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Apoptosis is a universal and continuous event during tissue development, restoration,
repair, and regeneration. Mounting evidence has demonstrated that apoptosis is
essential for the activation of tissue regeneration. However, the underlying mechanism
remains elusive. A striking development in recent years comes from research on
extracellular vesicles (EVs) derived from apoptotic cells. During apoptosis, cells secrete
vesicles of various sizes containing various components. Apoptotic cell-derived EVs
(ApoEVs) have been found to transit to neighboring cells or cells in distant tissues
through the circulation. These vesicles could act as containers to transmit the nucleic
acid, protein, and lipid signals to target cells. ApoEVs have been shown to promote
regeneration in the cardiovascular system, skin, bone, muscle, kidney, etc. Moreover,
several specific signaling pathways mediating the anabolic effects of ApoEVs have
been classified. In this review, we comprehensively discussed the latest findings on
the function of ApoEVs in tissue regeneration and disease prevention. These findings
may reveal unexpected clues regarding the regulatory network between cell death
and tissue regeneration and suggest novel targets for regenerative medicine. The
findings discussed here also raise the question whether and to what extent ApoEVs
contribute to embryonic development. This question is all the more urgent because the
exact functions of apoptotic events during numerous developmental processes are still
largely unclear.

Keywords: apoptosis, apoptotic cell derived extracellular vesicles, functional biomolecules, cell death,
regeneration

INTRODUCTION

Apoptosis refers to the spontaneous and orderly cell death and is controlled by a cluster of
genes to maintain homeostasis (Kroemer et al., 2005). It is estimated that over 50 billion cells
undergo apoptosis in the human body every day to maintain homeostasis (Davidson and Steller,
1998; Pellettieri and Sanchez Alvarado, 2007; Bergmann and Steller, 2010; Fuchs and Steller,
2011; Hochreiter-Hufford et al., 2013; Arandjelovic and Ravichandran, 2015). Apoptosis is a
common phenomenon in embryonic development, cell differentiation, tissue regeneration, and
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other physiological processes, as well as in tumor, immune
deficiency, organ atrophy, and other pathological processes.
During organogenesis, the coordination of apoptosis and mitosis
can maintain a constant number of cells in tissues and organs
to shape the normal embryos, especially in the CNS and
in the immune system (Penaloza et al., 2006; Zakeri et al.,
2015). Apoptosis also plays an important role in the sculpting
and reconstruction of tissue morphology (Kroemer et al.,
2005; Elmore, 2007). Certain differentiated cells are regularly
eliminated and replaced by the progeny of adult stem cells to
maintain anatomical structure and function, which is usually
called the balance between death and regeneration. As a part
of normal embryonic development and tissue homeostasis,
apoptosis has been shown to play a pivotal role in balancing
death and regeneration. During apoptosis, apoptotic cells
secrete vesicles of various sizes named apoptotic cell-derived
extracellular vesicles (ApoEVs). Emerging evidence has revealed
that extracellular vesicles could carry beneficial substances and be
essential for cell communication. ApoEVs could be engulfed by
target cells and promote regeneration in skin, bone, muscle, etc.,
by transporting bioactive molecules (e.g., proteins, lipids, and
nucleic acids). Although several reviews have summarized the
role of ApoEVs in immune regulation and cancer development
(Caruso and Poon, 2018; Gregory and Dransfield, 2018; Gregory
and Paterson, 2018; Laurenzana et al., 2018; Muhsin-Sharafaldine
and McLellan, 2018a,b; Pavlyukov et al., 2018; Grant et al., 2019;
Battistelli and Falcieri, 2020), the emerging findings of ApoEVs
in tissue regeneration and embryonic development have not
been systematically reviewed. Here, we introduce the function
of ApoEVs in tissue regeneration, embryonic development,
and disease prevention and discuss the therapeutic benefits of
ApoEVs in regenerative medicine.

APOPTOSIS

The Process of Apoptosis
In most cases, apoptotic cells show very similar patterns of
morphological changes. The noticeable morphological changes
associated with apoptosis are the shrinkage of the cell,
condensation of the nucleus and chromatin, breakage of
the nucleus and cytoplasmic organelles, and cell membrane
detachment and blebbing (Hacker, 2000; Saraste and Pulkki,
2000; Kroemer et al., 2005). During this process, a series
of membrane-wrapped structures named ApoEVs are formed
through cell membrane budding and blebbing (Merchant et al.,
2017), and then are engulfed and digested by target cells (Tower,
2015). The clearance of cellular “corpses” commences at the
earliest stages of apoptosis. Timely and effective phagocytosis of
apoptotic cells and their contents can hardly recruit inflammatory
cells and is conducive to avoid inflammation (Arandjelovic and
Ravichandran, 2015; Medina et al., 2020).

The Mechanisms of Apoptosis
In 2012, the Nomenclature Committee on Cell Death (NCCD)
initiated a new classification of cell death based on measurable

biochemical characteristics, which divides the apoptotic pathway
into intrinsic and extrinsic apoptosis.

The Intrinsic Apoptotic Pathway
The intrinsic apoptotic pathway is also known as the
mitochondrial/cytochrome c pathway (Tower, 2015).
Cytochrome c release from mitochondria is the key step.
The decrease in mitochondrial transmembrane potential (1ψ)
is the first step of mitochondrial-mediated apoptosis. Cellular
stresses, including DNA damage, oncogene activation, hypoxia,
and oxidative stress, leads to the opening of or damage to the
mitochondrial permeability transition pore (MPTP), a decrease
in 1ψ, and an increase in mitochondrial permeability, which
promote the release of cytochrome c and apoptosis-inducing
factor (AIF) (Susin et al., 1999). Cytochrome c can recruit and
activate Caspase-9. Thus, Caspase-9 activates caspase cascade
reactions (Caspase-3, -6, and -7) to initiate irreversible caspase-
dependent apoptosis (Slee et al., 1999; Joza et al., 2001; Elmore,
2007; Kuribayashi et al., 2014).

The Extrinsic Apoptotic Pathway
The extrinsic pathway is mediated by the death receptors of
the tumor necrosis factor (TNF) receptor type 1 superfamily
embedded on the cell membrane (Guicciardi and Gores, 2009;
Tower, 2015). The binding of Fas ligand to Fas receptor
recruits the adapter protein Fas-associated death domain protein
(FADD), which recruits Caspase-8 zymogens to form the
Caspase-8 activator named death-inducing signaling complex
(DISC). Then the pro-Caspase-8/10 is activated through
autocatalysis (Boatright and Salvesen, 2003), which initiates the
apoptotic process (Elmore, 2007) and leads to the activation of
the downstream effectors Caspases-3, -6, and -7 (Broker, 2005).

APOPTOSIS PROMOTES TISSUE
DEVELOPMENT AND REGENERATION

Apoptosis has been regarded as a critical control point in
development. Apoptosis is essential for successful embryonic
development and the maintenance of normal tissue homeostasis
(von Mühlen and Tan, 1995; Rieux-Laucat et al., 2003; Gaipl
et al., 2005; Macchi et al., 2015). In tissue development, apoptosis
can sculpt structures, drive morphogenesis, regulate cell number,
eliminate useless, potentially dangerous and senescent cells, and
participate in the regulation of regeneration and differentiation
(Penaloza et al., 2006; Fuchs and Steller, 2011; Zakeri et al.,
2015). In addition, some findings have shown the link between
cell death and tissue regeneration. As proposed by Kondo in
1988 (Kondo, 1988), apoptosis promotes cell proliferation during
tissue regeneration (Kondo, 1988; Hwang et al., 2004; Li et al.,
2004, 2010; Ryoo et al., 2004; Vlaskalin et al., 2004; Kondo et al.,
2006; Tseng et al., 2007; Chera et al., 2009; Pellettieri et al., 2010),
which is named “apoptosis-induced compensatory proliferation
(AIP)” (Huh et al., 2004; Pérez-Garijo et al., 2004; Kondo et al.,
2006; Fan and Bergmann, 2008). For example, in the mid-
gastric amputation model, effector caspases trigger the release
of the mitogen Wnt3 to stimulate proliferation and regeneration
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during apoptosis (Chera et al., 2009). Similarly, caspase activation
promotes regeneration in the injured site in Xenopus tadpole tails
after amputation (Tseng et al., 2007).

Apoptosis also subtly promotes cell differentiation.
Caspase family activation in apoptosis is closely related to
cell differentiation. For example, Caspases-3 and -9 promote
monocyte differentiation to macrophages but not dendritic cells
(Sordet et al., 2002). The absence of Caspase-8 leads to stagnation
of macrophage differentiation. In stem cells (SCs), Caspase-3 can
also mediate the differentiation of bone marrow stromal cells,
neural SCs, embryonic SCs, and haematopoietic SCs (Feinstein-
Rotkopf and Arama, 2009). The increased proliferation and
regeneration can compensate for cell loss in the injured tissues
(Brockes and Kumar, 2008).

Apoptosis can restore tissue regeneration by promoting the
elimination of senescent cells (SnCs). SnCs accumulate in many
vertebrate tissues with age and secret senescence-associated
secretory phenotype (SASP) to inhibit regeneration (Downward
et al., 2008; van Deursen, 2014). Jeon et al. (2017) found that
selective elimination of SnCs attenuated the development of
post-traumatic osteoarthritis (OA), reduced pain, and increased
cartilage development. Intra-articular injection of a senolytic
molecule that selectively killed SnCs promote repair and
regeneration in aged mice. Thus, locally induced apoptosis of
senescent cells is beneficial for tissue regeneration. In addition,
apoptosis and cell senescence are complementary processes
in the regression of embryonic tissues and share common
regulatory signals. During the formation of free digits in the
developing limbs, the Btg/Tob gene family is upregulated. Btg2
overexpression in mesodermal progenitors of the limbs increases
oxidative stress and induces cell death and cell senescence, which
inhibits limb outgrowth in vivo (Lorda-Diez et al., 2015).

APOPTOTIC CELL-DERIVED
EXTRACELLULAR VESICLES

Apoptotic cell-derived extracellular vesicles (ApoEVs) are a
group of subcellular membrane-bound extracellular vesicles
generated during the decomposition of dying cells. ApoEVs
can be generated by many types of cells, such as stem cells,
immunocytes, precursor cells, osteoblasts, and endothelial cells
(Jiang et al., 2017). At present, the classification of the ApoEVs
is still controversial. Apoptotic bodies (ApoBDs) were the first
identified ApoEVs (Ihara et al., 1998). However, with the
development of detection technology, researchers have found
smaller vesicles (Simpson and Mathivanan, 2012) produced by
dying cells in addition to traditional apoptotic bodies. Although
there is no well-defined criteria to distinguish ApoBDs from
other ApoEVs, the vesicles can be classified by diameter:
larger membrane-wrapped vesicles termed ApoBDs/ABs have
diameters of 1000–5000 nm (Atkin-Smith et al., 2015), and
the smaller vesicles termed apoptotic microvesicles (ApoMVs)
or exosome-like ApoEVs (Park et al., 2018) have diameters
of 50–1000 nm (Schiller et al., 2012; Ainola et al., 2018).
Lacking standard classification makes it difficult to draw accurate
conclusions on the functions of ApoEVs. In order to unify

the classification, we re-summarize the subtypes of ApoEVs
according to the size of the vesicles extracted by different isolation
or characterization methods in Tables 1, 2.

How to identify and isolate ApoEVs remains a critical
issue. During apoptosis, the most typical feature is the transfer
of phosphatidylserine (PS) to the surface of the lipid layer,
which is also characteristic of ApoEVs (Hengartner, 2001).
The translocated PS binds to Annexin V, a 36 kDa calcium
phospholipid-binding protein (Kurihara et al., 2008). In vitro,
Annexin V is widely used to identify and image cell death and
ApoEVs because of its high binding affinity with PS (Subiros-
Funosas et al., 2017). Another membrane change is the oxidation
of surface molecules, which helps the binding of thrombospondin
(Tsb) and the complement protein C3b to the membrane (Wu
et al., 2019) and, in turn, is recognized by the recipient cells.
Therefore, Annexin V, Tsb, and C3b are well-accepted ApoEVs
markers (Akers et al., 2013). Fluorescence-activated cell sorting
(FACS) and differential centrifugation are the most commonly
used methods to purify ApoEVs. FACS achieves a purity of
up to 99%, while differential centrifugation achieves up to 95%
purity (Phan et al., 2018). The flow cytometry-based method
can effectively detect the contents and cell origins of ApoBDs
(Jiang et al., 2017). However, FACS can only detect the large
ApoBDs since most flow cytometers only detect micron-sized
cells or vesicles and cannot distinguish ApoBDs and ApoMVs.
Differential centrifugation can isolate ApoEVs of different sizes,
but the purity is lower than that of FACS. This method may
not be suitable for isolating ApoEVs from complex samples
compared with FACS. The protocol only compares the purity
of ApoEVs extracted by these two methods, but there has been
no functional comparison of ApoEVs extracted by different
methods. The fluorescent labeling technique with Trp-BODIPY
cyclic peptide (Subiros-Funosas et al., 2017) and the in situ
ligation technique (Hauser et al., 2017) may be emerging
technologies for distinguishing ApoEVs from other vesicles. To
progress the field, it is critical to identify suitable criteria to
distinguish different subtypes of ApoEVs and develop better
experimental systems to track ApoEV formation.

The Formation of ApoEVs
The formation of ApoEVs can be divided into three key steps:
(Step 1) membrane blebbing on the cell surface, which is now
considered a prerequisite for the formation of ApoEVs (Lane
et al., 2005); (Step 2) apoptotic membrane protrusions in the form
of microtubule spikes, apoptopodia, and beaded apoptopodia,
which secrete approximately 10–20 ApoEVs each time (Xu et al.,
2019); and (Step 3) the formation of ApoEVs.

The production of ApoEVs is regulated in a dose- and
time-dependent manner by different molecular factors, such as
the Rho-associated protein kinase (ROCK1) (Coleman et al.,
2001; Gregory and Dransfield, 2018; Aoki et al., 2020) and
myosin-light chain kinase (MLCK) (Mills et al., 1998). Inhibitors
of ROCK1, MLCK, and caspases can suppress this process.
Functional microtubules help nuclear shrinkage, and MLCK
contributes to the packaging of nuclear material into ApoEVs
(Zirngibl et al., 2015). Actomyosin leads to an increase in
cell contraction and hydrostatic pressure and the formation
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TABLE 1 | The function of ApoEVs in regeneration.

Nomenclature
used by the
authors

ApoEVs types
according to
sizes

Original cell Recipient cell Diseases/
experimental
effect

Mechanism Role of
vesicles

References

ApoBDs Mix of ApoBDs
and ApoMVs

Endothelial cells Endothelial
progenitor cells

Promote
proliferation

Unclear Unclear Hristov et al.,
2004

ApoBDs Unclear Cardiomyocytes Cardiomyocyte
precursors

Chronic
post-infarction
heart failure

Promote SC
proliferation
and
differentiation

miRNA
transfer?

Tyukavin et al.,
2015

ApoBDs ApoBDs Macrophages Epithelial cells Promote
proliferation

MiR-221
miR-222

miRNA transfer Zhu et al., 2017

ApoBDs Mix of ApoBDs
and ApoMVs

Endothelial cells Vascular cells Atherosclerosis Induced
CXCL12-
dependent
vascular
protection

miRNA transfer Zernecke et al.,
2009

ApoBDs Mix of ApoBDs
and ApoMVs

Epithelial stem
cells

Epithelial stem
cells

Promote
proliferation
and division

Activate Wnt8a mRNA transfer Brock et al.,
2019

ApoBDs ApoBDs BMSCs BMSCs Osteopenia Activate the
Wnt/β-catenin
pathway

miRNA transfer Liu et al., 2018

ApoBDs Mix of ApoBDs
and ApoMVs

MSCs Endothelial cells Myocardial
infarction

Regulate
autophagy

Active
lysosome
function

Liu et al., 2020

CRK-MVs ApoMVs podocytes Epithelial cells Renal repair Induce
compensatory
proliferation

Paracrine
mediators?

Bussolati and
Camussi, 2017

MOC- ApoBDs ApoBDs Osteoclasts Pre-osteoblasts Bone
remodeling

Activate
PI3K/AKT/mTOR/S6K
signaling

RANK activator Ma et al., 2019

ApoBDs, apoptotic bodies; SCs, stem cells; BMSCs, bone mesenchymal stem cells; MSCs, mesenchymal stem cells; PI3K, phosphoinositide 3-kinase; AKT, AKT Ser–Thr
kinase; S6K, ribosomal protein S6 kinase; RANK, nuclear factor kappa B.

of blebs (Orlando et al., 2006). The plasma membrane channel
pannexin 1 (PANX1) was recently described as a negative
regulator of ApoBDs formation since trovafloxacin (a PANX1
inhibitor) promoted apoptotic cell disassembly (Poon et al.,
2014a). However, the factors driving the formation of these
individual ApoEVs is still unclear. The synergism of intracellular
and extracellular factors is necessary for breaking apoptotic cells
into individual vesicles, and some unknown elements separate
membrane protrusions from the main cell body.

ApoEVs Are Biological Vectors Carrying
Functional Biomolecules
Extracellular vesicles (e.g., Exos and MVs) mediate intercellular
communication by carrying signaling molecules (Buzas et al.,
2014). ApoEVs envelop the remaining components of dead
cells (Crescitelli et al., 2013), which include proteins (e.g.,
from the nucleus, mitochondria, and plasma membrane),
lipids and nucleic acids (e.g., mRNA, long non-coding RNA,
rRNA, miRNA, or fragments of these intact RNA molecules).
ApoEVs have been found to act as containers to carry
the remnants of their original cells to promote regeneration
(Halicka et al., 2000). Horizontal transfer of DNA can occur
between adjacent cells through ApoEVs. For example, the DNA

contained in endothelial cell-derived ApoBDs can induce the
proliferation and differentiation of human endothelial progenitor
cells in vitro (Hristov et al., 2004). DNA packaged into
lymphoma-derived ApoBDs can be engulfed by fibroblasts,
resulting in gene recombination (Holmgren et al., 1999).
By shuttling microRNA-221/222, macrophage-derived ApoBDs
promote the proliferation of lung epithelial cells (Zhu et al.,
2017). MicroRNAs enclosed in ApoBDs from cardiomyocytes
enhance the proliferation and differentiation of resident SCs
in vitro (Tyukavin et al., 2015). Mesenchymal stem cells (MSCs)
can engulf ApoBDs and reuse ApoBD-derived ubiquitin ligase
RNF146 and miR-328-3p to promote bone regeneration (Liu
et al., 2018). However, in Kogianni et al. (2008) showed
that dying osteocytes release ApoBDs containing receptor
activator of nuclear factor kappa-B ligand (RANKL) to recruit
replacement osteoclasts, which can initiate osteoclastogenesis
and localized bone destruction. Administration of ApoBDs
carrying miR-126 inhibits atherosclerosis and induces CXCL12-
dependent vascular protection (Zernecke et al., 2009). Besides,
endothelial cell-derived miR-126 is transferred in ApoMVs
to promote vascular regeneration and prevent atherogenesis
(Nazari-Jahantigh et al., 2012). Interestingly, DNA and RNA
cannot be simultaneously packaged into ApoBDs derived from
HL-60 cells. Over 90% of ApoBDs containing RNA did not
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TABLE 2 | The functions of ApoEVs in other diseases.

Nomenclature
used by the
authors

ApoEVs types
according to
sizes

Original cell Recipient cell Diseases/
experimental
effect

Mechanism Role of
vesicles

References

ApoEVs ApoBDs Tumor cells DCs Antitumour
immunity

Induce CD8+
and CD4+ T
cell response

Activate
(MHC)-I and
MHC-II
pathways

Horrevorts
et al., 2019

ApoBDs Unclear Leukemic B
cells

DCs B-CLL Antitumour
immunity

Antigen
presentation

Hus et al., 2005

ApoEVs ApoBDs Melanoma cells Injected into
mice

Melanoma Antitumour
immunity

Antigen
presentation

Muhsin-
Sharafaldine
et al., 2016

ApoEVs ApoMVs Macrophages DCs Tuberculosis
infection
diseases

Antimicrobial
immunity

Antigen
presentation

Winau et al.,
2006

ApoBDs Unclear Prion-infected
apoptotic
neurons

DCs Prion disease Promote
clearance of
prion via Mfge8

Prion transfer Kranich et al.,
2010

ApoPMN-MY ApoMVs Neutrophil CD25+Th cells Maintain
immunological
tolerance

Suppress the
proliferation of
CD25+Th cell

IL-2 suppressor Shen et al.,
2017

ApoBDs Unclear β cells DCs Type 1
Diabetes

Immune
tolerance

Antigen
presentation

Marin-Gallen
et al., 2010

ApoEVs, apoptotic extracellular vesicles; DCs, dendritic cells; MHC, major histocompatibility complex; ApoBDs, apoptotic bodies; B-CLL, B-cell chronic lymphocytic
leukemia; IL-2, Interleukin-2.

contain DNA, and vice versa, ApoBDs containing DNA did
not contain RNA, which suggests that some biomolecules may
selectively enter ApoEVs (Halicka et al., 2000). Human primary
monocyte-derived macrophages can engulf ApoBDs containing
autoantigens, suggesting that ApoEVs can play a role in antigen
presentation in immunoregulation (Tran et al., 2002). Compared
with the secretion of cytokines and growth factors, this mode
of intercellular communication circumvents the “signal dilution
effect” of soluble products released from apoptotic cells. Bioactive
molecules entering the vesicles can act effectively on adjacent cells
or distant tissues through circulation.

ApoEVs Can Be Recognized and
Engulfed by Target Cells
Several signaling molecules expressed on ApoEVs can be
recognized by target cells. Segundo et al. (1999) proposed that
apoptotic blebs recruit macrophages to death sites. This study
showed that many CD molecules (including CD11a, CD21,
CD22, and CD54) were partly released from germinal center B
cells in the form of ApoEVs, which stimulated the chemotaxis of
human monocytes.

The inversion of PS and the change in oxidation of surface
molecules also contribute to the recognition of ApoEVs. Besides,
CX3CL1 and ICAM-3 are potential recognition proteins on
ApoEVs. CX3CL1, an intercellular adhesion molecule known as a
“find-me” signal, is expressed on ApoEVs and can be recognized
by the CXCL1 receptor (CXCL1R) expressed on mononuclear
phagocytes. The interaction between CX3CL1 and CX3CR1
induces the migration of macrophages to apoptotic Mutu-BL
cells (Truman et al., 2008). ICAM-3, an intercellular adhesion
molecule expressed on the ApoEVs derived from leukocytes,

can attract macrophages to induce leukocyte death (Torr et al.,
2012). In summary, signal molecules embedded on the surface
of ApoEVs may act as signals for engulfing, transferring, and
mediating intercellular communication.

THE FUNCTION OF APOPTOTIC
EXTRACELLULAR VESICLES IN TISSUE
REGENERATION

The transport of functional molecules through vesicles can be
a new way to promote cell proliferation, tissue regeneration,
and repair. Since ApoEVs can transmit bioactive molecules
into neighboring cells or the cells in distant tissues through
circulation, they play an active role in maintaining homeostasis
after being phagocytized. ApoEVs produced by different cells
have different effects on physiological and pathological processes.
Here, we discuss the role of ApoEVs in tissue regeneration and
disease treatment.

ApoEVs Trigger the Clearance of
Damaged or Senescent Cells
Apoptotic cells are primarily engulfed and cleared by phagocytes,
which is of considerable significance to the dynamic equilibrium
and immune response of healthy tissues. The prompt removal
of dead cells by phagocytes can prevent cytotoxic substances
or antigens from leaking into surrounding tissues (Poon
et al., 2014b), effectively leading to the maintenance of tissue
homeostasis. This process can be divided into three stages:
recruitment, identification, and phagocytosis (Gardai et al., 2006;
D’mello et al., 2009; Ravichandran, 2011).
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FIGURE 1 | The formation of apoptotic cell-derived extracellular vesicles during apoptosis. Healthy cells generate two types of vesicles: exosomes and
microvesicles. Apoptotic progress includes several stages: shrinkage of the cell, the condensation of the nucleus and chromatin pyknosis or karyorrhexis, the
breaking of the nucleus, and cytoplasmic organelles and cell membrane detaching and blebbing. The disintegration of the cellular content into distinct
membrane-enclosed vesicles termed apoptotic cell-derived extracellular vesicles (ApoEVs). ApoEVs can be engulfed by different cells mediated by specific
recognition between recognition receptors and ligands. During apoptosis, the surface of the ApoEVs reveals specific changes. These changes include
phosphatidylserine ectropion to bind with Annexin V and oxidation of surface molecules to bind with Thrombospondin (Tsp) or the complement protein C3b.

Recipient cells recognize “eat-me” signals such as PS on
ApoEVs and initiate the engulfment process (Peter et al., 2008;
Battistelli and Falcieri, 2020; Figure 1). For example, dendritic
cells (DCs) engulf glycan-modified melanoma-derived ApoEVs
carrying dendritic cell-specific intercellular adhesion molecule-
3-grabbing non-integrin (DC-SIGN) ligands (Horrevorts
et al., 2019). Apoptosis induces the production of neuronal
apolipoprotein-E (apoE), which helps to clear ApoBDs via
apoE–receptor interactions (Elliott et al., 2007). Microglial cells
phagocytose and degrade apoptotic material from ApoBDs
via microglial lysosomal and proteasomal pathways mediated
by the CD36 scavenger receptor (Stolzing and Grune, 2004).
Suppression of the formation of ApoBDs impairs the clearance
of apoptotic or damaged cells by monocytes and macrophages
(Orlando et al., 2006; Witasp et al., 2007), suggesting that
ApoEVs can effectively promote the clearance of apoptotic cells.

ApoEVs and Cell Survival, Proliferation,
and Differentiation
Apoptotic cell-derived EVs are closely related to cell survival,
proliferation, and differentiation. For example, ApoBD-rich
medium (ApoBD-RM) from endothelial cells (ECs) promotes
the proliferation of human endothelial progenitor cells (EPCs)
in vitro, whereas ApoBD-depleted medium does not. ApoBDs
engulfed by EPCs enhance EPC proliferation and differentiation
(Hristov et al., 2004), which may contribute to the repair of
damaged endothelial cells.

In addition, ApoBDs from cardiomyocytes enhance the
proliferation and differentiation of resident stem cells (SCs)
by transporting specific miRNAs (Tyukavin et al., 2015).
Macrophage-derived ApoBDs promote the proliferation of
recipient epithelial cells through ApoBD shuttling of miR-221
and miR-222 (Zhu et al., 2017). Endothelial cell-derived ApoBDs
facilitate the survival of recipient vascular cells (human umbilical
vein endothelial cells, mouse aortic endothelial cells, and smooth
muscle cells) to survive. Selective enrichment of miR-126 in
apoptotic endothelial cell-derived microvesicles stimulates the
production of the chemokine CXCL12 in target cells, suppressing
progenitor cell apoptosis (Zernecke et al., 2009).

The Wnt/β-catenin signaling pathway is a group of
evolutionarily conserved signals that are essential in embryonic
development and tissue regeneration. In a zebrafish model,
ApoBDs containing Wnt-8a from dying SCs can promote the
proliferation and regeneration of living epithelial cells and
the communication with adjacent SCs. After phagocytizing
ApoBDs, the Wnt signaling is activated to stimulate the
division of basal SCs to maintain the total number of basal
SCs in the tissue (Brock et al., 2019). ApoBDs activate the
Wnt/β-catenin pathway to promote bone marrow mesenchymal
stem cell (BMSC) proliferation and osteogenic, and lipogenic
differentiation in Fas-deficient MRL/lpr and Caspase 3−/−

mice (Liu et al., 2018). Thus, activating the Wnt pathway
via ApoEVs is essential for promoting cell proliferation
and differentiation.

ApoEVs Promote Tissue Development
and Regeneration
ApoEVs Promote the Regeneration of the
Cardiovascular System
Mesenchymal stem cells-derived ApoBDs engulfed by recipient
endothelial cells (ECs) promote angiogenesis and cardiac
functional recovery in a rat myocardial infarction (MI) model
by regulating autophagy (Liu et al., 2020). Cardiomyocyte-
derived ApoBDs stimulate the proliferation and differentiation
of cardiomyocyte precursors. In a Wistar rat heart failure model,
cardiomyocyte-derived ApoBDs improve the heart’s systolic
function during the early apoptotic period (Tyukavin et al.,
2015). In addition, human endothelial cell-derived ApoMVs
carrying miR-126 upregulate CXCL12 in vascular cells, which
recruits the incorporation of Sca-1+ progenitor cells to promote
vascular protection and inhibit atherosclerosis (Zernecke et al.,
2009). These findings underscore the functions of ApoEVs in
cardiovascular regeneration.

ApoEVs Promote the Regeneration of the Kidney
CRK-containing microvesicles (CRK-MVs), a kind of ApoMV
found in damaged glomeruli (Gupta et al., 2017), have
been found to promote kidney regeneration. Apoptotic
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podocyte-derived ApoMVs might induce compensatory
proliferation of parietal epithelial cells and injured tubular
epithelial cells. Notably, ApoMVs induce compensatory
proliferation in most of the analyzed target epithelial cells
(Gupta et al., 2017). Apoptotic MSC-derived EVs act as
paracrine signals to promote the repair of nephrons after injury
(Bussolati and Camussi, 2017).

ApoEVs Promote Bone Regeneration
Osteoporosis is a kind of systemic osteopathy caused by
the imbalances in bone formation and bone resorption.
Cerri (2005) showed that osteoblasts engulf bone cell-derived
ApoBDs during the rat maxilla alveolar bone formation.
Recently, (Liu et al., 2018) showed that systemic injection
of exogenous BMSC-derived ApoBDs reversed MSC damage
and improved the osteopenia in ovariectomized (OVX) mice.
MSCs can engulf ApoBDs via integrin αvβ3 and inhibit
Axin. The ApoBD-derived ubiquitin ligases RNF146 and
miR-328-3p, thus activate the Wnt/β-catenin pathway. This
finding confirms the role of ApoBDs in maintaining bone
homeostasis and suggests the potential of ApoBDs in treating
osteoporosis. ApoBDs also mediate intercellular communication
between osteoclasts and osteoblasts. In bone remodeling, mature
osteoclast-derived ApoBDs (mOC-ApoBDs) are taken up by
pre-osteoblastic cells and prompt osteogenic differentiation
by activating phosphoinositide 3-kinase (PI3K)/AKT Ser–
Thr kinase (AKT) signaling (Ma et al., 2019; Table 1 and
Figure 2). Moreover, previous studies suggested that osteocyte-
derived ApoBDs could recruit the osteoclasts and initiate
local bone resorption (Yuan et al., 2018), suggesting that
ApoBDs derived from different sources play distinct roles in
bone remodeling.

ApoEVs During Embryonic Development
Apoptosis can be detected at many stages of mammalian early
embryonic development. In the process of embryo formation and
development, apoptosis can remove abnormal and redundant
cells. Apoptosis in mammalian blastocysts is very important
for the further development of normal embryos (Hardy, 1999;
Fabian et al., 2005; Jezek and Kozina, 2009). During embryonic
development, apoptosis can help systems matching, sculpt the
body, remove the outlived sculpture, and protect the organism,
especially in neurulation, eye or ear development/invagination,
limb modeling, development of the immune system (Cohen,
1999; Buss et al., 2006; Lorda-Diez et al., 2015; Hosseini and
Taber, 2018). Jurisicova et al. (1996) found that a large number
of ApoBDs in fragmented human embryos during embryonic
development has increased since the blastocyst stage (Fabian
et al., 2005). In limb modeling, dying cells generate ApoBDs
which are engulfed by macrophages (Penaloza et al., 2006).

Since ApoEVs could affect the proliferation and differentiation
of stem cells in adult tissue, it is highly probable that a large
number of ApoEVs also play irreplaceable roles in embryonic
development. Until now, there has been little evidence on
whether ApoEVs participate in the formation and development
of embryos directly. Further investigations are necessary to
uncover the possible roles of ApoEVs in embryonic development.

THE POTENTIAL OF ApoEVs IN DISEASE
TREATMENT

Based on the importance of ApoEVs in tissue regeneration,
ApoEVs have been applied in the treatment of several
diseases including degenerative diseases, tumors, and
inflammatory diseases.

ApoEVs in Degenerative Disease
Treatment
In the cardiovascular system, ApoBDs from MSCs can promote
angiogenesis and the heart’s systolic function recovery to prevent
myocardial infarction via the regulation of autophagy (Tyukavin
et al., 2015; Liu et al., 2020). Cardiomyocyte-derived ApoBDs
revive cardiomyocyte precursors, leading to the alleviation of
heart failure in the early stage. Endothelial cell-derived ApoMVs
can protect the vasculature and inhibit atherosclerosis by
transferring miRNAs (Zernecke et al., 2009). In the urinary
system, the ApoMVs can restore injured tubular epithelial cells
and facilitate nephron repair via compensatory proliferation
(Gupta et al., 2017). In bone diseases, BMSC-derived ApoBDs
can maintain bone homeostasis and treat osteoporosis. Thus,
ApoEVs may be a new tool for degenerative disease treatment.
However, the above findings are limited to the experimental
stage. Extensive study of the mechanism and effect of ApoEVs
in the degenerative disease treatment are necessary before the
clinical application.

ApoEVs in Tumor Treatment
Apoptotic cell-derived EVs from tumor cells have been shown to
initiate antitumour immunity (Horrevorts et al., 2019). ApoEVs
transfer pathogen carcinogens to antigen-presenting cells and
protect the host from the tumor (Horrevorts et al., 2019). ApoEVs
derived from tumor cells contain a high level of mannose
glycans. These EVs can be engulfed by dendritic cells (DCs)
more easily via dendritic cell-specific intercellular adhesion
molecule-3-grabbing non-integrin (DC-SIGN). These DCs then
act through both major histocompatibility complex (MHC)-I and
MHC-II pathways to induce CD8+ and CD4+ T cell responses.
It has been shown that allogeneic DCs engulfing ApoBDs from
leukemic B cells stimulate antitumour immunity in B-cell chronic
lymphocytic leukemia (B-CLL), suggesting that ApoBDs can
serve as vaccines in tumor immunotherapy (Chang et al., 2000;
Hus et al., 2005). ApoEVs derived from apoptotic melanoma
cells (B16-OVA cells) initiate antitumour immunity and protect
mice against subsequent tumor progression. The tumor antigen
PMEL was found in ApoEVs and T cells, confirming that
ApoEVs facilitate the transport of tumor antigens to antigen-
presenting cells to promote antitumour immunity (Muhsin-
Sharafaldine et al., 2016). Interestingly, although the PMEL in
ApoEVs was lower than that in other vesicles, the antitumour
protective effect of ApoEVs was more significant, suggesting that
ApoEVs work through a different mechanism. Taken together,
these findings indicate that ApoEVs can act as mediators of
intercellular communication in the tumor. Specific ApoEVs may
be useful biomarkers in monitoring disease progression. But
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FIGURE 2 | The relation of apoptotic cell-derived extracellular vesicles (ApoEVs) to cell survival, proliferation, differentiation, and tissue regeneration. ApoEVs can be
divided into two groups: the larger apoptotic bodies (ApoBDs, ABs) and the smaller apoptotic microvesicles (ApoMVs). (A) ApoMVs induce compensatory
proliferation of parietal epithelial cells and injured tubular epithelial cells, thus helping nephron repair. (B) In vitro experiments, ApoBDs engulfed by human endothelial
cells, and epithelial cells can promote the proliferation of their recipient cells, respectively. Besides, ApoBDs from dying stem cells can promote the proliferation and
regeneration of living epithelial cells and the communication with adjacent stem cells. (C) Bone marrow mesenchymal stem cells and osteoblasts have been found to
engulf ApoBDs. Exogenous ApoBDs reversed the MSCs damage and improved the osteopenia, which can promote bone regeneration. Besides, ApoBDs can
mediate intercellular communication signal mechanisms in osteoclast–osteoblast, suggesting its function in bone regeneration. (D) Endothelial cells (ECs) can engulf
ApoBDs and promote angiogenesis and cardiac functional recovery. ApoBDs stimulated proliferation and differentiation of cardiomyocyte precursors and resident
stem cells (SCs). ApoMVs transfer signals to vascular cells, induce vascular protection and inhibit atherosclerosis, which underlines the functions of ApoEVs in
regeneration of the cardiovascular system.

novel test methods to detect ApoEVs and their cargos efficiently
and accurately are necessary.

ApoEVs in Immune and Inflammatory
Disease Treatment
Apoptotic cell-derived EVs from apoptotic macrophages infected
with M. tuberculosis can be engulfed by dendritic cells derived
from peripheral blood mononuclear cells and splenic dendritic
cells. Antigens on the ApoEVs are then presented to naïve
CD4+ or CD8+ T cells to trigger antimicrobial immunity
and eliminate M. tuberculosis, suggesting the potential use of
ApoEVs as a vaccine (Winau et al., 2006). Whether ApoEVs
can play a role in regulating the antimicrobial immunity against
other pathogens remains to be explored. ApoBDs derived from
prion-infected apoptotic neurons can be engulfed by microglia,
which suppresses prion disease by promoting prion clearance via
astrocyte-borne Mfge8 (milk fat globule epidermal growth factor
8) (Kranich et al., 2010; Tait and Green, 2010). Besides, apoptotic
human polymorphonuclear neutrophil microvesicles (apoPMN-
MVs, a kind of ApoMVs) selectively suppress the proliferation of
CD25+ Th cells in a dose-dependent manner by downregulating
IL-2 and IL-2R expression. This downregulation inhibits the
activation of resting T cells, thereby maintaining immunological
tolerance (Shen et al., 2017). Immature DCs derived from the
bone marrow of non-obese diabetic mice engulf antigen-specific
apoptotic bodies from β cells. These DCs reduce the secretion

of proinflammatory cytokines, and prevent experimental type 1
diabetes, suggesting that antigen-specific ApoBDs engulfed by
DCs play an essential role in immunosuppression (Marin-Gallen
et al., 2010). However, whether apoptotic β cell-derived ApoBDs
prevent diabetes by promoting islet cell regeneration needs
further exploration (Table 2). Although ApoEVs can present
antigen and facilitate immune defense response in some cases,
ApoEVs can also act as an autoantigen to induce autoimmune
diseases, such as systemic lupus erythematosus (Cocca et al.,
2002), suggesting that ApoEVs may play a completely different
role in different environments.

CONCLUDING REMARKS AND
PERSPECTIVES

Regeneration and embryonic development are partly based on
common regulatory gene networks which, in both cases, may
drive similar or even identical apoptosis and/or senescence
processes. Apoptosis is a critical process in embryogenesis and
postnatal cell homeostasis by balancing proliferation and death.
Apoptosis accompanies the generation of membranous vesicles
termed apoptotic extracellular vesicles (ApoEVs). ApoEVs can
transit to the target cells and exchange signaling molecules,
including DNA, RNA, and proteins, to regulate cell proliferation
and differentiation and tissue regeneration after phagocytosis.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 8 October 2020 | Volume 8 | Article 573511

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-573511 September 30, 2020 Time: 16:16 # 9

Li et al. ApoEVs in Regeneration

Overall, there is compelling evidence to support the importance
of ApoEVs in regulating tissue development and regeneration,
such as in the cardiovascular system, urinary system, and bone.
ApoEVs are potential components in the treatment of tumors,
inflammatory diseases, and degenerative diseases. Therefore, the
neglected ApoEVs could be considered as a key mechanism of
intracellular communication. The ability of ApoEVs to proliferate
and differentiate demonstrates a good balance between the
beneficial effects of apoptosis and regeneration. Although there
have been very few studies about the ApoEVs and their particular
developmental processes, it is necessary to further explore the
relationship between them. Compared with traditional drugs,
ApoEVs have several advantages: (1) ApoEVs can be easily
recognized by target cells through specific markers (PS, Tsb,
and C3b); (2) the bioactive factors enveloped in ApoEVs
provide essential signals to simultaneously promote the various
functions of cells; (3) ApoEVs can affect adjacent tissues or
distant tissue through the circulation. Emerging evidence has
shown that ApoEVs are useful tools in tissue regeneration and
disease treatment. Nevertheless, there remain several hurdles
and challenges to be overcome before clinical applications of
ApoEVs in disease treatment and tissue regeneration. Several
critical questions need to be answered: How can ApoEVs play a
decisive role in particular types of diseases? Do ApoEVs work by
transferring specific contents directly or indirectly by recruiting

cells or factors? How can the release, size, and specific cargo of
ApoEVs be controlled? Is the formation of ApoEVs selective or
cell-dependent? How can the transfer of bioactive molecules in
ApoEVs be regulated? Is there a new way to distinguish different
subtypes of ApoEVs? By addressing these questions, we will
take a step closer to understanding ApoEVs in physiological and
pathological conditions.
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