
RESEARCH ARTICLE

Distinct responses of frond and root to

increasing nutrient availability in a floating

clonal plant

Yu JinID
1,2☯, Qian Zhang2☯, Li-Min Zhang2, Ning-Fei Lei3, Jin-Song Chen1*, Wei Xue2*,

Fei-Hai Yu2

1 College of Life Science, Sichuan Normal University, Chengdu, China, 2 Institute of Wetland Ecology &

Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou

University, Taizhou, China, 3 Institute of Environment, Chengdu University of Technology, Chengdu, China

☯ These authors contributed equally to this work.

* cjs74@163.com (JSC); x_wei1988@163.com (WX)

Abstract

Current knowledge on responses of aquatic clonal plants to resource availability is largely

based on studies manipulating limited resource levels, which may have failed to capture the

“big picture” for aquatic clonal plants in response to resource availability. In a greenhouse

experiment, we grew the floating clonal plant Spirodela polyrhiza under ten nutrient levels

(i.e., 1/64×, 1/32×, 1/16×, 1/8×, 1/4×, 1/2×, 1×, 2×, 4× and 8×full-strength Hoagland solution)

and examined their responses in terms of clonal growth, morphology and biomass alloca-

tions. The responses of total biomass and number of ramets to nutrient availability were

unimodal. A similar pattern was found for frond mass, frond length and frond width, even

though area per frond and specific frond area fluctuated greatly in response to nutrient avail-

ability. In contrast, the responses of root mass and root length to nutrient availability were U-

shaped. Moreover, S. polyrhiza invested more to roots under lower nutrient concentrations.

These results suggest that nutrient availability may have distinct influences on roots and

fronds of the aquatic clonal plant S. polyrhiza, resulting in a great influence on the whole S.

polyrhiza population.

Introduction

Clonal plants, i.e., those with the ability of clonal growth or asexual reproduction, are wide-

spread in various natural habitats [1–3]. They are also the dominant species in many ecosys-

tems, including grasslands, wetlands and alpine and arctic tundra, where they play a key role

in regulating ecosystem functions and stability [2, 4–6]. Clonal plants, via clonal growth, are

able to produce offspring ramets (asexual individuals) that have exactly the same genetic infor-

mation as their mother ramet [3, 7].

Most aquatic plants are capable of clonal growth [8–12]. Aquatic clonal plants are a com-

mon component of aquatic communities and play important roles in many aquatic ecosystems

[13, 14]. For instance, aquatic clonal plants such as floating and submerged clonal plants can
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reduce turbidity, thereby inhibiting the growth of algae and improving the quality of water

[15, 16]. Another example is that oxygen released from the roots of aquatic clonal plants may

create an oxidized rhizosphere [17] that facilitates processes contributing to waste degradation

[18, 19]. Many aquatic ecosystems are degraded due to, e.g., eutrophication, and a huge

amount of efforts have been spent to restore such degraded ecosystems [20–24]. To make bet-

ter use of aquatic clonal plants for restoration of degraded aquatic ecosystems, we need to

assess the detailed responses of their clonal growth, morphology and biomass allocation to a

wide range of changes in single environmental factors such as nutrient availability.

Nutrient availability can substantially affect the growth and development of aquatic clonal

plants [25, 26]. Excessive nutrient load in aquatic ecosystems can have great consequences on

the distribution of aquatic plants, including floating clonal plants [27–31]. For instance, total

biomass and ramet number of Salvinia natans in high nutrient availability were greater than

those in low nutrient availability, and floating mass was mostly higher and submerged mass

lower at high than at low nutrient availability [11]. However, in the low ammonia nitrogen

(<8 mg L-1) of water column, an increase in nutrient availability led to increased total biomass

and chlorophyll concentration of Vallisneria natans [32]. An increase in nutrient availability

in the water column leads to a decreased specific root length in V. natans [33]. However, plants

exhibit slowed growth and altered intrinsic nutrient uptake in a nutrient-poor environment

because dry weight production is related to the demand for nutrients [26]. So far, however,

studies testing effects of nutrient availability on clonal growth, morphology and biomass allo-

cation of aquatic clonal plants, especially floating clonal plants, have mostly included only a

few (e.g., 2–4) nutrient levels [12, 34–38]. To better understand their responses, therefore, we

need to test their responses to a wider range of nutrient levels.

We grew the floating clonal plant Spirodela polyrhiza in ten concentrations of Hoagland

solution and evaluated the effects of nutrient availability on clonal growth, morphology and

biomass allocation. Specifically, we addressed the following questions. (1) How does nutrient

availability affect clonal growth of S. polyrhiza as measured by biomass, ramet production and

total frond area? (2) How does nutrient availability influence clonal morphology of S. polyrhiza
as measured by frond length, frond width, the longest root length, area per frond and specific

frond area? (3) How does nutrient availability impact root to shoot ratio of S. polyrhiza?

Materials and methods

Species and sampling

Spirodela polyrhiza (L.) Schleiden is a perennial, floating, clonal plant of Lemnaceae (duck-

weed family). It has the simplest morphology among flowering plants [39]. The species rarely

flowers and mainly reproduces vegetatively [40, 41]. A ramet (i.e., asexual individual) of S.

polyrhiza commonly consists of one or two fronds and some roots [12]. When environmental

conditions are favorable, a parent ramet can produce offspring ramets that are connected to it

by a stipe at their early stage of development [39]. Offspring ramets can be detached from the

parent ramet and become completely independent due to aging or disturbance [12]. Each

frond of S. polyrhiza is 5–10 mm long and 3–8 mm wide. It is flat and obovate, with a green

surface towards the air and purple back towards the water. This species is widely distributed

across the world, and typically found in eutrophic freshwater systems, such as slow-moving

streams, ditches, and shallow pools [12, 41].

Plants of S. polyrhiza were collected on June 2, 2018 from a slow-moving stream (28˚30N,

121˚210E) in Jiaojiang District, Taizhou City, Zhejiang Province, China. Plants were trans-

ported to the greenhouse at the Jiaojiang campus of Taizhou University in Jiaojiang District,

Taizhou City, Zhejiang Province, China. The plants were washed several times with double
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distilled water and rinsed with 0.01 M NaClO for 30 s to reduce microbial and algal growth

[42]. Before the experiment, the plants were propagated vegetatively in plastic tanks with 10%

Hoagland solution.

Experimental design

The experiment started on June 19, 2018. Healthy ramets of S. polyrhiza with uniform size and

two fronds were selected and grown in 250 mL containers (9.5 cm in diameter and 6.5 cm in

height). Each container initially contained two ramets of S. polyrhiza. Plants were subjected to

ten levels of full-strength Hoagland nutrient solution (1/64×, 1/32×, 1/16×, 1/8×, 1/4×, 1/2×,

1×, 2×, 4× and 8×), with 12 replicates for each treatment. The composition of 1×full-strength

Hoagland solution included: 0.945 g L-1 Ca(NO3)2�4H2O, 0.506 g L-1 KNO3, 0.08 g L-1

NH4NO3, 0.136 g L-1 KH2PO4, 0.493 g L-1 MgSO4, 0.0139 g L-1 FeSO4�7H2O, 0.01865 g L-1

EDTA�2Na, 0.00415 g L-1 KI, 0.031 g L-1 H3BO3, 0.1115 g L-1 MnSO4, 0.043 g L-1 ZnSO4, 0.

00125 g L-1 Na2MoO4, 0.000125 g L-1 CuSO4, and 0.000125 g L-1 CoCl2. Each container was

filled with 200 mL of nutrient solution. Every four days, nutrient solution was replaced in all

containers. Containers were placed completely randomly. After 14 days, on July 3, 2018, plants

were harvested. The experiment ran within a relative short period because the surface of the

solution was already fully covered with the ramets of S. polyrhiza in some containers where

intraspecific competition would occur if the experiment ran for a longer time. During the

experiment, the mean air temperature was 24.3˚C and the mean relative humidity was 81.3%

in the greenhouse, as measured hourly using temperature loggers (iButton DS1923; Maxim

Integrated Products, San Jose, CA, USA).

Measurements

At harvest, we counted ramets and fronds of S. polyrhiza in each container. We randomly

selected five ramets in each container, and measured their frond length, frond width and lon-

gest root length. Total area of all fronds in each container was scanned and measured with

ImageJ 2006 (Bethesda, MD, USA). All ramets in each container were separated into roots and

fronds, dried at 75˚C for 24 h, and weighed.

Data analysis

We calculated area per frond (total frond area/number of fronds), root to shoot ratio (total

root mass/total frond mass) and specific frond area (total frond area/total frond mass). We

also obtained mean frond length, mean frond width and mean longest root length based on

the measures on the five ramets in each container. The data of fourteen containers were

excluded from the analyses due to missing values.

One-way ANOVA was used to evaluate the effects of nutrient availability on clonal growth

(total mass, frond mass, root mass, number of ramets and total frond area), morphology

(frond length, frond width, longest root length, area per frond and specific frond area) and bio-

mass allocation (root to shoot ratio). Before analysis, data on number of ramets, total frond

area, frond mass, total mass, and SLA were transformed to logarithmic, data on root mass

were transformed to square root, data on longest root length was transformed to trigonomet-

ric. Other data required no transformation to meet requirements for homoscedasticity and

normality; figures showed untransformed data. Duncan’s multiple range test was used to com-

pare mean values among treatments. All analyses were conducted using SPSS 22.0 (IBM,

Armonk, NY, USA).
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Results

Effects of nutrient availability on clonal growth

Nutrient availability highly significantly affected biomass (F9,96 = 2.8–48.9, all P< 0.01), num-

ber of ramets (F9,96 = 94.7, P< 0.001) and total frond area (F9,96 = 34.2, P< 0.001) of S. poly-
rhiza (Figs 1 and 2). Total mass and frond mass of S. polyrhiza initially increased and then

declined as nutrient availability increased, and the maximum value was observed at 4×full-

strength Hoagland solution (Fig 1A and 1B). Root mass initially decreased, then increased and

finally decreased again, showing the greatest value at 4×full-strength Hoagland solution, small-

est values at 1/8× and 1/4×full-strength Hoagland solution and intermediate values at other

concentrations (Fig 1C). Number of ramets and total frond area showed the similar patterns as

total mass and leaf mass (Fig 2).

Fig 1. Total mass (A), frond mass (B), and root mass (C) of Spirodela polyrhiza grown in ten concentrations of

Hoagland nutrient solution. Bars and vertical lines indicate means and SE (n = 12). F-statistics, df and P-values of one-

way ANOVA for the effect of nutrient level are also given. Bars sharing the same letters are not different at P = 0.05.

https://doi.org/10.1371/journal.pone.0258253.g001
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Effects of nutrient levels on biomass allocation

Nutrient availability highly significantly affected root to shoot ratio of S. polyrhiza (F9,96 =

24.5, P< 0.001; Fig 3). Root to shoot ratio of S. polyrhiza at 1/64× and 1/32×full-strength

Hoagland solution did not differ significantly, but was much larger than that at all other eight

concentrations (Fig 3). Root to shoot ratio of S. polyrhiza also also greater in 1/16×, 2× and 4×
full-strength Hoagland solution than in 1/8× full-strength Hoagland solution (Fig 3).

Fig 2. Ramet number (A) and total frond area (B) of Spirodela polyrhiza grown in ten concentrations of Hoagland

nutrient solution. Bars and vertical lines indicate means and SE (n = 12). F-statistics, df and P-values of one-way

ANOVA for the effects of nutrient level are also given. Bars sharing the same letters are not different at P = 0.05.

https://doi.org/10.1371/journal.pone.0258253.g002

Fig 3. Root to shoot ratio of Spirodela polyrhiza grown in ten concentrations of Hoagland nutrient solution. Bars

and vertical lines indicate means and SE (n = 12). F-statistics, df and P-values of one-way ANOVA for the effects of

nutrient level are also given. Bars sharing the same letters are not different at P = 0.05.

https://doi.org/10.1371/journal.pone.0258253.g003
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Effects of nutrient availability on clonal morphology

Clonal morphology of S. polyrhiza was significantly affected by nutrient availability (F9,96 = 2.1–

12.6, all P< 0.05; Fig 4). Both frond length and frond width first gradually increased with

increasing nutrient level, maximized at 4×full-strength Hoagland solution, and then decreased at

8×full-strength Hoagland solution (Fig 4A and 4B). With increasing nutrient availability, length

of the longest root first decreased sharply, minimized at 1/8×full-strength Hoagland solution,

and then increased, with the greatest values occurring at the two lowest concentrations (1/64×
and 1/32×) of Hoagland solution (Fig 4E). Neither specific frond area nor area per frond showed

a clear pattern, and they fluctuated with increasing nutrient availability (Fig 4C and 4D).

Discussion

Our results showed that the responses of total biomass and number of ramets to increasing

nutrient availability were hump-shaped. Similar patterns were found for frond mass, frond

length and frond width, despite that no clear pattern was found for area per frond and specific

frond area. In contrast, the responses of root mass and root length to increasing nutrient avail-

ability were U-shaped. These results indicated that fronds and roots of the same clonal plant

may had different response strategies to increasing nutrient availability, which may have

largely determined the performance of the whole S. polyrhiza population.

Hump-shaped growth patterns in response to nutrient availability

Our results showed an overall hump-shaped growth pattern of S. polyrhiza in response to

increasing nutrient availability, in agreement with many theoretic and experimental studies

[41, 43–46]. The initial increase of the biomass was likely due to the very low water nutrient

supply as plant production is generally positively correlated with the demand for nutrients [26,

41, 47]. The declined growth at higher levels of nutrient availability can be explained by four

reasons in our study. First, the biomass gained from the newly ramets did not level off the bio-

mass lost from the older ramets, which may have resulted in the decreased growth at the whole

pot level. Second, intraspecific competition increased as the growth of the S. polyrhiza popula-

tion, which may have led to the decreased growth at higher nutrient levels [8, 10, 32, 48, 49].

Third, it was also likely that ammonia nitrogen and heavy metal elements in Hoagland’s solu-

tions of high concentrations may have reduced the growth of S. polyrhiza, which has also been

found in other species [32, 44, 50, 51]. Moreover, we cannot rule out the possibility that the

complex interactions among elements (ions) in Hoagland’s solutions of high concentrations

played a role in shaping growth pattern of S. polyrhiza [52–54].

Contrasting responses of frond and root to nutrient availability

Fronds are the main photosynthetic organs of S. polyrhiza, and therefore their morphology

may have great influences on plant growth [12, 38, 55–57]. We observed that total frond area,

frond length and width and frond mass of S. polyrhiza increased with increasing nutrient avail-

ability but decreased afterwards. The response of frond to nutrient availability may have largely

determined the growth pattern of S. polyrhiza in response to nutrient availability. In general, a

greater specific leaf area would be expected under shaded or crowded environments where

light is limited [58–61]. However, we did not observe a clear pattern for specific frond area in

response to nutrient levels, despite that the population density in terms of total biomass and

number of ramets changed a lot with the applied nutrient levels. This result indicated that spe-

cific frond area may not be a good predictor for light competition driven by nutrient-induced

population growth.
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In contrast, a U-shaped pattern was observed in root length and root mass in response to

increasing nutrient levels. This is likely because, at lower level of nutrient concentrations,

plants may need to invest more to roots in order to uptake more nutrients [43, 62–64], which

could explain the greater root length and root mass at lower nutrient concentration treatments

in the present study [65]. However, we also observed a greater root length and root mass at

higher nutrient concentrations. This is likely because at higher levels of nutrient concentration,

plants may suffer from strong intraspecific competitions due to rapidly clonal growth. In this

case, a longer and bigger root would be more beneficial for the plants to obtain resources in

order to fight against their intraspecific competitors [11, 43, 64, 66].

Trade-offs between root and shoot growth in response to nutrient

availability

Plants can respond to varying resources through changing biomass allocations to above- and

below-ground organs [67, 68]. In general, many terrestrial plants would allocate more biomass

to below-ground organs under low-nutrient soils [66, 69–71], and this is also frequently

observed for many aquatic macrophytes [72, 73]. We also observed a greater root to shoot

ratio at lower nutrient concentrations in the floating clonal plant S. polyrhiza. However, we do

not know whether it is a common strategy in floating clonal plants in response to increasing

nutrient availability, as clonal plants are characterized by highly plasticity in morphology [74–

76]. Therefore, more studies on other floating clonal plants are required to generalize our

findings.

Conclusions

We conclude that the floating clonal plant S. polyrhiza varied in terms of growth and morphol-

ogy in response to increasing nutrient availability. In general, S. polyrhiza showed a hump-

shaped growth pattern as increased nutrient availability, but shoots and roots of S. polyrhiza
differed in their responses to the nutrient availability. Our results have important implications

for the control of eutrophication which is common in natural ecosystem [77–80]. However,

one should be noted that in this study we only used one floating clonal plant and our experi-

ment only ran for a short period, we do not know how S. polyrhiza and many other floating

clonal plants may vary in their responses to increasing nutrient availability in the long run.

Therefore, to generalize our findings, future research should focus on the long-term effects of

changing nutrients or other biological factors on various floating clonal plants.
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14. Kanoun-Bouléa M, Vicentea JAF, Nabaisa C, Prasadb MNV, Freitasa H. Ecophysiological tolerance of

duckweeds exposed to copper. Aquatic Toxicology. 2009; 91: 1–9. https://doi.org/10.1016/j.aquatox.

2008.09.009 PMID: 19027182

15. Lou M, Liao BH, Liu HY, Zou YZ. Study of three aquatic floating plants to treat the water eutrophication.

Chinese Journal of Eco-Agriculture. 2005; 13: 194–195.

16. Hilt S, Gross EM. Can allelopathically active submerged macrophytes stabilise clear-water states in

shallow lakes? Basic and Applied Ecology. 2008; 9: 422–432.

PLOS ONE Distinct responses of frond and root to nutrient availability in a floating plant

PLOS ONE | https://doi.org/10.1371/journal.pone.0258253 October 11, 2021 9 / 12

https://doi.org/10.1111/plb.12170
http://www.ncbi.nlm.nih.gov/pubmed/24661501
https://doi.org/10.1038/s41437-019-0286-z
https://doi.org/10.1038/s41437-019-0286-z
http://www.ncbi.nlm.nih.gov/pubmed/31827265
https://doi.org/10.3389/fpls.2020.00618
http://www.ncbi.nlm.nih.gov/pubmed/32523592
https://doi.org/10.1016/j.aquatox.2008.09.009
https://doi.org/10.1016/j.aquatox.2008.09.009
http://www.ncbi.nlm.nih.gov/pubmed/19027182
https://doi.org/10.1371/journal.pone.0258253


17. Armstrong W. The oxidising activity of roots in waterlogged soils. Physiologia Plantarum. 1967; 20:

920–926.

18. Pilon-Smits EAH, Souza MPD, Hong G, Amini A, Bravo RC, Payabyab ST, et al. Selenium volatilization

and accumulation by twenty aquatic plant species. Journal of Environmental Quality. 1999; 28: 1011–

1018.

19. Babourina O, Rengel Z. Nitrogen removal from eutrophicated water by aquatic plants. A A., SG S., L G.,

R W., editors. Springer, Dordrecht: Eutrophication: Causes, Consequences and Control; 2010. 355–

372 pp.

20. Chislock MF, Doster E, Zitomer RA, Wilson AE. Eutrophication: Causes, consequences, and controls in

aquatic ecosystems. Nature Education Knowledge. 2013; 4: 10.

21. Immers AK, Vendrig K, Ibelings BW, Donk EV, Heerdt GNJT, Geurts JJM, et al. Iron addition as a mea-

sure to restore water quality: Implications for macrophyte growth. Aquatic Botany. 2014; 116: 44–52.

22. Neagu C. Degree of water eutrophication in the terminal basin of the Danube. Case study. Bulletin of

University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca Agriculture. 2014; 71: 274–

281.

23. Huang J, Xu CC, Ridoutt BG, Chen F. Reducing agricultural water footprints at the farm scale: A case

study in the Beijing region. Water. 2015; 7: 7066–7077.

24. Sand-Jensen K, Bruun HH, Nielsen TF, Christiansen DM, Hartvig P, Schou JC, et al. The dangers of

being a small, oligotrophic and light demanding freshwater plant across a spatial and historical eutrophi-

cation gradient in southern Scandinavia. Frontiers in Plant Science. 2018; 9: 66. https://doi.org/10.

3389/fpls.2018.00066 PMID: 29456545

25. Schachtman DP, Shin R. Nutrient sensing and signaling: NPKS. Annual Review of Plant Biology. 2007;

58: 47–69. https://doi.org/10.1146/annurev.arplant.58.032806.103750 PMID: 17067284

26. Krouk G, Ruffel S, Gutiérrez RA, Gojon A, Crawford NM, Coruzzi GM, et al. A framework integrating

plant growth with hormones and nutrients. Trends in Plant Science. 2011; 16: 178–182. https://doi.org/

10.1016/j.tplants.2011.02.004 PMID: 21393048

27. Kennedy JA, Matthews MA, Waterhouse AL. Effects of submerged aquatic macrophytes on nutrient

dynamics, sedimentation, and resuspension. In: Caldwell MM, Heldmaier G, Lange OL, Mooney HA,

Schulze ED, Sommer U, editors. The structuring role of submerged macrophytes in lakes. 131.

Springer, New York, NY: Ecological Studies (Analysis and Synthesis); 1998. pp. 197–214.

28. Hart BT, Dok WV, Djuangsih N. Nutrient budget for Saguling Reservoir, West Java, Indonesia. Water

Research. 2002; 36: 2152–2160. https://doi.org/10.1016/s0043-1354(01)00428-6 PMID: 12092591

29. Lu J, Wang ZX, Xing W, Liu GH. Effects of substrate and shading on the growth of two submerged mac-

rophytes. Hydrobiologia. 2013; 700: 157–167.

30. Chanc LMG, Brunt SCV, Majsztrik JC, White SA. Short- and long-term dynamics of nutrient removal in

floating treatment wetlands. Water Research. 2019; 159: 153–163. https://doi.org/10.1016/j.watres.

2019.05.012 PMID: 31091480

31. Wang T, Hu JT, Wang RQ, Liu CH, Yu D. Trait convergence and niche differentiation of two exotic inva-

sive free-floating plant species in China under shifted water nutrient stoichiometric regimes. Environ-

mental Science Pollution Research. 2019; 26: 35779–35786. https://doi.org/10.1007/s11356-019-

06304-6 PMID: 31705409

32. Zhu ZJ, Yuan HZ, Wei Y, Li PS, Zhang PH, Xie D. Effects of ammonia nitrogen and sediment nutrient

on growth of the submerged plant Vallisneria natans. CLEAN-Soil, Air, Water. 2015; 43: 1653–1659.

33. Xie YH, An SQ, Yao X, Xiao KY, Zhang C. Short-time response in root morphology of Vallisneria natans

to sediment type and water-column nutrient. Aquatic Botany. 2005; 81: 85–96.

34. Sun LF, Sun YX, Zhou CF, An SQ. Effects of plant species combination and water body nutrient level

on the biomass accumulation and allocation of three kinds functional plants. Chinese Journal of Applied

Ecology. 2009; 20: 2370–2376. PMID: 20077692

35. Szabo S, Scheffer M, Roijackers R, Waluto B, Braun M, Nagy PT, et al. Strong growth limitation of a

floating plant (Lemna gibba) by the submerged macrophyte (Elodea nuttallii) under laboratory condi-

tions. Freshwater Biology. 2010; 55: 681–690.

36. Yu LF, Yu D. Differential responses of the floating-leaved aquatic plant Nymphoides peltata to gradual

versus rapid increases in water levels. Aquatic Botany. 2011; 94: 71–76.

37. Hao ZJ, Li YH, Cai WK, Wu PP, Liu YD, Wang GH. Possible nutrient limiting factor in long term opera-

tion of closed aquatic ecosystem. Advances in Space Research. 2012; 49: 841–849.

38. Tan BC, He H, Gu J, Li KY. Effects of nutrient levels and light intensity on aquatic macrophyte (Myrio-

phyllum aquaticum) grown in floating-bed platform. Ecological Engineering. 2019; 128: 27–32.

PLOS ONE Distinct responses of frond and root to nutrient availability in a floating plant

PLOS ONE | https://doi.org/10.1371/journal.pone.0258253 October 11, 2021 10 / 12

https://doi.org/10.3389/fpls.2018.00066
https://doi.org/10.3389/fpls.2018.00066
http://www.ncbi.nlm.nih.gov/pubmed/29456545
https://doi.org/10.1146/annurev.arplant.58.032806.103750
http://www.ncbi.nlm.nih.gov/pubmed/17067284
https://doi.org/10.1016/j.tplants.2011.02.004
https://doi.org/10.1016/j.tplants.2011.02.004
http://www.ncbi.nlm.nih.gov/pubmed/21393048
https://doi.org/10.1016/s0043-1354%2801%2900428-6
http://www.ncbi.nlm.nih.gov/pubmed/12092591
https://doi.org/10.1016/j.watres.2019.05.012
https://doi.org/10.1016/j.watres.2019.05.012
http://www.ncbi.nlm.nih.gov/pubmed/31091480
https://doi.org/10.1007/s11356-019-06304-6
https://doi.org/10.1007/s11356-019-06304-6
http://www.ncbi.nlm.nih.gov/pubmed/31705409
http://www.ncbi.nlm.nih.gov/pubmed/20077692
https://doi.org/10.1371/journal.pone.0258253


39. Hillman WS. The Lemnaceae, or duckweeds: A review of the descriptive and experimental literature.

Botanical Review. 1961; 27: 221–287.

40. Stomp AM. The duckweeds: A valuable plant for biomanufacturing. Biotechnology Annual Review.

2005; 11: 69–99. https://doi.org/10.1016/S1387-2656(05)11002-3 PMID: 16216774

41. Stirk WA, Kulkarni MG, Staden JV. Effect of smoke-derived extracts on Spirodela polyrhiza, an aquatic

plant grown in nutrient-rich and -depleted conditions. Aquatic Botany. 2016; 129: 31–34.

42. Xing W, Huang WM, Liu GH. Effect of excess iron and copper on physiology of aquatic plant Spirodela

polyrrhiza (L.) Schleid. Environmental Toxicology. 2010; 25: 103–112. https://doi.org/10.1002/tox.

20480 PMID: 19260045

43. Si C, Xue W, Lin J, Zhang JF, Yu FH. No evidence of greater biomass allocation to stolons at moderate

resource levels in a floating plant. Aquatic Ecology. 2020; 54: 421–429.

44. Gosselin JR, Haller WT, Gettys LA, Griffin T, Crawford ES. Effects of substrate nutrients on growth of

three submersed aquatic plants. Journal of Aquatic Plant Management. 2018; 56: 39–46.

45. Nichols DS, Keemey DR. Nitrogen nutrition of Myriophyllum spicatum: Uptake and translocation of 15N

by shoots and roots. Freshwater Biology. 1976; 6: 145–154.

46. Best MD, Mantai KE. Growth of Myriophyllum: Sediment or lake water as the source of nitrogen and

phosphorus Ecology. 1978; 59: 1075–1080.

47. Kleczewski NM, Herms DA, Bonello P. Nutrient and water availability alter belowground patterns of bio-

mass allocation, carbon partitioning, and ectomycorrhizal abundance in Betula nigra. Trees. 2012; 26:

525–533.

48. Bonser SP, Reader RJ. Plant competition and herbivory in relation to vegetation biomass. Ecology.

1995; 76: 2176–2183.

49. Tiffin P. Competition and time of damage affect the pattern of selection acting on plant defense against

herbivores. Ecology. 2002; 83: 1981–1990.

50. Zhu ZJ, Song SY, Wang PH, Leng X, Li PS, Jeelani N, et al. Growth and physiological responses of sub-

merged plant Vallisneria natans to water column ammonia nitrogen and sediment copper. Peer J. 2016;

4: e1953. https://doi.org/10.7717/peerj.1953 PMID: 27123381

51. Wang PF, Wang C, Ouyang P, Qian J, Shi RJ. Physiological responses of Vallisneria spiraslis L.

induced by different hydraulic conditions when exposed to copper and nitrogen. African Journal of Bio-

technology. 2013; 10: 7441–7452.

52. Xie KL, Cakmak I, Wang SY, Zhang FS, Guo SW. Synergistic and antagonistic interactions between

potassium and magnesium in higher plants. The Crop Journal. 2021; 9: 249–256.

53. Gransee A, Führs H. Magnesium mobility in soils as a challenge for soil and plant analysis, magnesium

fertilization and root uptake under adverse growth conditions. Plant and Soil. 2013; 368: 5–21.

54. Juang KW, Lee YI, Lai HY, Chen BC. Influence of magnesium on copper phytotoxicity to and accumula-

tion and translocation in grapevines. Ecotoxicology Environmental Safety. 2014; 104: 36–42. https://

doi.org/10.1016/j.ecoenv.2014.02.008 PMID: 24632121

55. Bornette G, Puijalon S. Response of aquatic plants to abiotic factors: A review. Aquatic Sciences. 2011;

73: 1–14.

56. Kennedy TL, Horth LA, Carr DE. The effects of nitrate loading on the invasive macrophyte Hydrilla verti-

cillata and two common, native macrophytes in Florida. Aquatic Botany. 2009; 91: 253–256.

57. Wersal RM, Madsen JD. Influences of light intensity variations on growth characteristics of Myriophyl-

lum aquaticum. Journal of Freshwater Ecology. 2013; 28: 147–164.

58. Sack L, Scoffoni C, McKown AD, Frole K, Rawls M, Havran JC, et al. Developmentally based scaling of

leaf venation architecture explains global ecological patterns. Nature Communications. 2012; 3: 837.

https://doi.org/10.1038/ncomms1835 PMID: 22588299

59. Boyce CK, Brodribb TJ, Feild TS, Zwieniecki MA. Angiosperm leaf vein evolution was physiologically

and environmentally transformative. Proceedings Biological Sciences. 2009; 276: 1771–1776. https://

doi.org/10.1098/rspb.2008.1919 PMID: 19324775

60. Brodribb TJ, Feild TS, Jordan GJ. Leaf maximum photosynthetic rate and venation are linked by

hydraulics. Plant Physiology. 2007; 144: 1890–1898. https://doi.org/10.1104/pp.107.101352 PMID:

17556506

61. Hines PJ. Light tuning of leaf size. Science. 2019; 366: 69.61–69.

62. Mcconnaughay KDM, Colema JS. Biomass allocation in plants: Ontogeny or optimality? A test along

three resource gradients. Ecology. 1999; 80: 2581–2593.

63. Müller I, Schmid B, Weiner J. The effect of nutrient availability on biomass allocation patterns in 27 spe-

cies of herbaceous plants. Perspect Plant Ecol Evol Syst. 2000; 3: 115–127.

PLOS ONE Distinct responses of frond and root to nutrient availability in a floating plant

PLOS ONE | https://doi.org/10.1371/journal.pone.0258253 October 11, 2021 11 / 12

https://doi.org/10.1016/S1387-2656%2805%2911002-3
http://www.ncbi.nlm.nih.gov/pubmed/16216774
https://doi.org/10.1002/tox.20480
https://doi.org/10.1002/tox.20480
http://www.ncbi.nlm.nih.gov/pubmed/19260045
https://doi.org/10.7717/peerj.1953
http://www.ncbi.nlm.nih.gov/pubmed/27123381
https://doi.org/10.1016/j.ecoenv.2014.02.008
https://doi.org/10.1016/j.ecoenv.2014.02.008
http://www.ncbi.nlm.nih.gov/pubmed/24632121
https://doi.org/10.1038/ncomms1835
http://www.ncbi.nlm.nih.gov/pubmed/22588299
https://doi.org/10.1098/rspb.2008.1919
https://doi.org/10.1098/rspb.2008.1919
http://www.ncbi.nlm.nih.gov/pubmed/19324775
https://doi.org/10.1104/pp.107.101352
http://www.ncbi.nlm.nih.gov/pubmed/17556506
https://doi.org/10.1371/journal.pone.0258253


64. Hermans C, Hammond JP, White PJ, Verbruggen N. How do plants respond to nutrient shortage by bio-

mass allocation? Trends in Plant Science. 2006; 11: 610–617. https://doi.org/10.1016/j.tplants.2006.10.

007 PMID: 17092760

65. Rosolem CA, Witacker JPT, Vanzolini S, Ramos VJ. The significance of root growth on cotton nutrition

in an acidic low-P soil. Plant and Soil. 1999; 212: 183–188.

66. Kumar A, Duijnen RV, Delory BM, Reichel R, Brüggemann N, Temperton VM. Barley shoot biomass

responds strongly to N:P stoichiometry and intraspecific competition, whereas roots only alter their for-

aging. Plant and Soil. 2020; 453: 515–528.

67. Linkohr BI, Williamson LC, Fitter AH, Leyser HMO. Nitrate and phosphate availability and distribution

have different effects on root system architecture of Arabidopsis. The Plant Journal. 2002; 29: 751–760.

https://doi.org/10.1046/j.1365-313x.2002.01251.x PMID: 12148533

68. Trubat R, Cortina J, Vilagrosa A. Plant morphology and root hydraulics are altered by nutrient deficiency

in Pistacia lentiscus (L.). Trees. 2006; 20: 334–339.
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