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New disordered anyon phase 
of doped graphene zigzag 
nanoribbon
Young Heon Kim  1, Hye Jeong Lee  1, Hyun‑Yong Lee  2,3,4 & S.‑R. Eric Yang  1*

We investigate interacting disordered zigzag nanoribbons at low doping, using the Hubbard model to 
treat electron interactions within the density matrix renormalization group and Hartree-Fock method. 
Extra electrons that are inserted into an interacting disordered zigzag nanoribbon divide into anyons. 
Furthermore, the fractional charges form a new disordered anyon phase with a highly distorted edge 
spin density wave, containing numerous localized magnetic moments residing on the zigzag edges, 
thereby displaying spin-charge separation and a strong non-local correlation between the opposite 
zigzag edges. We make the following new predictions, which can be experimentally tested: (1) In the 
low doping case and weak disorder regime, the soft gap in the tunneling density of states is replaced 
by a sharp peak at the midgap energy with two accompanying peaks. The e−/2 fractional charges 
that reside on the boundary of the zigzag edges are responsible for these peaks. (2) We find that 
the midgap peak disappears as the doping concentration increases. The presence of e−/2 fractional 
charges will be strongly supported by the detection of these peaks. Doped zigzag ribbons may also 
exhibit unusual transport, magnetic, and inter-edge tunneling properties.

Topological phases of matter are classified into two categories1,2: symmetry-protected topological (SPT) phase 
and topologically ordered (TO) phase. The SPT phase is distinguished by short-ranged entanglement, whereas 
the TO phase is distinguished by long-range entanglement. Furthermore, the SPT phase protects boundary 
gapless states, and it cannot be adiabatically connected to a trivial product state under perturbations preserving 
a certain symmetry. In contrast, in the TO phase, the global pattern of entanglement causes topological ground 
state degeneracy, which is robust to local perturbation regardless of symmetry. Furthermore, the topological 
degeneracy generates a universal subleading term in the entanglement entropy, which is known as the topological 
entanglement entropy (TEE)3,4. This entanglement entropy has been mainly used to detect the topological order5. 
Topological order frequently results in topological excitations with fractional quantum numbers. Entanglement 
entropy may also show signs of topologically ordered insulators6.

Recently, it was revealed that undoped interacting disordered graphene7–9 zigzag ribbons10 are a new TO 
Mott–Anderson insulator displaying e−/2 fractional charges, spin-charge separation, and two degenerate ground 
states11,12. The disorder is a singular perturbation that couples electrons on opposing zigzag edges, resulting in 
instantons. This effect converts zigzag ribbons from a STP to a TO phase and generates e−/2 fractional charges 
on the opposite zigzag edges. These fractional charges are protected13 by an exponentially decaying soft gap14,15 
�s , as shown in Fig. 1. Furthermore, numerical work16 showed that an interacting disordered zigzag nanoribbon 
has a finite TEE.

Recent advancements in fabrication methods have enabled the production of atomically precise graphene 
nanoribbons17,18. But it is unclear how to unequivocally measure the presence of fractional charges. We believe 
that doped zigzag nanoribbons are ideal for observing exotic anyons with fractional charges. The properties of 
doped disordered zigzag ribbons, on the other hand, are largely unknown. A doped ribbon is not expected to be a 
topologically ordered insulator because there is no hard gap (the density of states (DOS) at the Fermi is non-zero 
but small). However, the system is still an insulator with localized edge states near the Fermi energy, displaying 
doubly degenerate ground states. In the dilute limit the added fractional charges will still be well defined. Let us 
explain this, following Ref.13. These fractional charges are analogous to quasiparticles of the fractional quantum 
Hall effect’s 1/m Laughlin state (m is an odd integer). In such a system’s low doped regime, the added electrons 
divide into fractional charges. Recent experimental works provide evidence for these anyons19,20. Suppose one 
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adds δN electrons to such a state. In the dilute limit, each of these electrons fractionalizes into m quasiparticles 
that are well separated from each other (the charge of a quasiparticle is e−/m ). The total energy of the new system 
is thus E− = Em + δNm�− , where Em is the ground state energy and �− is the quasiparticle excitation energy. 
Despite that the quasiparticles form quasi-degenerate states, the excitation gap � and localization of quasiparticles 
protect fractional charges against quantum fluctuations12,13.

The role of fractional charges in low doped disordered systems is one of the fundamental questions in doped 
disordered zigzag ribbons. What exactly is the ground state? This concerns the applicability of mean field 
approaches to such a system: quantum fluctuations13 not included in the Hartree–Fock (HF) approximation 
may be significant because gap states are no longer empty. Furthermore, in contrast to the uniform spin density 
of undoped ribbons, the ground state of a doped disorder-free ribbon exhibits an edge spin density wave. It is 
unknown how localization and charge quantization affect the nature of the ground state. We use the density 
matrix renormalization group  (DMRG) approach in the matrix product states (MPS) representation to investi-
gate the ground state of a doped ribbon and the importance of quantum fluctuations beyond the HF approach. 
The MPS representation is a powerful tool for solving eigenvalue problems of quantum many-body systems21,22.

Ribbons are in a new disordered anyon phase, according to our investigation of the low doping regime23,24. 
We discover that a low doped disordered zigzag ribbon contains a large number of anyons with a fractional 
charge (but as doping concentration increases they disappear). They cause numerous magnetic domain walls 
and localized magnetic moments residing on the zigzag edges. Also, objects that display spin-charge separation 
proliferate in this phase. As a result, the ground state is drastically reorganized, with highly distorted edge charge 
and spin modulations, as well as non-local correlations between the left and right zigzag edges. We will define 
this new phase as a disordered anyon phase because its electron and spin densities are highly inhomogeneous. 
Furthermore, we make the following new experimentally testable predictions. (1) The disordered anyon phase 
has an unusual shape of tunneling density of states (TDOS), depending on the number of extra electrons (for 
experimental measurement of a soft gap in the TDOS, see, for example, Refs.25,26). The TDOS has one sharp 
peak at the midgap energy and two other peaks, one on each side of the sharp peak at the midgap energy, at the 
low doping limit. (2) However, the midgap peak disappears as the doping concentration increases. The detec-
tion of these peaks will provide strong evidence for the presence of e−/2 fractional charges. Furthermore, our 
findings indicate that doped zigzag ribbons may have unusual transport, magnetic, and inter-edge tunneling 
properties. Theoretical calculations27 of disorder-free zigzag ribbons show that antiferromagnetism is favored 
over ferromagnetism for ribbon widths < 100 Å. In the presence of disorder, the new disordered anyon phase 
is expected for these width values.

Results
Model.  To model the graphene zigzag nanoribbons, we apply the Hubbard model with the nearest neighbor 
hopping and a diagonal disorder Vi.

where i = (x, y) denotes the site indices (see Fig. 2a), c†i,σ/ci,σ are the creation/destruction operators at site i, t is the 
nearest neighbor hopping parameter and U is the on-site repulsion. The ratio of the numbers of impurities and 
carbon atoms is given by nimp = NI/Ns . The values of the disorder strength Vi at NI impurity sites are uniformly 

(1)H = −t
∑

�ij�,σ
c†i,σ cj,σ +

∑

i,σ

Vic
†
i,σ ci,σ + U

∑

i

ni,↑ni,↓,

Figure 1.   (a) Schematic band structure of a disorder-free interacting zigzag graphene nanoribbon at half-filling 
with a hard Mott gap � ∼ 0.1t , where the hopping parameter t ∼ 3 eV. Soliton zigzag edge states are near 
k = ±π/a0 , and their charge is e− (the ribbon period is a0 ). (b) Schematic density of states (DOS) of a half-filled 
disordered zigzag ribbon (dashed line). It decays exponentially with an energy scale of �s (a soft gap), which 
decreases with increasing disorder strength11. The van Hove singularities of the DOS at ǫ = ±�/2 , originating 
from the band structure displayed in a, are reduced due to the formation of the gap states. These gap states are 
spin–split, and many of them are soliton states with fractional charge e−/2 . Note that the DOS has particle-hole 
symmetry after disorder averaging. The soft gap �s protects the fractional charges from quantum fluctuations.
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distributed in the interval [−Ŵ,Ŵ] (the sum in the second term of H is only over impurity sites). The dimension-
less coupling constant of the problem is the ratio of the disorder strength and on-site repulsion g = Ŵ

√
nimp

U  . The 
doping concentration is defined as δN/Ns , where δN is the total number of added electrons. The mean field ver-
sion of this Hamiltonian for a doped ribbon is given in method, see Eq. (3). The HF results of undoped zigzag 
ribbons show that fractionalization occurs independent of the disorder potential range, density, and strength. 
Note that disorder is a singular perturbation11,12.

In graphene systems mean field approximations are widely used because they give accurate results28. How-
ever, there are several nearly degenerate HF ground states in graphene nanoribbons that can be generated using 
different HF initial states,and one does not know which of these states is close to the true ground state because 
quantum fluctuations are missing in the HF approximation. In this paper, we conducted the DMRG to deter-
mine which HF initial state generates the HF state that is close to the true ground state. We will concentrate on 
two types of HF initial states in this section. The first, labeled AF, is generated from an antiferromagnetic initial 
state, while the second, labeled PM, is generated from a paramagnetic initial state with a small spin-splitting. 
The DMRG found that the undoped ground state at clean limit exhibits the Néel magnetic ordering, where spins 
at two zigzag edges align antiparallel to each other (these results agree with those results obtained using the AF 
initial state). Nonetheless, the addition of enough extra electrons results in an edge spin density wave. The cor-
responding DMRG results, presented in Supplementary material, agree with those results obtained using the 
PM initial state, see Fig.  2b. The results were then tested at half-filling for an undoped disordered interacting 
zigzag nanoribbon. The PM initial state produces a state with fractional charges. Site spin values computed 
from this ground state agree well qualitatively with those of the DMRG approach, as shown in Fig. 2c,d. We 
will show below that DMRG results for doped interacting disordered zigzag ribbons also support the results 
obtained from the PM initial state. The methods of both DMRG and HF approximation are explained in detail 
in Supplementary material.

New anyon phase and TDOS of low doping region.  Using the PM initial state, we investigated the 
shape of the TDOS as a function of doping concentration (all the HF results below are generated by using this 
HF initial state). As shown in Fig. 3, adding a few extra electrons to the half-filled ribbon results in a sharp peak 
near the midgap energy E = 0 inside an exponentially decaying small soft gap. The peak’s physical origin is as 
follows: A tunneling electron enters into a soliton state and divides into two fractionally charged quasiparticles

(Ref.29 gives a good account of this process). A soliton state is described by a non-local wave function, as shown 
in the upper left inset of Fig. 3. The width of the central peak is ∼ 0.02�/2 . In the low doping limit, when an 
entering electron has a non-zero energy E  = 0 , it has a significant chance not to split into e−/2 charges because 
fractionalization is only approximate at non-zero energies12. The lower left inset of Fig. 3 shows the highly 
non-linear dependence of the peak value at E=0 on doping concentration δN/Ns . The zero energy peak in the 
DOS disappears for δN/Ns > 0.005 (the shape of this DOS will be shown below). Such non-linear behavior is 
unusual and provides compelling evidence for fractional charges. The shape of the TDOS at the low doping limit 
differs significantly from that of the half-filled undoped state (there are also two side peaks, one on each side of 
the sharp peak at the midgap energy. These peaks are not shown in Fig. 3 because their energies lie outside the 
energy range |E| > 0.05�/2 ). Edge site occupation numbers and site spins are displayed in Fig. 4. These findings 
show modulated ferromagnetic edges.

Many of the added electrons have qA values ∼ 1/2 , which can be seen by comparing Fig. 5a,b (the quantity 
qA gives the total probability to find an electron with energy E on A-type carbon atoms. Charge fractionalization 
occurs when qA = 1/2 ). As a result, the extra electrons enter soliton states with well-defined fractional charges. 
Thus, our results for low doped ribbons indicate that doping does not destroy anyons. The average energy cost to 
create13 an e−/2 fractional charge from the undoped ground state with an exponentially small gap is �s/2 , which 
corresponds to the midgap energy E = 0 in the excitation spectrum. This effect is similar to the formation of 

(2)e− → e−/2+ e−/2.

Figure 2.   (a) Vertical and horizontal lines of carbon atoms are numbered. All lengths and widths in this paper 
are measured in the number of these lines. (b) Site spin values siz of a disorder-free doped zigzag ribbon. This 
state is generated from Ne = Ns + 20 ( δN/Ns = 0.017 ), Lx = 301 , Ly = 4 , and U = t . (c) DMRG result of the 
ground state site spins siz at half-filling for U = t , nimp = 1 , and Ŵ = 0.5t ( g = 0.5 ). We discover that other spin 
components six and siy are very small. (d) HF site spin values at half-filling are shown. Here, U = t , nimp = 0.1 , 
and Ŵ = 0.5t ( g = 0.16 is smaller compared with the value used in (c)).
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Figure 3.   The HF results for Ne = Ns + 3 ( δN/Ns = 0.0037 ), Ŵ = 0.01t , Lx = 101 , Ly = 8 , nimp = 0.1 , and 
U = t (g = 0.0032) . DOS of a slightly doped ribbon away from half-filling is shown in the weak disorder regime. 
Sharp peak is present inside the soft gap at the midgap energy E = 0 (the magnitude of this peak is rather 
small in comparison to the peaks at E = ±�/2 shown in Fig. 1). Since there are excess electrons, the Fermi 
energy EF/(�/2) = 0.14 is above the mid gap energy. The DOS of L = 300 in a larger energy interval E < � is 
shown in the lower right inset. A charge fractionalized HF eigenstate is shown in the upper left inset. Note that 
energy is measured in units of �/2 . The number of disorder realization is ND ∼ 400 . A tunneling electron is 
fractionalized in the upper right inset. The DOS is determined by measuring the differential I-V. Lower left inset 
displays the dependence of the midgap peak on doping concentration for L = 100.

Figure 4.   The HF results for Ne = Ns + 3 ( δN/Ns = 0.0037 ), Ŵ = 0.01t , Lx = 101 , Ly = 8 , nimp = 0.1 , and 
U = t (g = 0.0032) . Their disorder-free values are represented by dashed lines. (a) A disorder realization of 
zigzag edge site occupation numbers niσ for a doped ribbon. (b) Total site occupation numbers ni are shown. 
Some charges are transferred between the zigzag edges on the left and right. (c) Site spins siz are plotted. Their 
disorder-free values are represented by dotted lines.
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polyacetylene soliton midgap states30. An undoped zigzag ribbon, unlike the chiral edges of Laughlin fractional 
quantum Hall states, lacks significant gapless edge excitations.

Following Ref.24 let us argue that an e−/2 fractional charge of a disordered ribbon is an anyon. Consider two 
single-particle HF mixed chiral states that display e−/2 fractional charges, as shown in Fig. 6. If we exchange 
these two electrons, the total many-body wave function of N electrons acquires a statistical phase of eiπ = −1 . 
This exchange is also equivalent to exchanging two e−/2 charges on the left zigzag edge and two others on the 
right zigzag edge. Thus, we expect that each of these exchanges generates the statistical phase of eiπ/2 to yield the 
final phase of eiπ = −1 . An anyon with the statistical phase eiπ/2 is called a semion31,32. The presence of semions 
is consistent with the presence of anyons in TO phases. It is also consistent with the shape of the entanglement 
spectrum. It is believed that the ground state entanglement spectrum of a TO phase resembles the corresponding 
edge spectrum of the system6,33,34. The shape of the entanglement spectrum is computed and found to be similar 
to the DOS of the edge states (see Supplementary material). The entanglement spectrum of undoped interacting 
disordered zigzag ribbons differs from that of zigzag ribbons in the disorder-free SPT phase16.

As more electrons are added, the sharp peak at the midgap energy disappears in the DOS, but the two side 
peaks near E ∼ ±0.05�/2 persist, as shown in Fig. 7. Simultaneously, the edge occupation number profile 
becomes highly nonuniform, as shown in Fig. 8a. These edge occupation numbers and site spin profiles appear 
to be quite different from those with fewer electrons, see Fig. 4a–c. The nature of the disordered ground state 
of the doped system is as follows. To begin, it is important to note that the ground state of doped disorder-free 
zigzag ribbons differs from that of undoped ribbons, which have ferromagnetic edges that are antiferromagneti-
cally coupled. In sufficiently doped disorder-free ribbons both the DMRG (see Supplementary material) and 
HF display spin density type periodic modulations on the zigzag edges, see Fig. 2b (the opposite edges are still 

Figure 5.   qA values of the HF eigenstates of a ribbon are plotted for (a) Ne = Ns and (b) Ne = Ns + 3 
( δN/Ns = 0.0037 ). A gap state electron with qA = 1/2 is fractionalized. Here Lx = 101 , Ly = 8 , ND = 400 , 
nimp = 0.1 , U = t , Ŵ = 0.01t , and Ne = Ns + 3 (g = 0.0032) . In case of (b), the spectrum does not have 
particle-hole symmetry.

Figure 6.   The HF results for Two HF mixed chiral states are shown. Exchanges of two e−/2 charges on the left 
zigzag edge and two others on the right zigzag edge are displayed.
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antiferromagnetically coupled). The ground state changes again in the presence of disorder, and the periodic spin 
density is destroyed (a disorder potential is a singular perturbation12). As the vertical dashed lines in Fig. 8a show 
many HF values of siz of each zigzag edge change sign at sites where ni abruptly changes (see Fig. 8b). Similar 
behavior is also observed in the DMRG calculation, as shown in Fig. 8c. Moreover, sites i, where the values of 
niσ and siz abruptly change, have almost identical values for the x-coordinate on the left and right zigzag edges. 
This effect is a consequence of the nonlocal correlation between the left and right zigzag edges. This correlation 
between opposite zigzag edges strongly suggests that the formation of non-local soliton states is responsible for 
the drastic reorganization of the ground state, as well as the zigzag edge modifications. Furthermore, we find 
local magnetic moments with non-zero values of siz that is extended over several sites. These objects proliferate 
in comparison to the case of undoped ribbons. There are also objects extended over several sites with rather 
small values of si = 1

2
(ni↑ − ni↓) ≈ 0 , see Fig. 8b. In such an object, spin-charge separation would take place. 

The following procedure is used to create these objects. An e−/2 fractional charge moves along the zigzag edges 
from left to right, while another fractional charge with the opposite spin moves in the opposite direction (see 
Ref.12 for a detailed explanation).

The resulting ground state displays a highly distorted edge spin density. This phase is characterized by local-
ized edge magnetic moments, spin-charge separation, and correlation between the left and right zigzag edges, a 
disordered anyon phase of zigzag nanoribbons. Charge fractionalization is not exact in this phase since some of 
the nearly zero energy states are not fractionalized, see the left inset in Fig. 7. This is in contrast to the results of 
slightly doped and undoped disordered ribbons, where the fractional charge of zero energy states is well-defined 
(see Fig. 3 of the current manuscript and Fig. 9 in Ref.12, respectively). When doping concentration is increased 
further ( δN/Ns ∼ 0.04 ), the distorted edge spin density wave and charge fractionalization almost disappear. 
We also discover that the HF gap states are no longer localized along the ribbon direction. These findings imply 
that as doping concentration increases from zero, a topological phase transition with a significant crossover 
region occurs.

Discussion
Quantum fluctuations beyond the HF approximation do not mitigate charge fractionalization in a ribbon at low 
doping concentration, according to our findings. Despite the presence of disorder, as doping increases, the edge 
magnetic ordering weakens and charge fractionalization disappears. Furthermore, we discovered that the low 
doped state is a new disordered anyon phase with highly distorted edge charge and spin modulations, as well as 
localized magnetic moments with non-local correlations between the left and right zigzag edges. Anyons play a 
key role in the formation of this new phase.

As a result of spin-charge separation, our findings suggest that doped zigzag nanoribbons may exhibit new 
magnetic and low temperature transport properties: the conductivity may display a usual behavior while the spin 
susceptibility may be rather small, as was observed in polyacetylene35. Furthermore, we demonstrated that the 
TDOS profile is significantly affected by doping concentration. The measurement of the differential I-V curve 
may reveal this effect and may provide a strong test for the presence of e−/2 fractional charges. Ribbons with 
width less than 100 Å  are well-suited for the observation of these fractional charges as the antiferromagnetic 
phase is more stable than the ferromagnetic phase27.

The following additional investigations may be interesting to pursue. A worthwhile but challenging task is to 
compute the anyon statistical phase using a microscopic approach. Recently such an adiabatic DMRG simulation, 
utilizing the quantized Hall response, was successfully conducted36 for the non-Abelian Moore-Read state on a 
Haldane honeycomb lattice model. A similar DMRG calculation in a Mott-Anderson insulator of disordered zig-
zag nanoribbon with Abelian quasiparticles, where electron localization is critical, is not clear. Another method 
is to compute the statistical Berry phase of Abelian quasiparticles using a trial wave function37. But a good trial 
wave function is not yet available for disordered zigzag ribbons.

In the limit of small doping and in weak disorder regime, ribbons with a sharp midgap peak in the DOS 
have a universal value of the TEE16. When doping is high enough, the midgap peak disappears, as does the exact 

Figure 7.   The HF results for Ne = Ns + 20 ( δN/Ns = 0.0083 ), Ŵ = 0.06t , Lx = 301 , Ly = 8 , nimp = 0.1 , and 
U = t ( g = 0.019 ). Two side peaks on the DOS. In the limit of large ribbon length or, equivalently, in the limit 
of zero doping, the profile of these two peaks becomes symmetric. Since there are excess electrons, the Fermi 
energy EF/(�/2) = 0.46 . The number of disorder realization is ND ∼ 200.
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fractionalization of zero energy states. When this occurs, we can expect non-universal TEE values. It may be 
worthwhile to probe the topological phase transition as doping concentration increases. The following issues must 
be addressed: Does the TEE of doped disordered ribbons decay to zero as a function of doping concentration, and 

Figure 8.   The HF results for Ne = Ns + 20 ( δN/Ns = 0.0083 ), Ŵ = 0.06t , Lx = 301 , Ly = 8 , nimp = 0.1 , 
and U = t ( g = 0.019 ): (a) Vertical lines indicate sites where ni or siz abruptly change. On the zigzag edges, 
there are numerous localized magnetic moments. (b) Site occupation numbers niσ of a disordered ribbon. The 
arrows point to locations where spin-charge separation occurs. (c) DMRG results for δni ≡ ni − ncleani  plotted 
as a function of x and y. Here, ncleani  is the site occupation number for Ŵ = 0 . Site spins siz are also shown. The 
parameters are as follows: Ne = Ns + 12 ( δN/Ns = 0.025 ), Ŵ = t , Lx = 120 , Ly = 4 , nimp = 0.2 , and U = t . 
Note that the length of this ribbon is considerably shorter than the one used in (a) and (b). These are the results 
for a more strongly disordered ribbon with g = 0.45 , and the overall magnetization is significantly reduced.
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does the transition exhibit non-universal dependence on physical parameters16? This investigation may require 
very high cpu resources to compute accurately small values of the TEE16. This type of calculation could provide 
more information about the phase transition from modulated ferromagnetic edges at zero doping to distorted 
spin-wave edges at finite doping.

The following experiments would also be fascinating. Investigation of tunneling between zigzag edges, as seen 
in fractional quantum Hall bar systems38, may be fruitful. Scanning tunneling microscopy can reveal the presence 
of fractional charges by measuring the electron density on the zigzag edges39. Finally, it would be interesting to 
look into the new disordered anyon phase in other antiferromagnetic zigzag nanoribbon systems, e.g., silicene 
and boron nitride nanoribbons40,41. Chiral gauge theory can be used to describe e−/2 fractional charges42. It 
would be fascinating to look into the new anyon phase using random chiral gauge fields.

Methods
HF approximation.  To model graphene zigzag nanoribbons, the mean field Hubbard model is commonly 
used

where �hix� = −2U�six� and �hiy� = −2U�siy� are the self-consistent “magnetic fields.” The last term of Eq. (3) 
describes spin flips and is present but only separately from half-filling. This term mixes spin-up and spin-down. 
Note that the band structure no longer has particle-hole symmetry when away from half-filling.

DMRG.  We apply the DMRG21,22,43 to obtain the ground state of the model Eq. (1) in the MPS representation. 
Furthermore, we illustrate the geometry of the MPS for the graphene zigzag nanoribbon of the size (Lx × Ly) 
(see Supplementary material). For a quasi-one-dimensional system, the complexity of the DMRG scales expo-
nentially in the width of the system (Ly ), whereas it scales polynomially in the length (Lx ) of the system. There-
fore, our MPS setup allows us to consider the graphene strip with long zigzag edges, and we focus on the system 
with (Lx , Ly) = (120, 4) , which is far beyond the reach of exact diagonalization in the present calculations. The 
precision of the DMRG can be controlled by the number of basis states kept or the maximum bond dimension 
of the MPS ( χmax ), and we use up to χmax = 1600 to achieve the typical error of the total energy lower than 10−6 
(For a short introduction to MPS, see Supplementary material). To fix a gauge redundancy of MPS specially, i.e., 
the canonical form, the DMRG optimizes each tensor considering the global information of the wave function, 
which makes the algorithm extremely stable and reliable22. Nonetheless, the DMRG can become trapped in a 
local minimum, particularly for models with a quasi-one-dimensional lattice. To avoid local minima, we apply 
the noise perturbation44 with the two-site algorithm22 at each optimization step. Moreover, we exploit the U(1) 
symmetry of the model such that the DMRG preserves the total number of electrons, e.g., 

∑
i,σ c†i,σ ci,σ = Ns/2 , 

thereby improving greatly its convergence speed and accuracy22.

Data availability
On reasonable request, the corresponding author will provide all relevant data in this paper.
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