adding the 
undetected cases, a better estimate of Rt was made and a 
reduction in the FR was observed.

Discussion
Understanding whether a high FR observed in the recent 
largest COVID-19 outbreak in Taiwan was attributed 
to a higher number of undetected cases or insufficient 
health care capacity is important to guide interventions 
to reduce COVID-19 mortality in the future. An impor-
tant observation is that even though the proportion of 
undetected cases was included, the average FR was only 
adjusted to 4.7% from 5.3%, which is still higher than the 
global average for the same time (i.e., 2.1% in May and 
June 2021 [5]). However, the daily FR reduced to 2.8% on 
June 6 and remained at this low level, similar to that in 
the United States (i.e., 2.8% in May and June 2021 [22]). 
The reduction from the initially high FR can be explained 
by the improvement in treatment to accommodate the 
sudden rise in cases. This is supported by the obser-
vation that the duration between symptom onset and 
death among detected deaths continued increasing from 

Table 1  Candidate models used to choose the best model

α and β s are model coefficients, whereas the proportion of contact tracing 
delay ( Pntd ), the ratio of the number of tests conducted to reported cases ( Rtc ), 
the delay in testing ( Td ), the delay in reporting ( Cd ), and the delay in deaths ( Dd ) 
are predictors. AIC represents the Akaike information criterion

Models Description AIC

1 α + β1Rtc 95.9

2 α + β1Rtc + β2Pntd 91.0
3 α + β1Rtc + β2Pntd + β3Cd 93.0

4 α + β1Rtc + β2Pntd + β3Cd + β4Td 95.0

5 α + β1Rtc + β2Pntd + β3Cd + β4Td + β5Dd 96.9

Table 2  Parameter estimates of the best-fitting model (Model 2)

Covariates Estimates 95% Confidence 
intervals

p-value

Ratio of number of tests 
conducted to reported 
cases ( Rtc)

0.009 0.002–0.018 0.0180

Proportion of cases 
without tracing delay 
( Pntd)

1.834 0.316–3.375 0.0185

Fig. 5  The daily number of new infections and instantaneous reproduction numbers. A The daily number of new infections was back-projected 
from the daily number of cases obtained from the detected and empirically estimated undetected cases (green dots; referred to as S1). The daily 
number of new infections obtained from the detected and model-predicted undetected cases were plotted (dark yellow dots; referred to as S2). 
The daily number of reported cases at their back-projected infection time (blue dots; referred to as S3). The daily numbers of new infections were 
back-projected from the original reported cases to virus exposure time. The lines represent moving averages using a 5-day sliding window, centered 
at day 3. The shaded area represents the 95% confidence interval for total cases estimated using the model-predicted detection ratio. Daily number 
of new detected (reported) cases at their reporting time (referred to as S4) is presented in Additional file 1: Figure S2. B Effective reproduction 
number estimated from (A). Lines represent the estimated values and shaded regions represent the 95% confidence intervals. The dashed line 
depicts the cutoff value when Rt = 1 . The full view of the effective reproduction number ( Rt ) for the entire period between May 6 and June 20 is 
given in Additional file 1: Figure S4. Color codes represent the same definition as in (A). The shaded areas represent 95% confidence intervals
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approximately five days to more than two weeks in June 
(Fig. 4C).

Furthermore, the results highlight the importance of 
improving testing capacity and contact tracing efficiency. 
For example, if more cases can be traced or confirmed 
earlier (Fig.  4), many of them can be treated promptly, 
hence reducing fatality rates.

The number of hidden (undetected) COVID-19 cases 
often affects the estimation of transmissibility of the 
virus and the effectiveness of non-pharmaceutical inter-
ventions (NPIs) implemented. Even though the effects 
of contact tracing and testing on transmissibility have 
been studied [23, 24], how many hidden cases do they 
cause is unclear. We demonstrated that the time-varying 
detection ratios can be predicted using data on testing 
and contact tracing. As a result, a more accurate Rt can 
be obtained, which is likely to be explained by mobility 
data better (Additional file 1: Table S1). The guidance for 
implementing NPIs based on changes in mobility can be 
provided [10]. If detection ratio is low, Rt is likely to be 
underestimated. In our study, only about 20% of cases 
were undetected. Therefore, the difference of the estima-
tion is only little. However, the impact of underestima-
tion can be serious in countries with insufficient testing 
capacity or low tracing efficiency.

We found that the ratio of the number of tests con-
ducted to reported cases, and the proportion of cases 
that are contact traced without delay can be used to 
“nowcast” the proportion of undetected cases. Because 
the number of tested samples can quickly reach the 
capacity limit when the case number is growing, many 
samples remain untested. Hence, each day, the number 
of confirmed cases depends largely on how many tests 
can be performed. A day delay in testing and confirming 
a case, leads to a day delay in tracing the close contacts 
of the case. Furthermore, a higher contact tracing cover-
age together with a shorter delay of being traced enables 
more cases to be identified earlier [23, 24]. These suggest 
increasing testing and tracing capacity to identify those 
infections earlier can reduce hidden cases more.

Modelling has been used to estimate the proportion 
of undetected COVID-19 cases using the observed case 
number during a specific period (e.g., before or after an 
intervention) of an outbreak [25, 26]. More recently, an 
approach through estimating under-ascertainment by 
directly comparing model-predicted death with excess 
deaths recorded was used [27]. We checked the number 
of deaths related to flu and pneumonia illness [11] and 
found no unusual excess deaths other than the reported 
COVID-19 deaths during this period. The proportion of 
undetected cases can also be calculated after incorporat-
ing seroprevalence data with false negative rates of tests 

into models [28]. Overall, none of these methods esti-
mate the constantly changing proportion of undetected 
cases.

Several criteria enabled us to make successful pre-
diction using testing data. First, the number of deaths 
should be high. If this number is low, the uncertainty 
of estimating the number of undetected cases becomes 
high. Second, most of the deaths have to be tested even-
tually. Taiwan government has a strong directive to test 
all sudden death cases; for example, on June 18, it was 
announced that PCR tests would be performed for all 
sudden and unexplained deaths [29]. This may not likely 
be the case in countries with a large number of excess 
deaths associated with COVID-19.

In summary, predicting the number of undetected 
cases as early as possible using testing data can help 
obtain an Rt with a better relationship with mobility 
data, thus enabling policymakers to make timely public 
health decisions using mobility information to contain 
the outbreak.
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