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Rough set theory is a suitable tool for dealing with the imprecision, uncertainty, incompleteness, and vagueness of knowledge. In
this paper, new lower and upper approximation operators for generalized fuzzy rough sets are constructed, and their definitions are
expanded to the interval-valued environment. Furthermore, the properties of this type of rough sets are analyzed. These operators
are shown to be equivalent to the generalized interval fuzzy rough approximation operators introduced by Dubois, which are
determined by any interval-valued fuzzy binary relation expressed in a generalized approximation space. Main properties of these
operators are discussed under different interval-valued fuzzy binary relations, and the illustrative examples are given to demonstrate
the main features of the proposed operators.

1. Introduction

Rough set theory proposed by Pawlak [1] is an extension of
set theory for the study of intelligent systems characterized
by inexact, uncertain, or insufficient information. The core
of the rough set theory and its applications is to define
a pair of lower and upper approximation operators, and
an equivalence relation is a key and primitive notion in
Pawlak’s rough set model [1]. This equivalence relation is
the key concept of Pawlak’s rough set model, but also a
very strict condition, which may limit the applicability of
the rough set model [2, 3]. To solve this problem, several
authors have generalized the notion of the approximation
operators by using nonequivalent binary relations. The most
important research is the amalgamation of fuzzy set theory
and rough set theory [2, 4–7] as well as the rough set theory
based on generalized binary relations [8–13]. Pawlak first
discussed the relation between rough sets and fuzzy sets
in [6]. Dubois and Prade [4] proposed the fuzzy rough
set theory by amalgamating the fuzzy set theory with the
rough set theory. In addition, based on the definition of
neighborhood operators, Yao [8–11] studied the rough set
theory based on the generalized binary relation, that is, the

generalized rough set theory. Recently, Wu et al. [14–19]
defined the generalized fuzzy rough set theory based on the
study of the fuzzy rough set theory and the generalized rough
set theory, and Zhu [12] studied generalized rough sets based
on relations.

A rough set model is composed of two parts: the approxi-
mation space and the approximated object. Rough set theory
comes with a lot of extensions and generalizations. Yao et al.
researched the generalized rough sets by considering sets and
relations of the approximation space and the approximated
object [9, 16]. In Pawlak’s rough set model [6], the relation
of approximation spaces is a classical binary equivalence
relation and the approximated object is a set. If the equiva-
lence relation is weakened to a general binary relation, the
equivalence relation is a special case of the general binary
relation.The set theory is generalized to the form of the fuzzy
set theory, so that the classical set theory is a special case of the
fuzzy set theory. These relationships are outlined in Figure 1.

Most researches on the fuzzy rough set theory focus
on point-valued fuzzy sets and point-valued fuzzy binary
relations. But the fuzzy notion described by using point
values may lose some available information in the real-life
information systems sometimes. If the description is done
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Figure 1: Select dependencies in rough set theory.

by interval values, it may acquire a better effectiveness than
that by using point ones, for example, a self-evolving inter-
val type-2 fuzzy neural network with online structure and
parameter learning [20], encoding words into interval type-
2 fuzzy sets using an interval approach [21], and corrections
to aggregation using the linguistic weighted average and
interval type-2 fuzzy sets [22]. Gong et al. [23] proposed
a kind of interval-valued rough fuzzy set model based on
an equivalent relation and applied the model to acquire
rules from the interval-valued fuzzy information systems. It
is very significant to apply the interval-valued fuzzy set in
researching the rough set theory. Yeung et al. [24] generalized
the fuzzy rough sets by means of arbitrary fuzzy relations and
presented a general framework for the study of fuzzy rough
sets by using both constructive and axiomatic approaches.
Wu et al. [25] generalized the concept of fuzzy rough sets to
interval type-2 fuzzy environments and proposed a method
of attribute reduction within the interval type-2 fuzzy rough
set framework. Xue et al. [26] generalized interval-valued
fuzzy rough approximation operators. Zhang et al. [27]
studied the characterization of generalized interval-valued
fuzzy rough sets on two universes of discourse. The posi-
tive approximation and converse approximation in interval-
valued fuzzy rough sets have been studied in [28]. Zhang and
Jiang [29] proposed a note on interval-valued fuzzy rough
sets and interval-valued intuitionistic fuzzy sets. Zhang et al.
[30] proposed a general frame for intuitionistic fuzzy rough
sets. Xu et al. [31] studied an axiomatic approach of interval-
valued intuitionistic fuzzy rough sets based on interval-
valued intuitionistic fuzzy approximation operators. Zhang
and Tian [32] studied interval-valued intuitionistic fuzzy
rough sets based on implicators. Wu and Zhou [33] studied
intuitionistic fuzzy topologies based on intuitionistic fuzzy
reflexive and transitive relations. Zhang et al. [34] proposed
a variable-precision-dominance-based rough set approach
to interval-valued information systems. Liang and Liu [35]
studied three-way decisions with interval-valued decision-
theoretic rough sets. Dai et al. [36] proposed an uncertainty
measurement for interval-valued decision systems based

on extended conditional entropy. Zhang et al. [37] studied
multiconfidence rule acquisition and confidence-preserved
attribute reduction in interval-valued decision systems. Ma
and Hu [38] studied topological and lattice structures of
L-fuzzy rough sets determined by lower and upper sets.
Hao and Li [39] discussed the relationship between L-fuzzy
rough set and L-topology. Zhang et al. [40] studied the
union and intersection operations of rough sets based on
various approximation spaces. She and He [41–43] studied
rough approximation operators on R0-algebras (nilpotent
minimum algebras) with an application in formal logic
L, the rough consistency measures of logic theories, and
approximate reasoning in rough logic and the structure of
the multigranulation rough set model as well. Yang et al. [44]
studied the combination of interval-valued fuzzy set and soft
set. In terms of these researches above, a number of important
conclusions are drawn, which exhibit great significance to
research the rough fuzzy set theory. However the generalized
interval-valued fuzzy rough set theory under the generalized
relations needs to be further investigated.

In this paper, we further study the generalized fuzzy
rough approximation operators defined in [16]. In particular,
from the viewpoint of constructive approach, we reconstruct
the lower approximation operator on the premise of the fact
that the upper approximation operator is not changed and
expand it to interval environments. It is proved that the
lower approximation operator is equivalent to the generalized
interval Dubois fuzzy rough approximation operator in the
approximation space formed by arbitrary binary interval-
valued fuzzy relations. Also, properties of the operators are
discussed under the different binary interval-valued fuzzy
relations.

The rest of the paper is organized as follows. In Section 2,
we give some basic notions of interval-valued fuzzy sets
and interval-valued fuzzy relations. In Section 3, we study
the generalized fuzzy rough approximation operators defined
in [16]. In Section 4, from the viewpoint of constructive
and interval approach, we reconstruct new lower and upper
approximation operators of the generalized interval-valued
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fuzzy rough sets. In Section 5, we prove some properties of
the generalized interval-valued fuzzy rough approximation
operators and the presented scheme by the extensive analysis
results. In Section 6, we bring forward some conclusions and
highlight further work.

2. Basic Concepts of Interval-Valued Fuzzy
Sets and Interval-Valued Fuzzy Relations

In this section, we introduce some basic notions and prop-
erties related to interval-valued fuzzy sets which will be
used in this paper. We first review an interval-valued subset
originated by [28]. We first review some basic concepts.

Let 𝐼 be a closed unit interval; that is, 𝐼 = [0, 1]. [𝐼] =
{[𝑎
−

, 𝑎
+

] : 𝑎
−

≤ 𝑎
+

, 𝑎
−

, 𝑎
+

∈ 𝐼} is the set of all interval-valued
subsets of 𝐼. 𝑎 = [𝑎−, 𝑎+] ∈ [𝐼] is an interval value.When 𝑎− =
𝑎
+, the interval-valued 𝑎 = [𝑎−, 𝑎+] becomes a real number in
[𝐼]. In particular, real numbers return intervals of zero length,
say 1 = [1, 1] and 0 = [0, 0].

Definition 1. Let 𝑎, 𝑏 ∈ [𝐼]. 𝑎 ≤ 𝑏 if and only if 𝑎− ≤ 𝑏
−,

𝑎
+

≤ 𝑏
+; 𝑎 = 𝑏 if and only if 𝑎− = 𝑏

−

, 𝑎
+

= 𝑏
+; 𝑎 < 𝑏 if and

only if 𝑎 ≤ 𝑏 and 𝑎 ̸= 𝑏.

Definition 2. Let 𝑎, 𝑏 ∈ [𝐼]. 𝑎 ≰ 𝑏 indicates that 𝑎 is not less
than or equal to 𝑏; 𝑎 ̸< 𝑏 indicates that 𝑎 is not less than 𝑏;
𝑎 ̸≥ 𝑏 indicates that 𝑎 is not greater than or equal to 𝑏; 𝑎 ̸> 𝑏

indicates that 𝑎 is not greater than 𝑏.

According to the order relation defined in Definition 1,
different elements in [𝐼] may not exhibit order relations, so
Definition 2 becomes necessary.

Definition 3. Let 𝑎
𝑖

∈ [𝐼], 𝑏
𝑖

∈ 𝐼, 𝑖 ∈ 𝐽, 𝐽 = {1, 2, ⋅ ⋅ ⋅ , 𝑚}; one
defines

⋁

𝑖∈𝐽

𝑏
𝑖

= sup {𝑏
𝑖

: 𝑖 ∈ 𝐽} , ⋀

𝑖∈𝐽

𝑏
𝑖

= inf {𝑏
𝑖

: 𝑖 ∈ 𝐽} ,

⋁

𝑖∈𝐽

𝑎
𝑖

= ∨ {𝑎
𝑖

: 𝑖 ∈ 𝐽} = [⋁

𝑖∈𝐽

𝑎
−

𝑖

,⋁

𝑖∈𝐽

𝑎
+

𝑖

] ,

⋀

𝑖∈𝐽

𝑎
𝑖

= ∧ {𝑎
𝑖

: 𝑖 ∈ 𝐽} = [⋀

𝑖∈𝐽

𝑎
−

𝑖

,⋀

𝑖∈𝐽

𝑎
+

𝑖

] ,

∼ 𝑎 = 1 − 𝑎 = [1 − 𝑎
+

, 1 − 𝑎
−

] .

(1)

Obviously, ([𝐼], ≤) is a complete lattice, and the triple
([𝐼], ∨, ∧) is an algebraic system, which is derived by ([𝐼], ≤)
with the maximal element [1, 1] and the minimum element
[0, 0].

Definition 4. Let 𝑈 be a finite and nonempty universe of
discourse; then a mapping 𝐴 : 𝑈 → [𝐼] is called an interval-
valued fuzzy set on𝑈. All interval-valued fuzzy sets on𝑈 are
denoted by 𝐹𝐼(𝑈). In particular, when 𝐴 = 𝑈,𝐴(𝑥) = [1, 1],
for all 𝑥 ∈ 𝑈, and when 𝐴 = 0, 𝐴(𝑥) = [0, 0], for all 𝑥 ∈ 𝑈.

Similar to fuzzy sets, the operators ⊆, ∩, ∪, and comple-
ment of interval-valued fuzzy sets are defined as follows. For
all𝐴, 𝐵 ∈ 𝐹𝐼(𝑈),𝐴 ⊆ 𝐵means𝐴(𝑥) ≤ 𝐵(𝑥) and for all 𝑥 ∈ 𝑈,
(𝐴 ∩ 𝐵)(𝑥) = 𝐴(𝑥) ∧ 𝐵(𝑥), (𝐴 ∪ 𝐵)(𝑥) = 𝐴(𝑥) ∨ 𝐵(𝑥), and
(∼𝐴)(𝑥) = 1 − 𝐴(𝑥).

Definition 5. Let 𝛼 ∈ [𝐼], 𝐴 ∈ 𝐹
𝐼

(𝑈). 𝛼𝐴 is called numerical
product of 𝛼 and 𝐴 and is defined as (𝛼𝐴)(𝑥) = 𝛼 ∧ 𝐴(𝑥), for
all 𝑥 ∈ 𝑈.

Definition 6. Let 𝛼 ∈ [𝐼], 𝐴 ∈ 𝐹
𝐼

(𝑈). 𝐴
𝛼

= {𝑥 ∈ 𝑈 : 𝐴(𝑥) ≥

𝛼} is called 𝛼-cut set of 𝐴 and 𝐴
𝛼

= {𝑥 ∈ 𝑈 : 𝐴(𝑥) > 𝛼} is
called strong 𝛼-cut set of 𝐴.

Theorem 7 (the decomposition theorem of the interval-val-
ued fuzzy sets). Let 𝐴 ∈ 𝐹

𝐼

(𝑈); then

𝐴 = ⋃

𝛼∈[𝐼]

𝛼𝐴
𝛼

, 𝐴 = ⋃

𝛼∈[𝐼]

𝛼𝐴
𝛼

. (2)

Proof. For all 𝑥 ∈ 𝑈,

( ⋃

𝛼∈[𝐼]

𝛼𝐴
𝛼

) (𝑥)

= ⋁

𝛼∈[𝐼]

(𝛼 ∧ 𝐴
𝛼

(𝑥))

= ( ⋁

𝛼≤𝐴(𝑥)

(𝛼 ∧ 𝐴
𝛼

(𝑥))) ∨ ( ⋁

𝛼≰𝐴(𝑥)

(𝛼 ∧ 𝐴
𝛼

(𝑥)))

= ⋁

𝛼≤𝐴(𝑥)

(𝛼 ∧ 𝐴
𝛼

(𝑥))

= ⋁

𝛼≤𝐴(𝑥)

𝛼

= 𝐴 (𝑥) .

(3)

Then 𝐴 = ∪
𝛼∈[𝐼]

𝛼𝐴
𝛼

.
Similarly, one can show that 𝐴 = ∪

𝛼∈[𝐼]

𝛼𝐴
𝛼

.

Definition 8. Let 𝑈 and 𝑊 be two finite and nonempty
universes of discourse. Then the mapping 𝐼𝑅 : 𝑈 ×𝑊 → [𝐼]

is called an interval-valued fuzzy relation from𝑈 to𝑊, where
𝑈 ×𝑊 = {(𝑥, 𝑦) : 𝑥 ∈ 𝑈, 𝑦 ∈ 𝑊}. When 𝑈 = 𝑊, 𝐼𝑅 is called
an interval-valued fuzzy relation on 𝑈.

Remark 9. Obviously, an interval-valued fuzzy relation 𝐼𝑅

from 𝑈 to𝑊 is an interval-valued fuzzy set denoted by 𝐼𝑅 ∈

𝐹
𝐼

(𝑈 × 𝑊). So Definitions 4, 5, and 6 and Theorem 7 are
still true in the interval-valued fuzzy relation. For example,
𝐼𝑅 ∈ 𝐹

𝐼

(𝑈×𝑊) is an interval-valued fuzzy relation. If we see
it as an interval-valued fuzzy set, then 𝐼𝑅

𝛼

= {(𝑥, 𝑦) ∈ 𝑈×𝑊:

𝑅(𝑥, 𝑦) ≥ 𝛼}.
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Definition 10. Let 𝐼𝑅 be an interval-valued fuzzy relation
from 𝑈 to 𝑊; then 𝐼𝑅 is said to be serial if and only if for
all 𝑥 ∈ 𝑈, there exists 𝑦 ∈ 𝑊 such that 𝐼𝑅(𝑥, 𝑦) = [1, 1].

Definition 11. Let 𝐼𝑅 be an interval-valued fuzzy relation on
𝑈; then 𝐼𝑅 is reflexive if and only if 𝐼𝑅(𝑥, 𝑥) = [1, 1], for all
𝑥 ∈ 𝑈; 𝐼𝑅 is symmetric if and only if 𝐼𝑅(𝑥, 𝑦) = 𝐼𝑅(𝑦, 𝑥),
for all 𝑥, 𝑦 ∈ 𝑈; 𝐼𝑅 is transitive if and only if 𝐼𝑅(𝑥, 𝑧) ≥

∨
𝑦∈𝑈

(𝐼𝑅(𝑥, 𝑦) ∧ 𝐼𝑅(𝑦, 𝑧)), for all 𝑥, 𝑧 ∈ 𝑈; 𝐼𝑅 is Euclidean

if and only if 𝐼𝑅(𝑦, 𝑧) ≥ ∨
𝑥∈𝑈

(𝐼𝑅(𝑥, 𝑦) ∧ 𝐼𝑅(𝑥, 𝑧)), for all
𝑦, 𝑧 ∈ 𝑈.

One can prove that the binary relation obtained by
calculating 𝛼-cut set or strong 𝛼-cut set to an interval-valued
fuzzy relation, for all 𝛼 ∈ [𝐼], still satisfies the corresponding
definition of Definition 11 under the classical binary relation;
that is, if 𝐼𝑅 is, respectively, reflexive, symmetric, and transi-
tive, then 𝐼𝑅

𝛼

(𝐼𝑅
𝑎

) is, respectively, reflexive, symmetric, and
transitive under the classical binary relation.

3. Generalized Fuzzy Rough
Approximation Operators

Definition 12. Let 𝑈 and 𝑊 be two finite universes of
discourse. If 𝑅 is an arbitrary binary fuzzy relation from 𝑈

to 𝑊, then the triple (𝑈,𝑊, 𝑅) is called a generalized fuzzy
approximation space.

Definition 13. Let (𝑈,𝑊, 𝑅) be a generalized fuzzy approxi-
mation space, for all 𝑥 ∈ 𝑈; one defines 𝑅(𝑥) = {(𝑦, 𝑅(𝑥, 𝑦)) :
𝑦 ∈ 𝑊}.

𝑅(𝑥) is the row of the fuzzy relation which includes 𝑥, and
obviously 𝑅

𝛼

(𝑥) = (𝑅(𝑥))
𝛼

.

Definition 14. Let (𝑈,𝑊, 𝑅) be a generalized fuzzy approxi-
mation space, for all 𝛼, 𝛽 ∈ [0, 1], 𝐴 ∈ 𝐹(𝑊),

𝑅
𝛼

(𝐴
𝛽

) = {𝑥 ∈ 𝑈 : 𝑅
𝛼

(𝑥) ⊆ 𝐴
𝛽

} ,

𝑅
𝛼

(𝐴
𝛽

) = {𝑥 ∈ 𝑈 : 𝑅
𝛼

(𝑥) ∩ 𝐴
𝛽

̸= 0} .

(4)

𝑅
𝛼

(𝐴
𝛽

) and 𝑅
𝛼

(𝐴
𝛽

) are called (𝛼, 𝛽) lower and upper
approximations of 𝐴 with respect to (𝑈,𝑊, 𝑅).

Definition 15. Let (𝑈,𝑊, 𝑅) be a generalized fuzzy approxi-
mation space, for all 𝐴 ∈ 𝐹(𝑊). One defines

𝑅 (𝐴) = ⋃

𝛼∈𝐼

𝛼𝑅
1−𝛼

(𝐴
𝛼

) , 𝑅 (𝐴) = ⋃

𝛼∈𝐼

𝛼𝑅
𝛼

(𝐴
𝛼

) . (5)

The pair (𝑅(𝐴), 𝑅(𝐴)) is called the generalized fuzzy
rough set of 𝐴 on (𝑈,𝑊, 𝑅), and the operators 𝑅(𝐴) and
𝑅(𝐴) are called the generalized fuzzy rough lower and upper
approximation operators, respectively.

The dual properties are quite useful in proving the
properties of the approximation operators.When one intends

to prove two dual properties, it suffices to prove one of them,
which simplifies the proof procedure. The properties of the
lower and upper approximation operators are characterized
as follows.

Theorem 16. Let (𝑈,𝑊, 𝑅) be a generalized fuzzy approxima-
tion space. Then for all 𝐴 ∈ 𝐹(𝑊), 𝑅(𝐴) =∼ 𝑅(∼ 𝐴) and
𝑅(𝐴) =∼ 𝑅(∼𝐴).

Proof. (1) Note that∩
𝛼∈𝐼

(𝛼∪𝑅
1−𝛼

(𝐴
𝛼

)) = ∪
𝛼∈𝐼

(𝛼∩𝑅
1−𝛼

(𝐴
𝛼

)).
Here 𝛼 ∈ 𝐹(𝑈) and 𝛼(𝑥) = 𝛼 for all 𝑥 ∈ 𝑈.

For all 𝑥 ∈ 𝑈, 𝑥 ∈ 𝑅
1−𝛼

(𝐴
𝛼

), that is, 𝑅
1−𝛼

(𝐴
𝛼

)(𝑥) = 1, if
and only if 𝑅

1−𝛼

(𝑥) ⊆ 𝐴
𝛼

, such that for all 𝑦 ∈ 𝑊 if 𝑅(𝑥, 𝑦) ≥
1 − 𝛼, then𝐴(𝑦) > 𝛼; that is, for all 𝑦 ∈ 𝑊, 𝑅(𝑥, 𝑦) < 1 − 𝛼 or
𝐴(𝑦) > 𝛼.

Hence we have ∧
𝑦∈𝑊

((1 − 𝑅(𝑥, 𝑦)) ∨ 𝐴(𝑦)) > 𝛼.

For the second case, 𝑥 ∉ 𝑅
1−𝛼

(𝐴
𝛼

); that is,𝑅
1−𝛼

(𝐴
𝛼

)(𝑥) =

0 if and only if∧
𝑦∈𝑊

((1−𝑅(𝑥, 𝑦))∨𝐴(𝑦)) ≤ 𝛼. Since∧
𝑦∈𝑊

((1−

𝑅(𝑥, 𝑦))∨𝐴(𝑦)) ∈ 𝐼, there exists 𝛼 ∈ 𝐼, so that 𝛼 = ∧
𝑦∈𝑊

((1−

𝑅(𝑥, 𝑦)) ∨ 𝐴(𝑦)).
Hence,

⋂

𝛼∈𝐼

(𝛼 ∪ 𝑅
1−𝛼

(𝐴
𝛼

)) (𝑥)

= ⋀

𝛼∈𝐼

(𝛼 ∨ 𝑅
1−𝛼

(𝐴
𝛼

) (𝑥))

= ⋀

𝑦∈𝑊

((1 − 𝑅 (𝑥, 𝑦)) ∨ 𝐴 (𝑦)) .

(6)

Similarly,

⋃

𝛼∈𝐼

(𝛼 ∩ 𝑅
1−𝛼

(𝐴
𝛼

)) (𝑥)

= ⋁

𝛼∈𝐼

(𝛼 ∧ 𝑅
1−𝛼

(𝐴
𝛼

) (𝑥))

= ⋀

𝑦∈𝑊

((1 − 𝑅 (𝑥, 𝑦)) ∨ 𝐴 (𝑦)) .

(7)

Therefore, ∩
𝛼∈𝐼

(𝛼 ∪ 𝑅
1−𝛼

(𝐴
𝛼

)) = ∪
𝛼∈𝐼

(𝛼 ∩ 𝑅
1−𝛼

(𝐴
𝛼

)).
(2) Now, we prove the validity of the relationship𝑅(𝐴) =∼

𝑅(∼𝐴). In view of Definition 14, fromTheorem 3.2(1) of [18],
it follows that

∼ 𝑅 (∼𝐴) =∼ ⋃

𝛼∈𝐼

(𝛼𝑅
𝛼

((∼𝐴)
𝛼

))

=∼ ⋃

𝛼∈𝐼

(𝛼𝑅
𝛼

(∼𝐴
1−𝛼

))

= ⋂

𝛼∈𝐼

(1 − 𝛼 ∪ (∼𝑅
𝛼

(∼𝐴
1−𝛼

)))

= ⋂

𝛼∈𝐼

(1 − 𝛼 ∪ 𝑅
𝛼

(𝐴
1−𝛼

))
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= ⋂

𝛼∈𝐼

(𝛼 ∪ 𝑅
1−𝛼

(𝐴
𝛼

))

= ⋃

𝛼∈𝐼

(𝛼𝑅
1−𝛼

(𝐴
𝛼

))

= 𝑅 (𝐴) .

(8)

Hence, 𝑅(𝐴) =∼ 𝑅(∼𝐴).
Similarly, 𝑅(𝐴) =∼ 𝑅(∼𝐴).

Suppose that 𝑦
1

= 𝛼∨𝑅
1−𝛼

(𝐴
𝛼

)(𝑥), 𝑦
2

= 𝛼∧𝑅
1−𝛼

(𝐴
𝛼

)(𝑥)

and 𝛽 = ∧
𝑦∈𝑊

((1 − 𝑅(𝑥, 𝑦)) ∨ 𝐴(𝑦)); when the variable 𝑥 is

a certain value, the variables 𝑦
1

and 𝑦
2

are functions of the
variable 𝛼. Refer to Figure 2 for the pertinent detail.

In the proof of Theorem 16, we show that the equation
𝑅(𝐴) =∼ 𝑅(∼𝐴) holds when the minimum of function 𝑦

1

is equal to the maximum of function 𝑦
2

, such that ∩
𝛼∈𝐼

(𝛼 ∪

𝑅
1−𝛼

(𝐴
𝛼

)) = ∪
𝛼∈𝐼

(𝛼𝑅
1−𝛼

(𝐴
𝛼

)); thus, 𝑅(𝐴) =∼ 𝑅(∼𝐴) holds.
In [16], the lower approximation operator makes function 𝑦

2

equal to zero at the point 𝛽, which makes the maximum of
function 𝑦

2

approach 𝛽, but it does not exist. In this paper,
the lower and upper approximation operators inDefinition 15
have a better duality.

4. Generalized Interval-Valued
Fuzzy Rough Sets

Definition 17. Let 𝑈 and 𝑊 be two finite universes of
discourse. If 𝐼𝑅 is an arbitrary binary interval-valued fuzzy
relation from 𝑈 to 𝑊, then the triple (𝑈,𝑊, 𝐼𝑅) is called
a generalized interval-valued fuzzy approximation space. In
particular, when 𝑈 = 𝑊, the space is denoted by (𝑈, 𝐼𝑅).

Definition 18. Let (𝑈,𝑊, 𝐼𝑅) be a generalized interval-valued
fuzzy approximation space, for all 𝑥 ∈ 𝑈,

𝐼𝑅 (𝑥) = {(𝑦, 𝐼𝑅 (𝑥, 𝑦)) : 𝑦 ∈ 𝑊} . (9)

Definition 19. Let (𝑈,𝑊, 𝐼𝑅) be a generalized interval-valued
fuzzy approximation space, 𝐴 ∈ 𝐹

𝐼

(𝑊), for all 𝑥 ∈ 𝑈; one
defines

𝑅𝐼𝐹 (𝐴) (𝑥) = ⋀

𝑦∈𝑊

(∼𝐼𝑅 (𝑥, 𝑦) ∨ 𝐴 (𝑦))

= [

[

⋀

𝑦∈𝑊

((1 − 𝐼𝑅(𝑥, 𝑦)
+

) ∨ 𝐴(𝑦)
−

) ,

⋀

𝑦∈𝑊

((1 − 𝐼𝑅(𝑥, 𝑦)
−

) ∨ 𝐴(𝑦)
+

)]

]

,

𝑅𝐼𝐹 (𝐴) (𝑥) = ⋁

𝑦∈𝑊

(𝐼𝑅 (𝑥, 𝑦) ∧ 𝐴 (𝑦))

y1 y2

1

1

𝛽

1

𝛽

𝛽 𝛼 1𝛽 𝛼

Figure 2: The coordinate frame of functions 𝑦
1

and 𝑦
2

.

= [

[

⋁

𝑦∈𝑊

(𝐼𝑅(𝑥, 𝑦)
−

∧ 𝐴(𝑦)
−

) ,

⋁

𝑦∈𝑊

(𝐼𝑅 (𝑥, 𝑦)
+

∧ 𝐴(𝑦)
+

)]

]

.

(10)

The pair (𝑅𝐼𝐹(𝐴), 𝑅𝐼𝐹(𝐴)) is called the generalized
interval-valued fuzzy rough set of 𝐴 with respect to the
approximation space (𝑈,𝑊, 𝐼𝑅). The operators 𝑅𝐼𝐹 and 𝑅𝐼𝐹
are called the generalized interval-valued fuzzy rough lower
and upper approximation operators, respectively.

Definition 20. Let (𝑈,𝑊, 𝐼𝑅) be a generalized interval-valued
fuzzy approximation space, for all 𝛼, 𝛽 ∈ [𝐼],𝐴 ∈ 𝐹

𝐼

(𝑊); one
defines

𝑅𝐼𝐹
󸀠

𝛼

(𝐴
𝛽

) = {𝑥 ∈ 𝑈 : 𝐼𝑅
𝛼

(𝑥) ⊆ 𝐴
𝛽

} ,

𝑅𝐼𝐹
󸀠

𝛼

(𝐴
𝛽

) = {𝑥 ∈ 𝑈 : 𝐼𝑅
𝛼

(𝑥) ∩ 𝐴
𝛽

̸= 0} .

(11)

𝑅𝐼𝐹
󸀠

𝛼

(𝐴
𝛽

) and 𝑅𝐼𝐹
󸀠

𝛼

(𝐴
𝛽

) are called the 𝛼, 𝛽 lower and
upper approximations of𝐴with respect to (𝑈,𝑊, 𝐼𝑅), respec-
tively.

Definition 21. Let (𝑈,𝑊, 𝐼𝑅) be a generalized interval-valued
fuzzy approximation space, 𝐴 ∈ 𝐹

𝐼

(𝑊); one defines

𝑅𝐼𝐹
󸀠

(𝐴) = ⋃

𝛼∈[𝐼]

𝛼𝑅𝐼𝐹
󸀠

1−𝛼

(𝐴
𝛼

) ,

𝑅𝐼𝐹
󸀠

(𝐴) = ⋃

𝛼∈[𝐼]

𝛼𝑅𝐼𝐹
󸀠

𝛼

(𝐴
𝛼

) .

(12)

The pair (𝑅𝐼𝐹󸀠, 𝑅𝐼𝐹󸀠) is called the generalized interval-
valued fuzzy rough set of𝐴with respect to the approximation
space (𝑈,𝑊, 𝐼𝑅). The operators 𝑅𝐼𝐹󸀠 and 𝑅𝐼𝐹

󸀠 are called
the generalized interval-valued fuzzy rough lower and upper
approximation operators.

Remark 22. The approximation operators introduced in
Definition 20 extend the generalized Dubois fuzzy rough
approximation operators from numeric value to intervals.
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The approximation operators defined inDefinition 21 provide
the same type of generalization. The approximation opera-
tors defined in Definition 21 show the inherent relationship
between Pawlak’s rough set and interval-valued fuzzy rough
sets.

Lemma 23. Let (𝑈,𝑊, 𝐼𝑅) be a generalized interval-valued
fuzzy approximation space, 𝐴 ∈ 𝐹

𝐼

(𝑊); then for all 𝛼 ∈

[𝐼], 𝑅𝐼𝐹
󸀠

𝛼

(𝐴
𝛼

) ⊆ (𝑅𝐼𝐹(𝐴))
𝛼

.

Proof. We observe that, for all 𝑥 ∈ 𝑈, if 𝑥 ∈ 𝑅𝐼𝐹
󸀠

𝛼

(𝐴
𝛼

),
then 𝐼𝑅

𝛼

(𝑥) ∩ 𝐴
𝛼

̸= 0. This means that there exist 𝑦 ∈ 𝑊,
𝐼𝑅(𝑥, 𝑦) ≥ 𝛼, and 𝐴(𝑦) ≥ 𝛼.

By the interval-valued operations of Definition 3, we have
∨
𝑦∈𝑊

(𝐼𝑅(𝑥, 𝑦) ∧ 𝐴(𝑦)) ≥ 𝛼, so 𝑥 ∈ (𝑅𝐼𝐹(𝐴))
𝛼

.

Therefore, 𝑅𝐼𝐹󸀠
𝛼

(𝐴
𝛼

) ⊆ (𝑅𝐼𝐹(𝐴))
𝛼

.

Now, we prove that the reverse of Lemma 23 does not
hold. Based on the interval-valued operations, which are
defined in Definition 3, there exists 𝑦 ∈ 𝑊, 𝐼𝑅(𝑥, 𝑦) ∧ 𝐴(𝑦) ≥
𝛼; that is, there exists 𝑦 ∈ 𝑊, so that 𝐼𝑅(𝑥, 𝑦) ≥ 𝛼 and
𝐴(𝑦) ≥ 𝛼 cannot be deduced by ∨

𝑦∈𝑊

(𝐼𝑅(𝑥, 𝑦) ∧ 𝐴(𝑦)) ≥ 𝛼.

Next, we give an example illustrating that the relationship
(𝑅𝐼𝐹(𝐴))

𝛼

⊆ 𝑅𝐼𝐹
󸀠

𝛼

(𝐴
𝛼

) does not hold.

Example 24. Suppose that (𝑈,𝑊, 𝐼𝑅) is a generalized interval-
valued fuzzy approximation space,

𝑈 = {𝑥
1

, 𝑥
2

} , 𝑊 = {𝑦
1

, 𝑦
2

, 𝑦
3

} , 𝛼 = [0.2, 0.6] ,

𝑅 (𝑥
1

) =
[0.3, 0.5]

𝑦
1

+
[0.1, 0.7]

𝑦
2

+
[0.1, 0.4]

𝑦
3

,

𝐴 =
[0.2, 0.5]

𝑦
1

+
[0.1, 0.9]

𝑦
2

+
[0.2, 0.3]

𝑦
3

,

(13)

since

𝑅𝐼𝐹 (𝐴) (𝑥
1

) = ⋁

𝑦∈𝑊

(𝑅 (𝑥
1

, 𝑦) ∧ 𝐴 (𝑦))

= [0.2, 0.7] ≥ [0.2, 0.6] , 𝑥
1

∈ (𝑅𝐼𝐹 (𝐴))
𝛼

.

(14)

On the other hand, since 𝐼𝑅
𝛼

(𝑥
1

) = 𝐴
𝛼

= 0, we
have 𝐼𝑅

𝛼

(𝑥
1

) ∩ 𝐴
𝛼

= 0 and we get 𝑥
1

∉ 𝑅𝐼𝐹
󸀠

𝛼

(𝐴
𝛼

).
This shows that 𝑥

1

∈ (𝑅𝐼𝐹(𝐴))
𝛼

, but 𝑥
1

∉ 𝑅𝐼𝐹
󸀠

𝛼

(𝐴
𝛼

). So
(𝑅𝐼𝐹(𝐴))

𝛼

̸⊆ 𝑅𝐼𝐹
󸀠

𝛼

(𝐴
𝛼

).

Lemma 25. Let (U,𝑊, 𝐼𝑅) be a generalized interval-valued
fuzzy approximation space, 𝐴 ∈ 𝐹

𝐼

(𝑊); then, for all 𝛼 ∈ [𝐼],
𝑅𝐼𝐹
󸀠

1−𝛼

(𝐴
𝛼

) ⊆ (𝑅𝐼𝐹(𝐴))
𝛼

.

Proof. Note that, for all 𝑥 ∈ 𝑈, if 𝑥 ∈ 𝑅𝐼𝐹
󸀠

1−𝛼

(𝐴
𝛼

) then
𝐼𝑅
1−𝛼

(𝑥) ⊆ 𝐴
𝛼

. This means that, for all 𝑦 ∈ 𝑊, if 𝐼𝑅(𝑥, 𝑦) >

1 − 𝛼 then 𝐴(𝑦) ≥ 𝛼; that is, for all 𝑦 ∈ 𝑊, 𝐼𝑅(𝑥, 𝑦) ≤

1 − 𝛼 or 𝐴(𝑦) ≥ 𝛼. By the interval-valued operations as in
Definition 3, we have ∧

𝑦∈𝑊

(∼𝐼𝑅(𝑥, 𝑦) ∨ 𝐴(𝑦)) ≥ 𝛼; that is,

𝑅𝐼𝐹(𝐴)(𝑥) ≥ 𝛼, so 𝑥 ∈ (𝑅𝐼𝐹(𝐴))
𝛼

.

Now we prove that the reverse of Lemma 25 is not true.
Here we use similar reasoning as already used in Lemma 23.
∼𝐼𝑅(𝑥, 𝑦) ∨ 𝐴(𝑦) ≥ 𝛼 means that (1 − 𝐼𝑅(𝑥, 𝑦))− ∨ 𝐴(𝑦)− ≥
𝛼
− and (1 − 𝐼𝑅(𝑥, 𝑦))+ ∨ 𝐴(𝑦)+ ≥ 𝛼

+, which cannot deduce
that 1 − 𝐼𝑅(𝑥, 𝑦) ≥ 𝛼 or 𝐴(𝑦) ≥ 𝛼 in Definition 3. Thus for
all 𝑦 ∈ 𝑊, ∼𝐼𝑅(𝑥, 𝑦) ∨ 𝐴(𝑦) ≥ 𝛼, we cannot deduce that
𝐼𝑅(𝑥, 𝑦) ≤ 1 − 𝛼 or 𝐴(𝑦) ≥ 𝛼, and note that, for all 𝑦 ∈ 𝑊,
∼𝐼𝑅(𝑥, 𝑦)∨𝐴(𝑦) ≥ 𝛼 if and only if ∧

𝑦∈𝑊

(∼𝐼𝑅(𝑥, 𝑦)∨𝐴(𝑦)) ≥

𝛼. Therefore for all 𝑦 ∈ 𝑊, 𝐼𝑅(𝑥, 𝑦) ≤ 1 − 𝛼 or 𝐴(𝑦) ≥ 𝛼

cannot hold.
Next, we show that (𝑅𝐼𝐹(𝐴))

𝛼

⊆ 𝑅𝐼𝐹
󸀠

1−𝛼

(𝐴
𝛼

) does not
hold.

Example 26. Suppose that (𝑈,𝑊, 𝐼𝑅) is a generalized interval-
valued fuzzy approximation space,

𝑈 = {𝑥
1

, 𝑥
2

} , 𝑊 = {𝑦
1

, 𝑦
2

, 𝑦
3

} , 𝛼 = [0.3, 0.6] ,

𝐼𝑅 (𝑥
1

) =
[0.3, 0.8]

𝑦
1

+
[0.4, 0.9]

𝑦
2

+
[0.5, 0.6]

𝑦
3

,

𝐴 =
[0.4, 0.5]

𝑦
1

+
[0.3, 0.4]

𝑦
2

+
[0.4, 0.9]

𝑦
3

,

(15)

since

𝑅𝐼𝐹 (𝐴) (𝑥
1

) = ⋀

𝑦∈𝑊

(∼𝐼𝑅 (𝑥
1

, 𝑦) ∨ 𝐴 (𝑦))

= [0.3, 0.6] ≥ [0.3, 0.6] , 𝑥
1

∈ (𝑅𝐼𝐹 (𝐴))
𝛼

.

(16)

On the other hand, since 𝐼𝑅
1−𝛼

(𝑥
1

) = 𝑦
2

, 𝐴
𝛼

= 𝑦
3

,
we have 𝐼𝑅

1−𝛼

(𝑥
1

) ̸⊆ 𝐴
𝛼

; hence 𝑥
1

∉ 𝑅𝐼𝐹
󸀠

1−𝛼

(𝐴
𝛼

). This
shows that 𝑥

1

∈ (𝑅𝐼𝐹(𝐴))
𝛼

, but 𝑥
1

∉ 𝑅𝐼𝐹
󸀠

1−𝛼

(𝐴
𝛼

). Therefore
(𝑅𝐼𝐹(𝐴))

𝛼

̸⊆ 𝑅𝐼𝐹
󸀠

1−𝛼

(𝐴
𝛼

).

Theorem 27. Let (𝑈,𝑊, 𝐼𝑅) be a generalized interval-valued
fuzzy approximation space, 𝐴 ∈ 𝐹

𝐼

(𝑊); then 𝑅𝐼𝐹(𝐴) =

𝑅𝐼𝐹
󸀠

(𝐴).

Proof. According to Theorem 7, we have 𝑅𝐼𝐹(𝐴) =

∪
𝛼∈[𝐼]

𝛼(𝑅𝐼𝐹(𝐴))
𝛼

, and from Lemma 23, we see that

𝑅𝐼𝐹
󸀠

𝛼

(𝐴
𝛼

) ⊆ (𝑅𝐼𝐹(A))
𝛼

, for all 𝛼 ∈ [𝐼].
Therefore, 𝑅𝐼𝐹󸀠(𝐴) ⊆ 𝑅𝐼𝐹(𝐴).
Next we prove that 𝑅𝐼𝐹(𝐴) ⊆ 𝑅𝐼𝐹󸀠(𝐴).
In fact, for all 𝑥 ∈ 𝑈, 𝑦 ∈ 𝑊, there exists 𝛼 = 𝐼𝑅(𝑥, 𝑦) ∧

𝐴(𝑦) ∈ [𝐼], such that 𝑦 ∈ 𝐼𝑅
𝛼

(𝑥) ∩ 𝐴
𝛼

. We observe that
𝑦 ∈ 𝐼𝑅

𝛼

(𝑥) ∩ 𝐴
𝛼

means that 𝐼𝑅
𝛼

(𝑥) ∩ 𝐴
𝛼

̸= 0, which can
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deduce that 𝑥 ∈ 𝑅𝐼𝐹
󸀠

𝛼

(𝐴
𝛼

); that is, 𝑅𝐼𝐹󸀠
𝛼

(𝐴
𝛼

)(𝑥) = 1; hence
𝛼 ∧ 𝑅𝐼𝐹

󸀠

𝛼

(𝐴
𝛼

)(𝑥) = 𝛼 = 𝐼𝑅(𝑥, 𝑦) ∧ 𝐴(𝑦).
So, for arbitrary value of 𝑦, 𝑅𝐼𝐹󸀠(𝐴)(𝑥) = ∨

𝛼∈[𝐼]

(𝛼 ∧

𝑅𝐼𝐹
󸀠

𝛼

(𝐴
𝛼

)(𝑥)) ≥ ∨
𝑦∈𝑊

(𝐼𝑅(𝑥, 𝑦) ∧ 𝐴(𝑦)) = 𝑅𝐼𝐹(𝐴)(𝑥), which

yields 𝑅𝐼𝐹(𝐴) ⊆ 𝑅𝐼𝐹󸀠(𝐴).
Therefore, 𝑅𝐼𝐹(𝐴) = 𝑅𝐼𝐹󸀠(𝐴).

Theorem 28. Let (𝑈,𝑊, 𝐼𝑅) be a generalized interval-valued
fuzzy approximation space, 𝐴 ∈ 𝐹

𝐼

(𝑊); then 𝑅𝐼𝐹(𝐴) =

𝑅𝐼𝐹
󸀠

(𝐴).

Proof. In view of Theorem 7, we have 𝑅𝐼𝐹(𝐴) = ∪
𝛼∈[𝐼]

𝛼(𝑅𝐼𝐹(𝐴))
𝛼

, and from Lemma 25, 𝑅𝐼𝐹󸀠
1−𝛼

(𝐴
𝛼

) ⊆ (𝑅𝐼𝐹(𝐴))
𝛼

,
for all 𝛼 ∈ [𝐼].

Then 𝑅𝐼𝐹󸀠(𝐴) ⊆ 𝑅𝐼𝐹(𝐴).
Now we prove that 𝑅𝐼𝐹(𝐴) ⊆ 𝑅𝐼𝐹

󸀠

(𝐴). For all 𝑥 ∈ 𝑈,
suppose that

𝛼
1

= [

[

0, ⋀

𝑦∈𝑊

(∼𝐼𝑅 (𝑥, 𝑦) ∨ 𝐴 (𝑦))
+

]

]

,

𝛼
2

= [

[

⋀

𝑦∈𝑊

(∼𝐼𝑅 (𝑥, 𝑦) ∨ 𝐴 (𝑦))
−

,

⋀

𝑦∈𝑊

(∼𝐼𝑅 (𝑥, 𝑦) ∨ 𝐴 (𝑦))
−]

]

.

(17)

(1) We verify that 𝑥 ∈ 𝑅𝐼𝐹󸀠
1−𝛼

1

(𝐴
𝛼

1

). Let

𝛼
1

= [

[

0, ⋀

𝑦∈𝑊

((1 − 𝐼𝑅(𝑥, 𝑦)
−

) ∨ 𝐴(𝑦)
+

)]

]

,

1 − 𝛼
1

= [

[

⋁

𝑦∈𝑊

(𝐼𝑅(𝑥, 𝑦)
−

∧ (1 − A(𝑦)+)) , 1]
]

.

(18)

Note that, for all 𝑦
0

∈ 𝑊, 𝑦
0

∈ 𝐼𝑅
1−𝛼

1

(𝑥), such that
𝐼𝑅(𝑥, 𝑦

0

) > 1 − 𝛼
1

, and from (1 − 𝛼
1

)
+

= 1, we have
𝐼𝑅(𝑥, 𝑦

0

)
−

> ∨
𝑦∈𝑊

(𝐼𝑅(𝑥, 𝑦)
−

∧ (1 − 𝐴(𝑦)
+

)).
Further from 𝑦

0

∈ 𝑊, we have 𝐼𝑅(𝑥, 𝑦
0

)
−

> 𝐼𝑅(𝑥, 𝑦
0

)
−

∧

(1 − 𝐴(𝑦
0

)
+

) .
Therefore we obtain that 𝐼𝑅(𝑥, 𝑦

0

)
−

> 1−𝐴(𝑦
0

)
+ and 1−

𝐴(𝑦
0

)
+

= 𝐼𝑅(𝑥, 𝑦
0

)
−

∧ (1 − 𝐴(𝑦
0

)
+

).
Because 𝐼𝑅(𝑥, 𝑦

0

)
−

∧(1−𝐴(𝑦
0

)
+

) ≤ ∨
𝑦∈𝑊

(𝐼𝑅(𝑥, 𝑦)
−

∧(1−

𝐴(𝑦)
+

)), we have 1−𝐴(𝑦
0

)
+

≤ ∨
𝑦∈𝑊

(𝐼𝑅(𝑥, 𝑦)
−

∧(1−𝐴(𝑦)
+

)),

such that 𝐴(𝑦
0

)
+

≥ ∧
𝑦∈𝑊

((1 − 𝐼𝑅(𝑥, 𝑦)
−

) ∨ 𝐴(𝑦)
+

), and from

𝛼
−

1

= 0, we get 𝐴(𝑦
0

) ≥ 𝛼
1

; that is, 𝑦
0

∈ 𝐴
𝛼

1

.
So, for arbitrary value of 𝑦

0

, 𝐼𝑅
1−𝛼

1

(𝑥) ⊆ 𝐴
𝛼

1

; that is, 𝑥 ∈
𝑅𝐼𝐹
󸀠

1−𝛼

1

(𝐴
𝛼

1

).

(2) Similar to the proof shown in (1), we have 𝑥 ∈

𝑅𝐼𝐹
󸀠

1−𝛼

2

(𝐴
𝛼

2

). Note that

𝑅𝐼𝐹
󸀠

(𝐴) (𝑥)

= ⋁

𝛼∈[𝐼]

(𝛼 ∧ 𝑅𝐼𝐹
󸀠

1−𝛼

(𝐴
𝛼

) (𝑥))

≥ (𝛼
1

∧ 𝑅𝐼𝐹
󸀠

1−𝛼

1

(𝐴
𝛼

1

) (𝑥)) ∨ (𝛼
2

∧ 𝑅𝐼𝐹
󸀠

1−𝛼

2

(𝐴
𝛼

2

) (𝑥))

= 𝛼
1

∨ 𝛼
2

= [

[

⋀

𝑦∈𝑊

(∼𝐼𝑅 (𝑥, 𝑦) ∨ 𝐴 (𝑦))
−

, ⋀

𝑦∈𝑊

(∼𝐼𝑅 (𝑥, 𝑦) ∨ 𝐴 (𝑦))
+]

]

= 𝑅𝐼𝐹 (𝐴) (𝑥) .

(19)

For any 𝑥, 𝑅𝐼𝐹(𝐴) ⊆ 𝑅𝐼𝐹󸀠(𝐴).
Therefore, 𝑅𝐼𝐹(𝐴) = 𝑅𝐼𝐹󸀠(𝐴).

Remark 29. According toTheorems 27 and 28,𝑅𝐼𝐹󸀠 and𝑅𝐼𝐹󸀠

satisfy the property of duality.

Theorem 30. Let (𝑈,𝑊, 𝐼𝑅) be a generalized interval-valued
fuzzy approximation space, 𝐴 ∈ 𝐹

𝐼

(𝑊); then ∼ 𝑅𝐼𝐹(𝐴) =

𝑅𝐼𝐹(∼𝐴), ∼𝑅𝐼𝐹(𝐴) = 𝑅𝐼𝐹(∼𝐴).

Proof. We observe that, for all 𝑥 ∈ 𝑈,

𝑅𝐼𝐹 (∼𝐴) (𝑥)

= [

[

⋁

𝑦∈𝑊

(𝐼𝑅 (𝑥, 𝑦) ∧ (∼𝐴) (𝑦))
−

,

⋁

𝑦∈𝑊

(𝐼𝑅 (𝑥, 𝑦) ∧ (∼𝐴) (𝑦))
+]

]

= [

[

⋁

𝑦∈𝑊

(𝐼𝑅(𝑥, 𝑦)
−

∧ (1 − 𝐴(𝑦)
+

)) ,

⋁

𝑦∈𝑊

(𝐼𝑅(𝑥, 𝑦)
+

∧ (1 − 𝐴(𝑦)
−

))]

]

= 1 − [

[

⋀

𝑦∈𝑊

((1 − 𝐼𝑅(𝑥, 𝑦)
+

) ∨ 𝐴(𝑦)
−

) ,

⋀

𝑦∈𝑊

((1 − 𝐼𝑅(𝑥, 𝑦)
−

) ∨ 𝐴(𝑦)
+

)]

]

= 1 − [

[

⋀

𝑦∈𝑊

((1 − 𝐼𝑅 (𝑥, 𝑦))
−

∨ 𝐴(𝑦)
−

) ,

⋀

𝑦∈𝑊

((1 − 𝐼𝑅 (𝑥, 𝑦))
+

∨ 𝐴(𝑦)
+

)]

]
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= 1 − [

[

⋀

𝑦∈𝑊

((1 − 𝐼𝑅 (𝑥, 𝑦)) ∨ A (𝑦))−,

⋀

𝑦∈𝑊

((1 − 𝐼𝑅 (𝑥, 𝑦)) ∨ 𝐴 (𝑦))
+]

]

=∼ 𝑅𝐼𝐹 (𝐴) (𝑥) .

(20)

Hence, ∼𝑅𝐼𝐹(𝐴) = 𝑅𝐼𝐹(∼𝐴).
Similarly, ∼𝑅𝐼𝐹(𝐴) = 𝑅𝐼𝐹(∼𝐴).

5. Properties of the Approximation Operators

Theorem 31. Let (𝑈,𝑊, 𝐼𝑅) be a generalized interval-valued
fuzzy approximation space; then the lower approximation
operator 𝑅𝐼𝐹󸀠 and the upper approximation operator 𝑅𝐼𝐹󸀠

satisfy the following properties.
For all 𝐴, 𝐵 ∈ 𝐹𝐼(𝑊), 𝑎 ∈ [𝐼],
(1) 𝑅𝐼𝐹󸀠(𝐴 ∪ 𝑎) = 𝑅𝐼𝐹

󸀠

(𝐴) ∪ 𝑎,

𝑅𝐼𝐹
󸀠

(𝐴 ∩ 𝑎) = 𝑅𝐼𝐹
󸀠

(𝐴) ∩ 𝑎;

(2) 𝑅𝐼𝐹󸀠(𝐴 ∪ 𝐵) = 𝑅𝐼𝐹
󸀠

(𝐴) ∪ 𝑅𝐼𝐹
󸀠

(𝐵),
𝑅𝐼𝐹
󸀠

(𝐴 ∩ 𝐵) = 𝑅𝐼𝐹
󸀠

(𝐴) ∩ 𝑅𝐼𝐹
󸀠

(𝐵);
(3) if 𝐴 ⊆ 𝐵 then 𝑅𝐼𝐹

󸀠

(𝐴) ⊆ 𝑅𝐼𝐹
󸀠

(𝐵),

and 𝑅𝐼𝐹󸀠(𝐴) ⊆ 𝑅𝐼𝐹󸀠(𝐵);
(4) 𝑅𝐼𝐹󸀠(𝐴 ∪ 𝐵) ⊇ 𝑅𝐼𝐹

󸀠

(𝐴) ∪ 𝑅𝐼𝐹
󸀠

(𝐵),

𝑅𝐼𝐹
󸀠

(𝐴 ∩ 𝐵) ⊆ 𝑅𝐼𝐹
󸀠

(𝐴) ∩ 𝑅𝐼𝐹
󸀠

(𝐵).
Here 𝑎 is a constant interval-valued fuzzy set; that is, 𝑎(𝑥) = 𝑎,
for all 𝑥 ∈ 𝑈 and 𝑥 ∈ 𝑊.

Proof. (1) We prove that 𝑅𝐼𝐹󸀠(𝐴 ∪ 𝑎) = 𝑅𝐼𝐹
󸀠

(𝐴) ∪ 𝑎.
For all 𝑥 ∈ 𝑈, let

𝐷
1

= {𝛼 ∈ [𝐼] : ∀𝑦 ∈ 𝐼𝑅
1−𝛼

(𝑥) , 𝐴 (𝑦) ≥ 𝛼 or 𝑎 ≥ 𝛼} ,

𝐷
2

= {𝛼 ∈ [𝐼] : ∀𝑦 ∈ 𝐼𝑅
1−𝛼

(𝑥) , 𝐴 (𝑦) ∨ 𝑎 ≥ 𝛼} ,

(21)

where ∀𝑥 is “for all 𝑥” and ∃𝑥 is “there exists 𝑥,” which are the
same as follows.

Obviously,𝐷
1

⊆ 𝐷
2

, ∨
𝛼∈𝐷

1

𝛼 ≤ ∨
𝛼∈𝐷

2

𝛼. Set𝐷
3

= 𝐷
2

−𝐷
1

,

for all 𝛽 ∈ 𝐷
3

; two cases appear:

𝛽
+

≤ 𝑎
+

, 𝛽
−

≤ ⋀

𝑦∈𝑅

1−𝛼
(𝑥)

𝐴(𝑦)
−

(22)

or

𝛽
−

≤ 𝑎
−

, 𝛽
+

≤ ⋀

𝑦∈𝑅

1−𝛼
(𝑥)

𝐴(𝑦)
+

. (23)

For the first case, suppose 𝑏 = [∧
𝑦∈𝑅

1−𝛼
(𝑥)

𝐴(𝑦)
−

, ∧
𝑦∈𝑅

1−𝛼
(𝑥)

𝐴(𝑦)
+

], because 𝑎, 𝑏 ∈ 𝐷
1

; we have 𝛽 ≤ 𝑎 ∨ 𝑏 ≤ ∨
𝛼∈𝐷

1

𝛼. The

proof for the second case is similar.

For arbitrary 𝛽, it is easy to see that ∨
𝛼∈𝐷

3

𝛼 ≤ ∨
𝛼∈𝐷

1

𝛼, so
∨
𝛼∈𝐷

2

𝛼 = ∨
𝛼∈𝐷

1

𝛼:

𝑅𝐼𝐹
󸀠

(𝐴 ∪ 𝑎) (𝑥)

= ⋁

𝛼∈[𝐼]

(𝛼 ∧ 𝑅𝐼𝐹
󸀠

1−𝛼

(𝐴 ∪ 𝑎)
𝛼

(𝑥))

= ∨ {𝛼 ∈ [𝐼] : 𝐼𝑅
1−𝛼

(𝑥) ⊆ (𝐴 ∪ 𝑎)
𝛼

}

= ∨ {𝛼 ∈ [𝐼] : ∀𝑦 ∈ 𝐼𝑅
1−𝛼

(𝑥) , 𝐴 (𝑦) ∨ 𝑎 ≥ 𝛼}

= ∨ {𝛼 ∈ [𝐼] : ∀𝑦 ∈ 𝐼𝑅
1−𝛼

(𝑥) , 𝐴 (𝑦) ≥ 𝛼 or 𝑎 ≥ 𝛼}
= 𝑎 ∨ (∨ {𝛼 ∈ [𝐼] : ∀𝑦 ∈ 𝐼𝑅

1−𝛼

(𝑥) , 𝐴 (𝑦) ≥ 𝛼})

= 𝑎 ∨ 𝑅𝐼𝐹
󸀠

(𝐴) (𝑥)

= (𝑎 ∪ 𝑅𝐼𝐹
󸀠

(𝐴)) (𝑥) .

(24)

Hence, 𝑅𝐼𝐹󸀠(𝐴 ∪ 𝑎) = 𝑅𝐼𝐹
󸀠

(𝐴) ∪ 𝑎.

Similarly, 𝑅𝐼𝐹󸀠(𝐴 ∩ 𝑎) = 𝑅𝐼𝐹
󸀠

(𝐴) ∩ 𝑎.

(2) We verify 𝑅𝐼𝐹󸀠(𝐴 ∪ 𝐵) = 𝑅𝐼𝐹
󸀠

(𝐴) ∪ 𝑅𝐼𝐹
󸀠

(𝐵).
For all 𝑥 ∈ 𝑈, let

𝐷
4

= {𝛼 ∈ [𝐼] : ∃𝑦 ∈ 𝐼𝑅
𝛼

(𝑥) , 𝐴 (𝑦) ≥ 𝛼 or 𝐵 (𝑦) ≥ 𝛼} ;

𝐷
5

= {𝛼 ∈ [𝐼] : ∃𝑦 ∈ 𝐼𝑅
𝛼

(𝑥) , 𝐴 (𝑦) ∨ 𝐵 (𝑦) ≥ 𝛼} ,

(25)

∨
𝛼∈𝐷

5

𝛼 = ∨
𝛼∈𝐷

4

𝛼 holds by using similar arguments as in

(1).
We observe that

𝑅𝐼𝐹
󸀠

(𝐴 ∪ 𝐵) (𝑥)

= ⋁

𝛼∈[𝐼]

(𝛼 ∧ 𝑅𝐼𝐹
󸀠

𝛼

(𝐴 ∪ 𝐵)
𝛼

(𝑥))

= ∨ {𝛼 ∈ [𝐼] : 𝐼𝑅
𝛼

(𝑥) ∩ (𝐴 ∪ 𝐵)
𝛼

̸= 0}

= ∨ {𝛼 ∈ [𝐼] : ∃𝑦 ∈ 𝐼𝑅
𝛼

(𝑥) , (𝐴 ∪ 𝐵) (𝑦) ≥ 𝛼}

= ∨ {𝛼 ∈ [𝐼] : ∃𝑦 ∈ 𝐼𝑅
𝛼

(𝑥) , 𝐴 (𝑦) ∨ 𝐵 (𝑦) ≥ 𝛼}

= ∨ {𝛼 ∈ [𝐼] : ∃𝑦 ∈ 𝐼𝑅
𝛼

(𝑥) , 𝐴 (𝑦) ≥ 𝛼 or 𝐵 (𝑦) ≥ 𝛼}

= (∨ {𝛼 ∈ [𝐼] : ∃𝑦 ∈ 𝐼𝑅
𝛼

(𝑥) , 𝐴 (𝑦) ≥ 𝛼})

∨ (∨ {𝛼 ∈ [𝐼] : ∃𝑦 ∈ 𝐼𝑅
𝛼

(𝑥) , 𝐵 (𝑦) ≥ 𝛼})

= ( ⋁

𝛼∈[𝐼]

(𝛼 ∧ 𝑅𝐼𝐹
󸀠

𝛼

(𝐴)
𝛼

(𝑥)))

∨ ( ⋁

𝛼∈[𝐼]

(𝛼 ∧ 𝑅𝐼𝐹
󸀠

𝛼

(𝐵)
𝛼

(𝑥)))

= 𝑅𝐼𝐹
󸀠

(𝐴) (𝑥) ∨ 𝑅𝐼𝐹
󸀠

(𝐵) (𝑥)

= (𝑅𝐼𝐹
󸀠

(𝐴) ∪ 𝑅𝐼𝐹
󸀠

(𝐵)) (𝑥) ,

(26)

which yields that 𝑅𝐼𝐹󸀠(𝐴 ∪ 𝐵) = 𝑅𝐼𝐹
󸀠

(𝐴) ∪ 𝑅𝐼𝐹
󸀠

(𝐵).
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Similarly, 𝑅𝐼𝐹󸀠(𝐴 ∩ 𝐵) = 𝑅𝐼𝐹
󸀠

(𝐴) ∩ 𝑅𝐼𝐹
󸀠

(𝐵).
(3) We prove that if 𝐴 ⊆ 𝐵 then 𝑅𝐼𝐹

󸀠

(𝐴) ⊆ 𝑅𝐼𝐹
󸀠

(𝐵).
If 𝐴 ⊆ 𝐵, then 𝐴

𝛼

⊆ 𝐵
𝛼

. According to Definition 20
and Theorem 3.2(4) of [18], we have 𝑅𝐼𝐹

󸀠

1−𝛼

(𝐴
𝛼

) ⊆

𝑅𝐼𝐹
󸀠

1−𝛼

(𝐵
𝛼

), so∪
𝛼∈[𝐼]

𝛼𝑅𝐼𝐹
󸀠

1−𝛼

(𝐴
𝛼

) ⊆ ∪
𝛼∈[𝐼]

𝛼𝑅𝐼𝐹
󸀠

1−𝛼

(𝐵
𝛼

); that

is, 𝑅𝐼𝐹󸀠(𝐴) ⊆ 𝑅𝐼𝐹󸀠(𝐵).
Similarly, if 𝐴 ⊆ 𝐵, then 𝑅𝐼𝐹󸀠(𝐴) ⊆ 𝑅𝐼𝐹󸀠(𝐵).
(4) From (3), one immediately obtains (4).

Remark 32. FromTheorem 31 (1), one can see that𝑅𝐼𝐹󸀠(𝑊) =

𝑈, 𝑅𝐼𝐹
󸀠

(0) = 0.

Theorem 33. Let (𝑈,𝑊, 𝐼𝑅) be a generalized interval-valued
fuzzy approximation space; then the following conditions are
equivalent:

(1) 𝐼𝑅 is serial;

(2) 𝑅𝐼𝐹󸀠(𝐴) ⊆ 𝑅𝐼𝐹󸀠(𝐴), for all 𝐴 ⊆ 𝐹
𝐼

(𝑊);

(3) 𝑅𝐼𝐹󸀠(𝑊) = 𝑈;
(4) 𝑅𝐼𝐹󸀠(0) = 0.

Theorem 34. Let (𝑈, 𝐼𝑅) be a generalized interval-valued
fuzzy approximation space; then the following conditions are
equivalent:

(1) 𝐼𝑅 is reflexive;
(2) 𝑅𝐼𝐹󸀠(𝐴) ⊆ 𝐴, for all 𝐴 ⊆ 𝐹

𝐼

(𝑊);

(3) 𝐴 ⊆ 𝑅𝐼𝐹
󸀠

(𝐴), for all 𝐴 ⊆ 𝐹
𝐼

(𝑊).

Lemma 35. Let (𝑈,𝑊, 𝐼𝑅) be a generalized interval-valued
fuzzy approximation space; then the following properties hold:

(1) 𝑅𝐼𝐹󸀠(1
{𝑦}

)(𝑥) = 𝐼𝑅(𝑥, 𝑦), (𝑥, 𝑦) ∈ 𝑈 ×𝑊;

(2) 𝑅𝐼𝐹󸀠(1
𝑊\{𝑦}

)(𝑥) = 1 − 𝐼𝑅(𝑥, 𝑦),(𝑥, 𝑦) ∈ 𝑈 ×𝑊.

Here 1
𝐴

is an interval-valued fuzzy set which gets interval
value [1, 1] in the set 𝐴 and interval value [0, 0] in the set ∼𝐴,
respectively.

Remark 36. The proofs of Theorems 33 and 34 as well as
Lemma 35 are similar to Theorems 3.8, 3.9, and 3.7 in [16],
respectively; it suffices to change point values to interval
values in the proof.

Lemma 37. Let (𝑈, 𝐼𝑅) be a generalized interval-valued fuzzy
approximation space and 𝐴 is an interval-valued fuzzy set on
𝑈; then∀𝛼 ∈ [𝐼],𝑅𝐼𝐹󸀠

𝛼

(𝐴
𝛼

) ⊆ (𝑅𝐼𝐹
󸀠

(𝐴))
𝛼

, and𝑅𝐼𝐹󸀠
1−𝛼

(𝐴
𝛼

) ⊆

(𝑅𝐼𝐹
󸀠

(𝐴))
𝛼

.

Proof. Clearly,

𝑅𝐼𝐹
󸀠

𝛼

(𝐴
𝛼

) = (𝛼𝑅𝐼𝐹
󸀠

𝛼

(𝐴
𝛼

))
𝛼

⊆ (𝛼𝑅𝐼𝐹
󸀠

𝛼

(𝐴
𝛼

) ∪ ( ⋃

𝛽∈[𝐼]−𝛼

𝛽𝑅𝐼𝐹
󸀠

𝛽

(𝐴
𝛽

)))

𝛼

= ( ⋃

𝛽∈[𝐼]

𝛽𝑅𝐼𝐹
󸀠

𝛽

(𝐴
𝛽

))

𝛼

= (𝑅𝐼𝐹
󸀠

(𝐴))
𝛼

.

(27)

Hence, 𝑅𝐼𝐹󸀠
𝛼

(𝐴
𝛼

) ⊆ (𝑅𝐼𝐹
󸀠

(𝐴))
𝛼

.
Similarly, 𝑅𝐼𝐹󸀠

1−𝛼

(𝐴
𝛼

) ⊆ (𝑅𝐼𝐹
󸀠

(𝐴))
𝛼

.

Remark 38. 𝑅𝐼𝐹󸀠
𝛼

(𝐴
𝛼

) = (𝑅𝐼𝐹
󸀠

(𝐴))
𝛼

and 𝑅𝐼𝐹
󸀠

1−𝛼

(𝐴
𝛼

) =

(𝑅𝐼𝐹
󸀠

(𝐴))
𝛼

hold for the fuzzy rough set in Lemma 37, but
these are not true for the interval-valued fuzzy rough set.
The reason is that the two interval values cannot always be
comparable. Next, we give two examples to visualize this
effect.

Example 39. Suppose that (𝑈, 𝐼𝑅) is a generalized interval-
valued fuzzy approximation space, where 𝑈 = {𝑥

1

, 𝑥
2

},
𝐼𝑅(𝑥
1

) = [0.5, 0.5]/𝑥
1

+ [0.3, 0.7]/𝑥
2

, 𝐴 = [0.9, 1]/𝑥
1

+

[0.7, 0.9]/𝑥
2

, 𝛼 = [0.4, 0.6], 𝛽
1

= [0.5, 0.5], and 𝛽
2

=

[0.3, 0.7]. Since 𝐼𝑅
𝛼

(𝑥
1

) = 0, 𝐴
𝛼

= {𝑥
1

, 𝑥
2

}, we have 𝐼𝑅
𝛼

(𝑥
1

)∩

𝐴
𝛼

= 0. Hence 𝑥
1

∉ 𝑅𝐼𝐹
󸀠

𝛼

(𝐴
𝛼

).
On the other hand, since 𝐼𝑅

𝛽

1

(𝑥
1

) = {𝑥
1

}, 𝐴
𝛽

1

=

{𝑥
1

, 𝑥
2

}, 𝐼𝑅
𝛽

2

(𝑥
1

) = {𝑥
2

}, 𝐴
𝛽

2

= {𝑥
1

, 𝑥
2

}, we see that 𝑥
1

∈

𝑅𝐼𝐹
󸀠

𝛽

1

(𝐴
𝛽

1

) and 𝑥
1

∈ 𝑅𝐼𝐹
󸀠

𝛽

2

(𝐴
𝛽

2

) get 𝛽
1

∧ 𝑅𝐼𝐹
󸀠

𝛽

1

(𝐴
𝛽

1

)(𝑥
1

) =

𝛽
1

and 𝛽
2

∧ 𝑅𝐼𝐹
󸀠

𝛽

2

(𝐴
𝛽

2

)(𝑥
1

) = 𝛽
2

.
Note that ∨

𝛽∈[𝐼]

(𝛽 ∧ 𝑅𝐼𝐹
󸀠

𝛽

(𝐴
𝛽

)(𝑥
1

)) ≥ 𝛽
1

∨ 𝛽
2

> 𝛼; then

𝑅𝐼𝐹
󸀠

(𝐴)(𝑥
1

) > 𝛼. Hence, 𝑥
1

∈ (𝑅𝐼𝐹
󸀠

(𝐴))
𝛼

.

Example 40. Suppose that (𝑈, 𝐼𝑅) is a generalized interval-
valued fuzzy approximation space, where 𝑈 = {𝑥

1

, 𝑥
2

, 𝑥
3

},
𝐼𝑅(𝑥
1

) = [0.3, 0.7]/𝑥
1

+ [0.1, 0.8]/𝑥
2

+ [0.5, 0.5]/𝑥
3

, 𝐴 =

[0.5, 0.7]/𝑥
1

+ [0.6, 1]/𝑥
2

+ [0.7, 1]/𝑥
3

, 𝛼 = [0.4, 0.8], 𝛽
1

=

[0.2, 1], 𝛽
2

= [0.5, 0.6].
Since 𝐼𝑅

1−𝛼

(𝑥
1

) = {𝑥
1

}, 𝐴
𝛼

= {𝑥
2

, 𝑥
3

}, we have
𝐼𝑅
1−𝛼

(𝑥
1

) ̸⊆ 𝐴
𝛼

; hence, 𝑥
1

∉ 𝑅𝐼𝐹
󸀠

1−𝛼

(𝐴
𝛼

).
On the other hand, since 𝐼𝑅

1−𝛽

1

(𝑥
1

) = {𝑥
2

}, 𝐴
𝛽

1

=

{𝑥
2

, 𝑥
3

}, 𝐼𝑅
1−𝛽

2

(𝑥
1

) = {𝑥
3

}, 𝐴
𝛽

2

= {𝑥
2

, 𝑥
3

}, we conclude
that 𝑥

1

∈ 𝑅𝐼𝐹
󸀠

1−𝛽

1

(𝐴
𝛽

1

) and 𝑥
1

∈ 𝑅𝐼𝐹
󸀠

1−𝛽

2

(𝐴
𝛽

2

) get 𝛽
1

∧

𝑅𝐼𝐹
󸀠

1−𝛽

1

(𝐴
𝛽

1

)(𝑥
1

) = 𝛽
1

and 𝛽
2

∧ 𝑅𝐼𝐹
󸀠

1−𝛽

2

(𝐴
𝛽

2

)(𝑥
1

) = 𝛽
2

.
Note that ∨

𝛽∈[𝐼]

(𝛽∧𝑅𝐼𝐹
󸀠

1−𝛽

(𝐴
𝛽

)(𝑥
1

)) ≥ 𝛽
1

∨𝛽
2

> 𝛼; then

𝑅𝐼𝐹
󸀠

(𝐴)(𝑥
1

) > 𝛼.
Therefore, 𝑥

1

∈ (𝑅𝐼𝐹
󸀠

(𝐴))
𝛼

.

Theorem 41. Let (𝑈, 𝐼𝑅) be a generalized interval-valued
fuzzy approximation space; then the following conditions are
equivalent:

(1) 𝐼𝑅 is transitive;

(2) 𝑅𝐼𝐹󸀠(𝐴) ⊆ 𝑅𝐼𝐹󸀠(𝑅𝐼𝐹󸀠(𝐴)), for all 𝐴 ∈ 𝐹
𝐼

(𝑈);

(3) 𝑅𝐼𝐹󸀠(𝐴) ⊆ 𝑅𝐼𝐹󸀠(𝑅𝐼𝐹󸀠(𝐴)), for all 𝐴 ∈ 𝐹
𝐼

(𝑈).
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Proof. (1) ⇒ (2) For all 𝐴 ∈ 𝐹
𝐼

(𝑈), from Definition 20,
Lemma 37, andTheorem 3.6 of [18], we have

𝑅𝐼𝐹
󸀠

(𝑅𝐼𝐹
󸀠

(𝐴)) = ⋃

𝛼∈[𝐼]

𝛼𝑅𝐼𝐹
󸀠

1−𝛼

((𝑅𝐼𝐹
󸀠

(𝐴))
𝛼

)

⊇ ⋃

𝛼∈[𝐼]

𝛼𝑅𝐼𝐹
󸀠

1−𝛼

((𝑅𝐼𝐹
󸀠

1−𝛼

(𝐴
𝛼

)))

⊇ ⋃

𝛼∈[𝐼]

𝛼𝑅𝐼𝐹
󸀠

1−𝛼

(𝐴
𝛼

)

= 𝑅𝐼𝐹
󸀠

(𝐴) .

(28)

Hence 𝑅𝐼𝐹󸀠(𝐴) ⊆ 𝑅𝐼𝐹󸀠(𝑅𝐼𝐹󸀠(𝐴)).
(3) ⇒ (1) For all 𝑥, 𝑦, 𝑧 ∈ 𝑈, let

𝐷
6

= {𝛼 ∈ [𝐼] : ∃𝑢 ∈ 𝑈, 𝐼𝑅 (𝑥, 𝑢) ≥ 𝛼,

𝑅𝐼𝐹
󸀠

(1
{𝑧}

) (𝑢) = 𝐼𝑅 (𝑢, 𝑧) ≥ 𝛼} ,

𝐷
7

(𝑦) = 𝐼𝑅 (𝑥, 𝑦) ∧ 𝐼𝑅 (𝑦, 𝑧) , ∀𝑦 ∈ 𝑈.

(29)

For all 𝑦 ∈ 𝑈, suppose that 𝛼 = 𝐷
7

(𝑦) = 𝐼𝑅(𝑥, 𝑦) ∧

𝐼𝑅(𝑦, 𝑧); then 𝐼𝑅(𝑥, 𝑦) ≥ 𝛼, 𝐼𝑅(𝑦, 𝑧) ≥ 𝛼; hence 𝛼 ∈ 𝐷
6

and
by the arbitrary 𝑦, ∨

𝑦⊆𝑈

𝐷
7

(𝑦) ≤ ∨
𝛼∈𝐷

6

𝛼.

For all 𝛼 ∈ 𝐷
6

, there exists 𝑦 ∈ 𝑈, such that 𝛼 ≤

𝐼𝑅(𝑥, 𝑦) ∧ 𝐼𝑅(𝑦, 𝑧). For arbitrary 𝛼, ∨
𝑦⊆𝑈

𝐷
7

(𝑦) ≥ ∨
𝛼∈𝐷

6

𝛼,

so ∨
𝑦⊆𝑈

𝐷
7

(𝑦) = ∨
𝛼∈𝐷

6

𝛼. We observe that

𝑅𝐼𝐹
󸀠

(𝑅𝐼𝐹
󸀠

(1
{𝑧}

)) (𝑥)

= ∨ {𝛼 ∈ [𝐼] : 𝑥 ∈ 𝑅𝐼𝐹
󸀠

𝛼

(𝑅𝐼𝐹
󸀠

(1
{𝑧}

))
𝛼

}

= ∨ {𝛼 ∈ [𝐼] : 𝐼𝑅
𝛼

(𝑥) ∩ (𝑅𝐼𝐹
󸀠

(1
{𝑧}

))
𝛼

̸= 0}

= ∨ {𝛼 ∈ [𝐼] : ∃𝑢 ∈ 𝑈, 𝐼𝑅 (𝑥, 𝑢) ≥ 𝛼,

(𝑅𝐼𝐹
󸀠

(1
{𝑧}

)) (𝑢) = 𝐼𝑅 (𝑢, 𝑧) ≥ 𝛼}

= ⋁

𝑦∈𝑈

(𝐼𝑅 (𝑥, 𝑦) ∧ 𝐼𝑅 (𝑦, 𝑧)) .

(30)

Hence, by Lemma 35 (1), we have 𝑅𝐼𝐹󸀠(𝑅𝐼𝐹󸀠(1
{𝑧}

))(𝑥) ≤

𝑅𝐼𝐹
󸀠

(1
{𝑧}

)(𝑥) = 𝐼𝑅(𝑥, 𝑧); then 𝐼𝑅(𝑥, 𝑧) ≥ ∨
𝑦∈𝑈

(𝐼𝑅(𝑥, 𝑦) ∧

𝐼𝑅(𝑦, 𝑧)). Therefore, 𝐼𝑅 is transitive.
(2) ⇔ (3)This conclusion follows immediately from the

duality.

Remark 42. In [18], if 𝐼𝑅 is symmetric, then the approxima-
tion operators satisfy 𝐴 ⊆ 𝑅𝑅(𝐴) and 𝑅𝑅(𝐴) ⊆ 𝐴 for all
𝐴 ⊆ 𝑈; if 𝐼𝑅 is Euclidean, then the approximation operators
satisfy𝑅(𝐴) ⊆ 𝑅𝑅(𝐴) and𝑅𝑅(𝐴) ⊆ 𝑅(A) for all𝐴 ⊆ 𝑈.These
properties do not hold in the interval-valued fuzzy rough sets.
Next, we give a counterexample to show it.

Example 43. Suppose that (𝑈, 𝐼𝑅) is a generalized interval-
valued fuzzy approximation space, 𝑈 = {𝑥

1

, 𝑥
2

, 𝑥
3

}, and

𝐼𝑅 = (

[0.9, 1] [0.6, 0.6] [0.1, 0.6]

[0.6, 0.6] [0.8, 0.9] [0.1, 0.9]

[0.1, 0.6] [0.1, 0.9] [0.1, 1]

) ,

𝐴 =
[0.3, 0.4]

𝑥
1

+
[0.4, 0.6]

𝑥
2

+
[0.2, 0.8]

𝑥
3

,

𝑅𝐼𝐹
󸀠

(𝐴) =
[0.4, 0.6]

𝑥
1

+
[0.4, 0.8]

𝑥
2

+
[0.1, 0.8]

𝑥
3

,

𝑅𝐼𝐹
󸀠

(𝑅𝐼𝐹
󸀠

(𝐴)) =
[0.4, 0.6]

𝑥
1

+
[0.1, 0.6]

𝑥
2

+
[0.1, 0.9]

𝑥
3

.

(31)

From Definition 11, 𝐼𝑅 is symmetric and Euclidean, but
𝑅𝐼𝐹
󸀠

(𝐴) ⊆ 𝑅𝐼𝐹
󸀠

(𝑅𝐼𝐹
󸀠

(𝐴)) and 𝐴 ⊆ 𝑅𝐼𝐹
󸀠

(𝑅𝐼𝐹
󸀠

(𝐴)) do not
hold. According to the duality,𝑅𝐼𝐹󸀠(𝑅𝐼𝐹󸀠(𝐴)) ⊆ 𝑅𝐼𝐹󸀠(𝐴) and
𝑅𝐼𝐹
󸀠

(𝑅𝐼𝐹
󸀠

(𝐴)) ⊆ 𝐴 are not true.

Theorem 44. Let (𝑈, 𝐼𝑅) be a generalized interval-valued
fuzzy approximation space; then the following conditions are
equivalent:

(1) 𝐼𝑅(𝑥, 𝑧) ≤ ∧
𝑦∈𝑈

((1 − 𝐼𝑅(𝑥, 𝑦)) ∨ 𝐼𝑅(𝑦, 𝑧)), 𝑥, 𝑧 ∈ 𝑈;

(2) 𝑅𝐼𝐹󸀠(𝑅𝐼𝐹󸀠(𝐴)) ⊆ 𝑅𝐼𝐹󸀠(𝐴), 𝐴 ∈ 𝐹
𝐼

(𝑈);

(3) 𝑅𝐼𝐹󸀠(𝐴) ⊆ 𝑅𝐼𝐹󸀠(𝑅𝐼𝐹󸀠(𝐴)), 𝐴 ∈ 𝐹
𝐼

(𝑈).

Proof. (2) ⇒ (1) For all 𝑥, 𝑧 ∈ 𝑈, we have

𝑅𝐼𝐹
󸀠

(𝑅𝐼𝐹
󸀠

(1
𝑈\{𝑧}

)) (𝑥)

= ∨ {𝛼 ∈ [𝐼] : 𝑥 ∈ 𝑅𝐼𝐹
󸀠

𝛼

(𝑅𝐼𝐹
󸀠

(1
𝑈\{𝑧}

))
𝛼

}

= ∨ {𝛼 ∈ [𝐼] : 𝐼𝑅
𝛼

(𝑥) ∩ (𝑅𝐼𝐹
󸀠

(1
𝑈\{𝑧}

))
𝛼

̸= 0}

= ∨ {𝛼 ∈ [𝐼] : ∃𝑦 ∈ 𝑈, 𝐼𝑅 (𝑥, 𝑦) ≥ 𝛼, 𝑅𝐼𝐹
󸀠

(1
𝑈\{𝑧}

) (𝑦) ≥ 𝛼}

= ∨ {𝛼 ∈ [𝐼] : ∃𝑦 ∈ 𝑈, 𝐼𝑅 (𝑥, 𝑦) ≥ 𝛼, 1 − 𝐼𝑅 (𝑦, 𝑧) ≥ 𝛼}

= ∨ {𝛼 ∈ [𝐼] : ∃𝑦 ∈ 𝑈, 𝐼𝑅 (𝑥, 𝑦) ∧ (1 − 𝐼𝑅 (𝑦, 𝑧)) ≥ 𝛼}

= ⋁

𝑦∈𝑈

(𝐼𝑅 (𝑥, 𝑦) ∧ (1 − 𝐼𝑅 (𝑦, 𝑧))) .

(32)

By Lemma 35 (2), we get 𝑅𝐼𝐹󸀠(1
𝑈\{𝑧}

)(𝑥) = 1 − 𝐼𝑅(𝑥, 𝑧).
Hence, ∨

𝑦∈𝑈

(𝐼𝑅(𝑥, 𝑦) ∧ (1 − 𝐼𝑅(𝑦, 𝑧))) ≤ 1 − 𝐼𝑅(𝑥, 𝑧).

At the same time, we have

𝐼𝑅 (𝑥, 𝑧) ≤ 1 − ⋁

𝑦∈𝑈

(𝐼𝑅 (𝑥, 𝑦) ∧ (1 − 𝐼𝑅 (𝑦, 𝑧)))

= [1, 1] − [

[

⋁

𝑦∈𝑈

(𝐼𝑅(𝑥, 𝑦)
−

∧ (1 − 𝐼𝑅(𝑦, 𝑧)
+

)) ,
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⋁

𝑦∈𝑈

(𝐼𝑅(𝑥, 𝑦)
+

∧ (1 − 𝐼𝑅(𝑦, 𝑧)
−

))]

]

= [

[

1 − ⋁

𝑦∈𝑈

(𝐼𝑅(𝑥, 𝑦)
+

∧ (1 − 𝐼𝑅(𝑦, 𝑧)
−

)) ,

1 − ⋁

𝑦∈𝑈

(𝐼𝑅(𝑥, 𝑦)
−

∧ (1 − 𝐼𝑅(𝑦, 𝑧)
+

))]

]

= [

[

⋀

𝑦∈𝑈

((1 − 𝐼𝑅(𝑥, 𝑦)
+

) ∨ 𝐼𝑅(𝑦, 𝑧)
−

) ,

⋀

𝑦∈𝑈

((1 − 𝐼𝑅(𝑥, 𝑦)
−

) ∨ 𝐼𝑅(𝑦, 𝑧)
+

)]

]

= ⋀

𝑦∈𝑈

((1 − 𝐼𝑅 (𝑥, 𝑦)) ∨ 𝐼𝑅 (𝑦, 𝑧)) .

(33)

Therefore (1) has been proven.
(1) ⇒ (3) First we prove that

𝑅𝐼𝐹
󸀠

𝛼

(𝐴
𝛼

) ⊆ 𝑅𝐼𝐹
󸀠

1−𝛼

(𝑅𝐼𝐹
󸀠

𝛼

(𝐴
𝛼

)) . (34)

Note that, for all 𝑥 ∈ 𝑈, if 𝑥 ∈ 𝑅𝐼𝐹
󸀠

𝛼

(𝐴
𝛼

), then 𝐼𝑅
𝛼

(𝑥) ∩

𝐴
𝛼

̸= 0; that is, there exists 𝑧 ∈ 𝐼𝑅
𝛼

(𝑥) ∩ 𝐴
𝛼

. So we have
𝐼𝑅(𝑥, 𝑧) ≥ 𝛼 and 𝐴(𝑧) ≥ 𝛼.

Since

𝛼 ≤ 𝐼𝑅 (𝑥, 𝑧) ≤ ⋀

𝑦∈𝑈

((1 − 𝐼𝑅 (𝑥, 𝑦)) ∨ 𝐼𝑅 (𝑦, 𝑧))

= [

[

⋀

𝑦∈𝑈

((1 − 𝐼𝑅(𝑥, 𝑦)
+

) ∨ 𝐼𝑅(𝑦, 𝑧)
−

) ,

⋀

𝑦∈𝑈

((1 − 𝐼𝑅(𝑥, 𝑦)
−

) ∨ 𝐼𝑅(𝑦, 𝑧)
+

)]

]

,

(35)

we have

⋀

𝑦∈𝑈

((1 − 𝐼𝑅(𝑥, 𝑦)
+

) ∨ 𝐼𝑅(𝑦, 𝑧)
−

) ≥ 𝛼
−

,

⋀

𝑦∈𝑈

((1 − 𝐼𝑅(𝑥, 𝑦)
−

) ∨ 𝐼𝑅(𝑦, 𝑧)
+

) ≥ 𝛼
+

.

(36)

Hence, for all 𝑦 ∈ 𝑈, 𝐼𝑅(𝑥, 𝑦)+ ≤ 1 − 𝛼
− or 𝐼𝑅(𝑦, 𝑧)− ≥

𝛼
− and 𝐼𝑅(𝑥, 𝑦)− ≤ 1 − 𝛼

+ or 𝐼𝑅(𝑦, 𝑧)+ ≥ 𝛼
+ imply that if

𝐼𝑅(𝑥, 𝑦)
+

> 1−𝛼
−, then 𝐼𝑅(𝑦, 𝑧)− ≥ 𝛼−, and if 𝐼𝑅(𝑥, 𝑦)− > 1−

𝛼
+, then 𝐼𝑅(𝑦, 𝑧)+ ≥ 𝛼+. It follows that 𝐼𝑅(𝑥, 𝑦)+ > 1−𝛼− and
𝐼𝑅(𝑥, 𝑦)

−

> 1 − 𝛼
+ imply that 𝐼𝑅(𝑦, 𝑧)− ≥ 𝛼− and 𝐼𝑅(𝑦, 𝑧)+ ≥

𝛼
+; therefore, 𝐼𝑅(𝑥, 𝑦) > 1 − 𝛼 implies that 𝐼𝑅(𝑦, 𝑧) ≥ 𝛼,

because 𝐼𝑅(𝑥, 𝑦) > 1 − 𝛼 and 𝐼𝑅(𝑦, 𝑧) ≥ 𝛼 are equivalent to
𝑦 ∈ 𝐼𝑅

1−𝛼

(𝑥) and 𝑧 ∈ 𝐼𝑅
𝛼

(𝑦), respectively. If 𝑦 ∈ 𝐼𝑅
1−𝛼

(𝑥),
then 𝑧 ∈ 𝐼𝑅

𝛼

(𝑦), and since 𝐴(𝑧) ≥ 𝛼, 𝑦 ∈ 𝐼𝑅
1−𝛼

(𝑥) implies

that 𝑧 ∈ 𝐼𝑅
𝛼

(𝑦)∩𝐴
𝛼

; that is, 𝐼𝑅
𝛼

(𝑦)∩𝐴
𝛼

̸= 0. So𝑦 ∈ 𝐼𝑅
1−𝛼

(𝑥)

implies that 𝑦 ∈ 𝑅𝐼𝐹󸀠
𝛼

(𝐴
𝛼

).
For arbitrary 𝑦, it follows that 𝐼𝑅

1−𝛼

(𝑥) ⊆ 𝑅𝐼𝐹
󸀠

𝛼

(𝐴
𝛼

).
Hence, 𝑥 ∈ 𝑅𝐼𝐹

󸀠

1−𝛼

(𝑅𝐼𝐹
󸀠

𝛼

(𝐴
𝛼

)). Then, for arbitrary 𝑥, we
obtain 𝑅𝐼𝐹󸀠

𝛼

(𝐴
𝛼

) ⊆ 𝑅𝐼𝐹
󸀠

1−𝛼

(𝑅𝐼𝐹
󸀠

𝛼

(𝐴
𝛼

)).
By Lemma 37, it follows that

𝑅𝐼𝐹
󸀠

(𝑅𝐼𝐹
󸀠

(𝐴)) = ⋃

𝛼∈[𝐼]

𝛼𝑅𝐼𝐹
󸀠

1−𝛼

((𝑅𝐼𝐹
󸀠

(𝐴))
𝛼

)

⊇ ⋃

𝛼∈[𝐼]

𝛼𝑅𝐼𝐹
󸀠

1−𝛼

(𝑅𝐼𝐹
󸀠

𝛼

(𝐴
𝛼

))

⊇ ⋃

𝛼∈[𝐼]

𝛼𝑅𝐼𝐹
󸀠

𝛼

(𝐴
𝛼

)

= 𝑅𝐼𝐹
󸀠

(𝐴) .

(37)

Therefore 𝑅𝐼𝐹󸀠(𝐴) ⊆ 𝑅𝐼𝐹󸀠(𝑅𝐼𝐹󸀠(𝐴)).
(2) ⇔ (3)This conclusion follows immediately from the

duality.

Theorem 45. Let (𝑈, 𝐼𝑅) be a generalized interval-valued
fuzzy approximation space; then the following conditions are
equivalent:

(1) ∧
𝑦∈𝑈

((1 − 𝐼𝑅(𝑥, 𝑦)) ∨ 𝐼𝑅(𝑦, 𝑥)) = 1, 𝑥 ∈ 𝑈;

(2) 𝐼𝑅(𝑥, 𝑦) = 0 or 𝐼𝑅(𝑦, 𝑥) = 1, 𝑥, 𝑦 ∈ 𝑈;

(3) 𝑅𝐼𝐹󸀠(𝑅𝐼𝐹󸀠(𝐴)) ⊆ 𝐴, 𝐴 ∈ 𝐹
𝐼

(𝑈);

(4) 𝐴 ⊆ 𝑅𝐼𝐹
󸀠

(𝑅𝐼𝐹
󸀠

(𝐴)), 𝐴 ∈ 𝐹
𝐼

(𝑈).

Proof. (1) ⇔ (2) We observe that, for all 𝑥 ∈ 𝑈, ∧
𝑦∈𝑈

((1 −

𝐼𝑅(𝑥, 𝑦)) ∨ 𝐼𝑅(𝑦, 𝑥)) = 1 if and only if ((1 − 𝐼𝑅(𝑥, 𝑦)
+

) ∨

𝐼𝑅(𝑦, 𝑥)
−

) = 1 and ((1 − 𝐼𝑅(𝑥, 𝑦)
−

) ∨ 𝐼𝑅(𝑦, 𝑥)
+

) = 1;
namely, for all 𝑥 ∈ 𝑈, 𝐼𝑅(𝑥, 𝑦)+ = 0 or 𝐼𝑅(𝑦, 𝑥)− = 1 and
𝐼𝑅(𝑥, 𝑦)

−

= 0 or 𝐼𝑅(𝑦, 𝑥)+ = 1.
On the one hand, if 𝐼𝑅(𝑥, 𝑦)+ = 0, then 𝐼𝑅(𝑥, 𝑦)− = 0; we

have 𝐼𝑅(𝑥, 𝑦) = 0. If 𝐼𝑅(𝑥, 𝑦)+ ̸= 0, then 𝐼𝑅(𝑦, 𝑥)− = 1 and
𝐼𝑅(𝑦, 𝑥)

+

= 1; we have 𝐼𝑅(𝑦, 𝑥) = 1.
Hence, ∧

𝑦∈𝑈

((1 − 𝐼𝑅(𝑥, 𝑦)) ∨ 𝐼𝑅(𝑦, 𝑥)) = 1 if and only if

for all 𝑦 ∈ 𝑈, 𝐼𝑅(𝑥, 𝑦) = 0 or 𝐼𝑅(𝑦, 𝑥) = 1.
(2) ⇒ (4)We first prove that 𝐴

𝛼

⊆ 𝑅𝐼𝐹
󸀠

1−𝛼

(𝑅𝐼𝐹
󸀠

𝛼

(𝐴
𝛼

)).
Suppose that 𝑥 ∈ 𝐴

𝛼

, for all 𝑦 ∈ 𝑈, 𝐼𝑅(𝑥, 𝑦) = 0 or
𝐼𝑅(𝑦, 𝑥) = 1 if and only if 𝐼𝑅(𝑥, 𝑦) ̸= 0 deduces 𝐼𝑅(𝑦, 𝑥) = 1.
It follows that if 𝐼𝑅(𝑥, 𝑦) > 1 − 𝛼, then 𝐼𝑅(𝑦, 𝑥) ≥ 𝛼; that
is, 𝑥 ∈ 𝐼𝑅

𝛼

(𝑦). Further since 𝑥 ∈ 𝐴
𝛼

, 𝐼𝑅(𝑥, 𝑦) > 1 − 𝛼

implies that 𝑥 ∈ 𝐼𝑅
𝛼

(𝑦) ∩ 𝐴
𝛼

. So 𝐼𝑅
𝛼

(𝑦) ∩ 𝐴
𝛼

̸= 0. Note
that 𝐼𝑅(𝑥, 𝑦) > 1 − 𝛼 and 𝐼𝑅

𝛼

(𝑦) ∩ 𝐴
𝛼

̸= 0 are equivalent
to 𝑦 ∈ 𝐼𝑅

1−𝛼

(𝑥) and 𝑦 ∈ 𝑅𝐼𝐹
󸀠

𝛼

(𝐴
𝛼

), respectively; we have
if 𝐼𝑅(𝑥, 𝑦) > 1 − 𝛼, then 𝑥 ∈ 𝐼𝑅

𝛼

(𝑦) ∩ 𝐴
𝛼

. It shows that
if 𝑦 ∈ 𝐼𝑅

1−𝛼

(𝑥), then 𝑦 ∈ 𝑅𝐼𝐹
󸀠

𝛼

(𝐴
𝛼

). By the arbitrary 𝑦,
𝐼𝑅
1−𝛼

(𝑥) ⊆ 𝑅𝐼𝐹
󸀠

𝛼

(𝐴
𝛼

) holds; namely, 𝑥 ∈ 𝑅𝐼𝐹󸀠
1−𝛼

(𝑅𝐼𝐹
󸀠

𝛼

(𝐴
𝛼

)).
For any 𝑥, 𝐴

𝛼

∈ 𝑅𝐼𝐹
󸀠

1−𝛼

(𝑅𝐼𝐹
󸀠

𝛼

(𝐴
𝛼

)) holds.
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On the other hand, in view of Lemma 37, we have

𝑅𝐼𝐹
󸀠

(𝑅𝐼𝐹
󸀠

(𝐴)) = ⋃

𝛼∈[I]
𝛼𝑅𝐼𝐹
󸀠

1−𝛼

((𝑅𝐼𝐹
󸀠

(𝐴))
𝛼

)

⊇ ⋃

𝛼∈[𝐼]

𝛼𝑅𝐼𝐹
󸀠

1−𝛼

(𝑅𝐼𝐹
󸀠

𝛼

(𝐴
𝛼

))

⊇ ⋃

𝛼∈[𝐼]

𝛼𝐴
𝛼

= 𝐴.

(38)

(3) ⇒ (1) For all 𝑥, 𝑧 ∈ 𝑈, from the proof of “(2) ⇒ (1)”
inTheorem 44, we know that∨

𝑦∈𝑈

(𝐼𝑅(𝑥, 𝑦)∧(1−𝐼𝑅(𝑦, 𝑧))) =

𝑅𝐼𝐹
󸀠

(𝑅𝐼𝐹
󸀠

(1
𝑈/{𝑥}

))(𝑧) .
Furthermore, since 𝑅𝐼𝐹󸀠(𝑅𝐼𝐹󸀠(1

𝑈/{𝑥}

))(𝑧) ≤ 1
𝑈/{𝑥}

(𝑧),
it follows that ∨

𝑦∈𝑈

(𝐼𝑅(𝑥, 𝑦) ∧ (1 − 𝐼𝑅(𝑦, 𝑧))) ≤ 1
𝑈/{𝑥}

(𝑧);

namely, ∧
𝑦∈𝑈

((1 − 𝐼𝑅(𝑥, 𝑦)) ∨ 𝐼𝑅(𝑦, 𝑧)) ≥ 1 − 1
𝑈/{𝑥}

(𝑧).

When 𝑧 = 𝑥, we have ∧
𝑦∈𝑈

((1 − 𝐼𝑅(𝑥, 𝑦)) ∨ 𝐼𝑅(𝑦, 𝑥)) ≥

1. Because the value of ∧
𝑦∈𝑈

((1 − 𝐼𝑅(𝑥, 𝑦)) ∨ 𝐼𝑅(𝑦, 𝑥)) is

restricted in [𝐼], we have ∧
𝑦∈𝑈

((1 − 𝐼𝑅(𝑥, 𝑦)) ∨ 𝐼𝑅(𝑦, 𝑥)) = 1.

(3) ⇔ (4)This conclusion follows immediately from the
duality.

Theorem 46. Let (𝑈, 𝐼𝑅) be a generalized interval-valued
fuzzy approximation space.

(1) If 𝐼𝑅 is reflexive and transitive, then 𝑅𝐼𝐹󸀠(𝐴) = 𝑅𝐼𝐹󸀠

(𝑅𝐼𝐹
󸀠

(𝐴)) and 𝑅𝐼𝐹󸀠(𝐴) = 𝑅𝐼𝐹󸀠(𝑅𝐼𝐹󸀠(𝐴)), for all 𝐴 ∈

𝐹
𝐼

(𝑈).
(2) If 𝐼𝑅 is reflexive and 𝐼𝑅(𝑥, 𝑧) ≤ ∧

𝑦∈𝑈

((1 − 𝐼𝑅(𝑥, 𝑦)) ∨

𝐼𝑅(𝑦, 𝑧)), for all 𝑥, 𝑧 ∈ 𝑈, then 𝑅𝐼𝐹󸀠(𝐴) = 𝑅𝐼𝐹
󸀠

(𝑅𝐼𝐹
󸀠

(𝐴)) and 𝑅𝐼𝐹󸀠(𝐴) = 𝑅𝐼𝐹
󸀠

(𝑅𝐼𝐹
󸀠

(𝐴)), for all 𝐴 ∈

𝐹
𝐼

(𝑈).

Proof. Theorem 46 is proved easily by Theorems 34, 41, and
44.

According to duality andTheorem 46, one can obtain the
next corollary.

Corollary 47. Suppose that (𝑈, 𝐼𝑅) is a generalized interval-
valued fuzzy approximation space.

(1) If 𝐼𝑅 is reflexive and transitive, then

∼𝑅𝐼𝐹
󸀠

(𝐴) = 𝑅𝐼𝐹
󸀠

(∼𝑅I𝐹󸀠 (𝐴)) = 𝑅𝐼𝐹󸀠 (𝑅𝐼𝐹󸀠 (∼𝐴)) ,

∀𝐴 ∈ 𝐹
𝐼

(𝑈) ,

∼𝑅𝐼𝐹
󸀠

(𝐴) = 𝑅𝐼𝐹
󸀠

(∼𝑅𝐼𝐹
󸀠

(𝐴)) = 𝑅𝐼𝐹
󸀠

(𝑅𝐼𝐹
󸀠

(∼𝐴)) ,

∀𝐴 ∈ 𝐹
𝐼

(𝑈) .

(39)

(2) If 𝐼𝑅 is reflexive and 𝐼𝑅(𝑥, 𝑧) ≤ ∧
𝑦∈𝑈

((1 − 𝐼𝑅(𝑥, 𝑦)) ∨

𝐼𝑅(𝑦, 𝑧)), for all 𝑥, 𝑧 ∈ 𝑈, then

∼𝑅𝐼𝐹
󸀠

(𝐴) = 𝑅𝐼𝐹
󸀠

(∼𝑅𝐼𝐹
󸀠

(𝐴)) = 𝑅𝐼𝐹
󸀠

(𝑅𝐼𝐹
󸀠

(∼𝐴)) ,

∀𝐴 ∈ 𝐹
𝐼

(𝑈) ,

∼𝑅𝐼𝐹
󸀠

(𝐴) = 𝑅𝐼𝐹
󸀠

(∼𝑅𝐼𝐹
󸀠

(𝐴)) = 𝑅𝐼𝐹
󸀠

(𝑅𝐼𝐹
󸀠

(∼𝐴)) ,

∀𝐴 ∈ 𝐹
𝐼

(𝑈) .

(40)

6. Conclusion and Future Work

In this paper, we proposed two types of the generalized
interval-valued fuzzy approximation operators by integrating
the generalized rough set theory and interval-valued fuzzy
sets as well as fuzzy relations. The equivalence of these two
types of the generalized interval-valued fuzzy approxima-
tion operators has been examined. Furthermore, we also
demonstrated the duality of the lower and upper gener-
alized interval-valued fuzzy approximation operators and
discussed the properties of the generalized interval-valued
fuzzy approximation operators under different interval-
valued fuzzy relations.

In this paper, one can prove that the binary relation
obtained by calculating 𝛼-cut set or strong 𝛼-cut set to an
interval-valued fuzzy relation, for all 𝛼 ∈ [𝐼], still satisfies the
corresponding definition of Definition 11 under the classical
binary relation; that is, if IR is reflexive, symmetric, and tran-
sitive, respectively, then 𝐼𝑅(𝐼𝑅𝑎) is reflexive, symmetric, and
transitive, respectively, under the classical binary relation.
Thus, if 𝐼𝑅 can satisfy the above functions, this technology
can be applied in reasoning, learning, and decision-making.
In Sections 4 and 5, the definitions and theorems provide
some theoretical bases for reasoning, learning, and decision-
making.
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