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Abstract: Data-driven temporal dietary patterning (TDP) methods were previously developed. The
objectives were to create data-driven temporal dietary patterns and assess concurrent validity of
energy and time cut-offs describing the data-driven TDPs by determining their relationships to BMI
and waist circumference (WC). The first day 24-h dietary recall timing and amounts of energy for
17,915 U.S. adults of the National Health and Nutrition Examination Survey 2007–2016 were used to
create clusters representing four TDPs using dynamic time warping and the kernel k-means clustering
algorithm. Energy and time cut-offs were extracted from visualization of the data-derived TDPs
and then applied to the data to find cut-off-derived TDPs. The strength of TDP relationships with
BMI and WC were assessed using adjusted multivariate regression and compared. Both methods
showed a cluster, representing a TDP with proportionally equivalent average energy consumed
during three eating events/day, associated with significantly lower BMI and WC compared to the
other three clusters that had one energy intake peak/day at 13:00, 18:00, and 19:00 (all p < 0.0001).
Participant clusters of the methods were highly overlapped (>83%) and showed similar relationships
with obesity. Data-driven TDP was validated using descriptive cut-offs and hold promise for obesity
interventions and translation to dietary guidance.

Keywords: temporal pattern; dietary pattern; energy intake; obesity; machine learning

1. Introduction

The Dietary Guidelines for Americans, 2020–2025 [1] emphasizes the importance of
a healthy dietary pattern rather than focusing on nutrients or foods in isolation. Dietary
patterns are defined as “the quantities, proportions, variety, or combination of different
foods, drinks and nutrients in diets, and the frequency with which they are habitually
consumed” [2]. Therefore, dietary patterns include not only foods and their components
such as energy, but also the behaviors inherent to dietary intake such as when eating
and drinking occur. Yet, little attention has been given to the specific timing of dietary
intake, perhaps due to the methodological difficulty of patterning temporal data. Only a
few studies [3–6] have investigated the frequency and timing of eating and even fewer
studies [7,8] have incorporated multiple aspects of dietary patterns, such as energy,
frequency, and the specific timing of dietary intake, despite evidence of a link to dietary
quality and ultimately, health. Data-driven methods were recently applied to create
temporal dietary patterns (TDPs) incorporating timing and amount of energy intake over
24-h [3–6]. These studies showed that TDPs were significantly associated with obesity-
related health indicators including body mass index (BMI) and waist circumference
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(WC) [3,4]. For example, participants with energy-equivalent and evenly distributed
eating occasions throughout the day had higher diet quality [5], lower mean BMI and
odds of obesity, and smaller WC [3] than those with other temporal dietary patterns
exhibiting one energy intake peak sometime in the day. However, since data-driven
methods that are based on the true nature of the behaviors were used, the patterns that
emerged had no guiding description or indication of adherence to recommendations to
explain the resulting patterns or the constraints of inclusion. The patterns emerging from
such clusters may be difficult to describe and capture latent characteristics. Therefore,
an interpretation describing these data-derived TDPs may not have similar relationships
with obesity and should be validated to ensure accuracy.

The purpose of this study was (1) to create data-driven TDPs and determine their
relationships to BMI and WC; (2) then to extract the pattern characteristics using energy
and time cut-offs based on visualizing the patterns and assess the concurrent validity of
the cut-off-derived TDPs by determining the percentage of overlap in cluster membership
and determining the cut-off TDPs relationships with BMI and WC. The hypothesis is that
the strength of the relationship of TDPs based on energy intake and time cut-offs with BMI
and WC is similar to the relationship of TDPs created using data-driven methods with BMI
and WC, and participant membership to the various pattern clusters is highly overlapping
between the similar cut-off and data-driven TDP clusters.

2. Materials and Methods
2.1. Participants and Data Set

Participants of the study were drawn from the National Health and Nutrition Exami-
nation Survey (NHANES) 2007–2016. NHANES is a National Center for Health Statistics
(NCHS) conducted survey containing interviews and a physical health examination to quan-
tify the health and nutritional status of U.S. adults and children. Voluntary participation
is invited after selection based on location, characteristics, and randomness. Participants’
sociodemographic characteristics, including age, sex, race, ethnicity, and poverty-to-income
ratio (PIR), were collected during the in-person household interview. Anthropometric
measurement, including height, weight, and WC, and the first dietary recall interview were
collected during the physical health examination. The NCHS Research Ethics Review Board
approved this survey and all the participants consented to completing the survey [9].

NHANES 2007–2016 were used because data were the most recently available when
the study was initiated. The sample included non-pregnant U.S. adults aged 20–65 years
with reliable first-day 24-h dietary recall data and complete anthropometric measurements.
The temporal dietary behaviors of pregnant women and participants outside of the age
range are expected to exhibit unique life stage patterns and were excluded. Participants
with missing sociodemographic and anthropometric data were also excluded. Therefore,
the analytic sample included 17,915 participants (Figure 1).
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data (USDA FNDDS 2015–2016) [12]. The time duration of the eating occasions was not 
available in NHANES, thus 15 min/occasion was applied at each time of reported intake 
based on a previous study [13] where reported energy at a time was divided by 15 min to 
determine the energy per minute for each minute within the 15-min eating occasion. 

2.3. Anthropometric Measurement 
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(EER) [19–21], where EER was derived based on dietary reference intake equations for 
adults according to the Institute of Medicine [22]. The NCHS assigns weights to partici-
pants in the NHANES based on their selection. Weights were constructed when combin-
ing survey cycles 2007–2016 and used in the models, thus the results are representative of 
the US civilian, noninstitutionalized population at the midpoint of the 10 years of data 

Figure 1. Flow chart representing sample size attrition and reason for exclusion. Final sample is this
study sample that meet all the inclusion criteria. WC: waist circumference. BMI: body mass index.

2.2. Dietary Data Assessment

The USDA Automated Multiple-Pass Method was included in NHANES to collect
the 24-h dietary recall data [10], including the time, amount, and type of foods and bev-
erages consumed, and detailed food descriptions [11]. Valid 24-h dietary recalls that met
the NHANES criteria [11] with non-zero energy intake were used in this study. Each
participant’s energy intake for all reported foods and beverages was determined using
the USDA Food and Nutrient Database for Dietary Studies (FNDDS) for 2007–2008 data
(USDA FNDDS, version 4.1), 2009–2010 data (USDA FNDDS, version 5.0), 2011–2012 data
(USDA FNDDS 2011–2012), 2013–2014 data (USDA FNDDS 2013–2014), and 2015–2016
data (USDA FNDDS 2015–2016) [12]. The time duration of the eating occasions was not
available in NHANES, thus 15 min/occasion was applied at each time of reported intake
based on a previous study [13] where reported energy at a time was divided by 15 min to
determine the energy per minute for each minute within the 15-min eating occasion.

2.3. Anthropometric Measurement

Standing height and WC were measured in centimeters using a stadiometer and
measuring tape, respectively. Weight was measured in kilograms using a digital weight
scale [14–16]. BMI was calculated as a person’s weight in kilograms divided by the square
of their height in meters [17].

2.4. Measures for Covariates

Survey year, sex, age group, race, ethnicity, PIR, and energy misreporting were used
as covariates to adjust the regression models that evaluated the relationship of the TDPs
to BMI and WC. Survey year included years 2007–2008, 2009–2010, 2011–2012, 2013–2014,
and 2015–2016. Sex was classified as male and female. Race and ethnicity were classified as
Mexican American, other Hispanic, non-Hispanic white, non-Hispanic black, and other
including multi-race. PIR is the ratio of family income-to-poverty and was classified
as 0–0.99 (under poverty threshold), 1–1.99, 2–2.99, 3–3.99, 4–4.99, and ≥5 [18]. Energy
misreporting was considered a potential confounder to the relationships evaluated and was
determined by calculating total energy intake divided by estimated energy requirement
(EER) [19–21], where EER was derived based on dietary reference intake equations for
adults according to the Institute of Medicine [22]. The NCHS assigns weights to participants
in the NHANES based on their selection. Weights were constructed when combining
survey cycles 2007–2016 and used in the models, thus the results are representative of the
US civilian, noninstitutionalized population at the midpoint of the 10 years of data included
in the study [23]. The survey design of NHANES included stratification and clustering,
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which were both accounted for in the regression models according to NCHS guidelines to
improve the precision of survey estimates [24].

2.5. Creating TDPs through Data-Driven Method

A detailed description of the methods for creating the data-derived TDPs has been
published previously [3,6]. Briefly, participants’ first 24-h dietary recall was considered as a
time series of 24 h × 60 min = 1440 min with each entry representing the absolute amount of
energy intake during that minute. Distance-based clustering analysis with a dynamic time
warping (DTW)-type distance measure was used to create the TDPs. DTW optimally matches
the eating events for each pair of participants in the sample by minimizing a weighted sum of
the squared differences between the time and energy intakes of the respective participant’s
eating events. A weight parameter is used to control the matching by penalizing the time
differences relative to the energy uptake differences to avoid pathological matchings (such
as matching morning to late night dietary intake), and this variation of DTW is denoted
as modified DTW (MDTW) [25]. Then, the distance measure of diet was coupled with the
kernel k-means algorithm [26] to partition the ensemble of time series into different clusters to
develop TDPs without predetermined standards or cut-offs. The purpose of using the kernel
k-means algorithm is to generate TDPs where the dietary intakes are similar within a cluster
and more dissimilar between clusters. The number of clusters which partition the participants
into mutually exclusive clusters was based first on internal criteria related to the variance and
consistency of clusters including silhouette index and Dunn index [27,28] where k = 3 and
k = 4 yielded the best results (Table 1). Using these criteria, a high value indicates that the
participant’s temporal dietary behavior is well matched to its own cluster and poorly matched
to neighboring clusters.

Table 1. Silhouette and Dunn index values 1 of internal cluster variance and consistency for three to
seven clusters partitioning U.S. adults 20–65 year as drawn from NHANES 2007–2016 (n = 17,915).

Cluster K Partitions

K = 3 K = 4 K = 5 K = 6 K = 7

Silhouette Index 0.27 0.25 0.19 0.18 0.15

Dunn Index 0.07 0.05 0.02 0.01 0.04
1 higher values indicate better clustering.

Next, the number of clusters was evaluated by external criteria associated with the
visualization, time and energy differences among the clusters, and health outcome analysis
as described in Section 2.9 where k = 4 was optimal. External criteria were also used to
optimize the weight parameter in MDTW.

2.6. Visualization of TDPs through Data-Driven Method

Based on the criteria above, β = 40 generated the best TDPs. The visualization of
the distribution of dietary intake in each of four clusters is illustrated using heat maps
in Figure 2. The x axis indicates time ranging from 00:00 to 24:00, and the y-axis shows
absolute energy intake ranging from 0 to 4000 kcal. The proportion of individuals in each
cluster reporting dietary intake at a certain time and amount of energy is represented
through shading and ranges from 0.0% to 12.8% in the 4 TDP clusters. Darker shading
represents that a greater percentage of participants in the cluster reported the same amount
of energy intake at that time.
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the cluster reporting the same amount of energy intake at that time. C1, cluster 1; C2, cluster 2; C3, 
cluster 3; C4, cluster 4; TDP, temporal dietary pattern. 
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and create the energy and time cut-offs. Specifically, shading indicating the proportion of 
the clusters with energy intake at the various hourly times were observed to find cut-
points where the majority of energy intake and eating events occurred for each cluster. 
Furthermore, cut-offs were drawn both to describe each cluster independently and to-
gether in order that mutually exclusive clusters could be created. Based on Figure 2, no 
more than 800 kcal at any one eating event was used as the energy cut-off to distinguish 
cluster 1 from the other 3 clusters, meaning that participants whose energy intake was less 
than 800 kcal at any eating event during the day would be included in cluster 1. Next, for 
the remaining participants, the visualization in Figure 2 was used to determine if the par-
ticipant’s highest energy intake occurred between 5:00 and 15:00 when the participant was 
assigned to cluster 4; if the participant’s highest energy intake occurred between 15:00 and 
19:00 when the participant was assigned to cluster 2; if the participants’ highest energy 
intake occurred after 19:00 when the participant was assigned to cluster 3; or in the case 
that the participant had more than 1 highest energy intake during the day, the participant 
was assigned to cluster 1. 

Figure 2. Energy intake heat maps representing four distinct TDPs generated based on data-driven
methods for U.S. adults 20–65 years as drawn from NHANES 2007–2016 (n = 17,915). Absolute energy
intake ranges from 0 to 4000 kcal (y-axis) while timing of intake ranges from 00:00 to 24:00 at hourly
increments (x-axis) for non-pregnant U.S. adults 20–65 years. The proportion of participants in each
cluster reporting energy intake is shown through shading ranging from 0.0% to 12.8% of participants
in the 4 TDP clusters. Darker shading represents a greater percentage of participants in the cluster
reporting the same amount of energy intake at that time. C1, cluster 1; C2, cluster 2; C3, cluster 3; C4,
cluster 4; TDP, temporal dietary pattern.

2.7. Creating TDPs through Cut-Off Method

The heat map visualizations of the data-derived TDPs were used to describe the data
and create the energy and time cut-offs. Specifically, shading indicating the proportion of the
clusters with energy intake at the various hourly times were observed to find cut-points where
the majority of energy intake and eating events occurred for each cluster. Furthermore, cut-offs
were drawn both to describe each cluster independently and together in order that mutually
exclusive clusters could be created. Based on Figure 2, no more than 800 kcal at any one eating
event was used as the energy cut-off to distinguish cluster 1 from the other 3 clusters, meaning
that participants whose energy intake was less than 800 kcal at any eating event during the
day would be included in cluster 1. Next, for the remaining participants, the visualization in
Figure 2 was used to determine if the participant’s highest energy intake occurred between 5:00
and 15:00 when the participant was assigned to cluster 4; if the participant’s highest energy
intake occurred between 15:00 and 19:00 when the participant was assigned to cluster 2; if the
participants’ highest energy intake occurred after 19:00 when the participant was assigned to
cluster 3; or in the case that the participant had more than 1 highest energy intake during the
day, the participant was assigned to cluster 1.
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2.8. Visualization of TDPs through Cut-Off Method

Based on the data-driven TDP visualizations, the chosen cut-offs were used to generate
cut-off-derived TDPs. The new cut-off-derived clusters were also visualized using heat
maps and these TDS are shown in Figure 3. Similar to Figure 2, the x-axis indicates time
ranging from 00:00 to 24:00, and the y-axis shows absolute energy intake ranging from 0
to 4000 kcal. The proportion of individuals in each cluster reporting dietary intake at a
certain time and amount of energy is represented through shading and ranges from 0.0%
to 13.5% in the 4 TDP clusters. The darker shading represents that a greater percentage of
participants in the cluster reported the same amount of energy intake at that time.
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Figure 3. Energy intake heat maps representing four distinct TDPs generated based on the cut-off
method for U.S. adults 20–65 years as drawn from NHANES 2007–2016 (n = 17,915). Absolute energy
intake ranges from 0 to 4000 kcal (y-axis) while timing of intake ranges from 00:00 to 24:00 at hourly
increments (x-axis) for non-pregnant U.S. adults 20–65 years. The proportion of participants in each
cluster reporting energy intake is shown through shading ranging from 0.0% to 13.5% of participants
in the 4 TDP clusters. Darker shading represents a greater percentage of participants in the cluster
reporting the same amount of energy intake at that time. C1, cluster 1; C2, cluster 2; C3, cluster 3; C4,
cluster 4; TDP, temporal dietary pattern.

2.9. Statistical Analysis

The Rao-Scott modified chi-square test was used to determine significant differences
among clusters by characteristics including survey year, age group, sex, race/ethnicity,
PIR, and BMI. Percent of participant overlap between the data-driven and cut-off-derived
clusters representing a similar pattern was calculated. TDPs’ relationships with health indi-
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cators (BMI and WC) were assessed using adjusted multivariate linear regression. Residual
plots and outliers were checked. Models using BMI and WC as health status indicators
were adjusted for survey year, age group, sex, race/ethnicity, PIR, and energy misreporting.
The Tukey–Kramer adjustment was made for multiple comparisons. Adjusted p < 0.05 for
comparisons among clusters was considered statistically significant. SAS version 9.4 (SAS
Institute Inc., Cary, NC, USA) and R version 4.1.1 (RStudio, Inc., Boston, MA, USA) were
used to complete the analysis.

3. Results
3.1. Characteristics of Participants in the TDPs Clusters

The characteristics of the participants in the four clusters of TDP generated through
two methods are shown in the Table 2.

Table 2. Characteristics of clusters representing data-driven TDPs and cut-off-derived TDPs of U.S.
adults 20–65 year as drawn from the NHANES, 2007–2016.

Data-Driven TDPs Cut-Off-Derived TDPs

Characteristics Total
(n)

Cluster
1 1

Cluster
2 1

Cluster
3 1

Cluster
4 1

Cluster
1 1

Cluster
2 1

Cluster
3 1

Cluster
4 1

Total 17,915 8617
(48.1)

3185
(17.8)

3019
(16.8)

3094
(17.3)

7383
(41.2)

3242
(18.1)

3459
(19.3)

3831
(21.4)

Survey year p-value 2 = 0.43 p-value 2 = 0.17

2007–2008 3591
(20.0)

1755
(20.4)

648
(20.3)

571
(18.9)

617
(19.9)

1518
(20.6)

670
(20.7)

651
(18.8)

752
(19.6)

2009–2010 3882
(21.7)

1898
(22.0)

692
(21.7)

644
(21.3)

648
(20.9)

1631
(22.1)

693
(21.4)

743
(21.5)

815
(21.3)

2011–2012 3441
(19.2)

1594
(18.5)

603
(18.9)

619
(20.5)

625
(20.2)

1361
(18.4)

604
(18.6)

711
(20.6)

765
(20.0)

2013–2014 3579
(20.0)

1757
(20.4)

628
(19.7)

606
(20.1)

588
(19.0)

1494
(20.2)

657
(20.3)

690
(19.9)

738
(19.3)

2015–2016 3422
(19.1)

1613
(18.7)

614
(19.3)

579
(19.2)

616
(19.9)

1379
(18.7)

618
(19.1)

664
(19.2)

761
(19.9)

Sex p-value 2 < 0.0001 * p-value 2 < 0.0001 *

Male 8826
(49.3)

2884
(33.5)

1943
(61.0)

1987
(65.8)

2012
(65.0)

2346
(31.8)

1891
(58.3)

2190
(63.3)

2399
(62.6)

Female 9089
(50.7)

5733
(66.5)

1242
(39.0)

1032
(34.2)

1082
(35.0)

5037
(68.2)

1351
(41.7)

1269
(36.7)

1432
(37.4)

Race/Ethnicity p-value 2 < 0.0001 * p-value 2 < 0.0001 *

Mexican
American and

Other
Hispanic

4838
(27.0)

2341
(27.2)

896
(28.1)

739
(24.5)

862
(27.9)

1973
(26.7)

929
(28.6)

826
(23.9)

1110
(29.0)

Non-Hispanic
white

7218
(40.3)

3310
(38.4)

1425
(44.7)

1262
(41.8)

1221
(39.5)

2901
(39.3)

1397
(43.1)

1432
(41.4)

1488
(38.8)

Non-Hispanic
black and

Other

5859
(32.7)

2966
(34.4)

864
(27.1)

1018
(33.7)

1011
(32.7)

2509
(34.0)

916
(28.3)

1201
(34.7)

1233
(32.1)
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Table 2. Cont.

Data-Driven TDPs Cut-Off-Derived TDPs

Characteristics Total
(n)

Cluster
1 1

Cluster
2 1

Cluster
3 1

Cluster
4 1

Cluster
1 1

Cluster
2 1

Cluster
3 1

Cluster
4 1

Age group
(year) p-value 2 < 0.0001 * p-value 2 < 0.0001 *

20–34 5761
(32.2)

2478
(28.8)

970
(30.5)

1147
(38.0)

1166
(37.7)

2071
(28.1)

1004
(31.0)

1348
(39.0)

1338
(34.9)

35–49 5920
(33.0)

2787
(32.3)

1120
(35.2)

978
(32.4)

1035
(33.5)

2364
(32.0)

1125
(34.7)

1107
(32.0)

1324
(34.6)

50–65 6234
(34.8)

3352
(38.9)

1095
(34.4)

894
(29.6)

893
(28.9)

2948
(39.9)

1113
(34.3)

1004
(29.0)

1169
(30.5)

Household
PIR p-value 2 = 0.013 * p-value 2 = 0.0005 *

0–0.99 4154
(23.2)

2029
(23.5)

739
(23.2)

660
(21.9)

726
(23.5)

1729
(23.4)

763
(23.5)

744
(21.5)

918
(24.0)

1.00–2.99 4525
(25.3)

2234
(25.9)

802
(25.2)

716
(23.7)

773
(25.0)

1908
(25.8)

805
(24.8)

845
(24.4)

967
(25.2)

2.00–2.99 2567
(14.3)

1205
(14.0)

455
(14.3)

415
(13.7)

492
(15.9)

1027
(13.9)

468
(14.4)

454
(13.1)

618
(16.1)

3.00–3.99 1946
(10.9)

923
(10.7)

360
(11.3)

354
(11.7)

309
(10.0)

790
(10.7)

350
(10.8)

407
(11.8)

399
(10.4)

4.00–4.99 1425
(8.0)

649
(7.5)

270
(8.5)

253
(8.4)

253
(8.2)

566
(7.7)

278
(8.6)

292
(8.4)

289
(7.5)

≥5.00 3298
(18.4)

1577
(18.3)

559
(17.6)

621
(20.6)

541
(17.5)

1363
(18.5)

578
(17.8)

717
(20.7)

640
(16.7)

Abbreviations: NHANES, National Health and Nutrition Examination Survey; PIR, poverty to income ratio; TDPs,
temporal dietary patterns. 1 Values are n (%). 2 Rao–Scott F adjusted χ2 p-value is a goodness-of-fit, one-sided test;
statistical significance is indicated when p < 0.05. Analyses were adjusted for clustering and stratification. Sample
weights were constructed and applied to the analysis as directed by the NCHS. Weights were rescaled in order
that the sum of the weights matched the survey population at the midpoint of 2007–2016. Significance level: *
adjusted p < 0.05.

3.2. Overlap between the Data-Driven Method and Cut-Off Method

The data-driven and cut-off TDPs generated four clusters with similar patterns. About
83.3%, 87.1%, 92.0%, and 89.1% of the participants in the cut-off-derived TDP clusters
overlapped with participant membership in the data-driven TDP clusters. Compared with
the other three clusters, the energy intake in cluster 1 was moderate, specifically, each of
the main energy intake events included energy at less than 800 kcal. However, clusters 2, 3,
and 4 all had an energy intake peak (reaching 4000 kcal) at different times during the day.
Cluster 2’s energy intake peak was 15:00–19:00, cluster 3’s energy intake peak was after
19:00, and cluster 4’s energy intake peak was before 15:00.

3.3. Associations of TDPs with BMI and WC

The TDPs that were generated by both methods were significantly associated with
BMI and WC. Participants in cluster 1 derived from both methods had significantly lower
mean BMI and smaller mean WC compared to participants of clusters 2, 3, and 4 (Tables 3
and 4). The greatest significant difference in mean BMI and mean WC were present between
clusters 1 and 4 (β = −3.3 ± 0.2, R2 = 0.12) and clusters 1 and 3 (β = −8.2 ± 0.5 cm, R2 = 0.17)
using the data-driven method and clusters 1 and 3 (β = −3.1 ± 0.2, R2 = 0.12 and β = −7.9
± 0.4 cm, R2 = 0.17) using the cut-off method.
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Table 3. Adjusted regression model results for mean BMI (kg/m2) with clusters representing TDPs of
U.S. adults 20–65 years as drawn from the NHANES, 2007–2016, generated based on data-driven
methods and cut-off methods.

Adjusted
Models 1 n (%) BMI

(kg/m2) 2

β 3 ± SE
Compared
to Cluster 2

95% CI p-Value
β 3 ± SE

Compared
to Cluster 3

95% CI p-Value

β 3 ± SE
Com-

pared to
Cluster 4

95% CI p-Value

Data-Driven Methods

Cluster 1 8617
(48.1) 29.1 (0.1) −3.0 ± 0.2 −3.7, −2.4 <0.0001 * −3.3 ± 0.2 −3.8,

−2.7 <0.0001 * −3.3 ±
0.2

−3.9,
−2.8 <0.0001 *

Cluster 2 3185
(17.8) 29.5 (0.1) −0.2 ± 0.2 −0.8,

0.4 0.73 −0.3 ±
0.2

−0.9,
0.3 0.64

Cluster 3 3019
(16.8) 29.2 (0.1) −0.0 ±

0.2
−0.5,
0.4 0.99

Cluster 4 3094
(17.3) 29.3 (0.1)

Cut-Off Methods

Cluster 1 7383
(41.2) 29.1 (0.1) −2.9 ± 0.2 −3.5, −2.4 <0.0001 * −3.1 ± 0.2 −3.6,

−2.7 <0.0001 * −2.9 ±
0.2

−3.4,
−2.4 <0.0001 *

Cluster 2 3242
(18.1) 29.5 (0.1) −0.2 ± 0.2 −0.7,

0.3 0.68 −0.0 ±
0.2

−0.6,
0.5 0.99

Cluster 3 3459
(19.3) 29.4 (0.1) 0.2 ± 0.2 −0.2,

0.6 0.59

Cluster 4 3831
(21.4) 29.1 (0.1)

Abbreviations: BMI, body mass index; NHANES, National Health and Nutrition Examination Survey; SE, standard
error; TDPs, temporal dietary patterns. 1 Models were adjusted for survey year, age group, sex, race/ethnicity,
poverty to income ratio, and energy misreporting. 2 Values are mean (standard error of the mean). 3 ß represents
the difference of mean BMI between two compared clusters. Least square means were used to calculate the
differences in mean BMI. Significance level: * adjusted p < 0.05.

Table 4. Adjusted regression model results for mean WC (cm) with clusters representing TDPs of
U.S. adults 20–65 years as drawn from the NHANES, 2007–2016, generated based on data-driven
methods and cut-off methods.

Adjusted
Models 1 n (%) WC

(cm) 2

β 3 ± SE
Compared
to Cluster 2

95% CI p-Value

β 3 ± SE
Com-

pared to
Cluster 3

95% CI p-Value

β 3 ± SE
Com-

pared to
Cluster 4

95% CI p-Value

Data-Driven Methods

Cluster 1 8617
(48.1) 97.7 (0.2) −7.4 ± 0.6 −9.0, −5.9 <0.0001 * −8.2 ±

0.5
−9.5,
−6.9 <0.0001 * −8.2 ±

0.5
−9.4,
−6.9 <0.0001 *

Cluster 2 3185
(17.8) 100.1 (0.3) −0.7 ±

0.6 −2.3, 0.7 0.55 −13.4 ±
1.7 −2.2, 0.8 0.62

Cluster 3 3019
(16.8) 99.4 (0.3) −0.1 ±

0.4 −1.1, 1.2 0.99

Cluster 4 3094
(17.3) 99.3 (0.3)

Cut-Off Methods

Cluster 1 7383
(41.2) 97.5 (0.2) −7.3 ± 0.5 −8.6, −5.9 <0.0001 * −7.9 ±

0.4
−8.9,
−6.9 <0.0001 * −7.5 ±

0.4
−8.7,
−6.4 <0.0001 *

Cluster 2 3242
(18.1) 100.0 (0.3) −0.7 ±

0.5 −2.0, 0.7 0.56 −0.3 ±
0.5 −1.7, 1.2 0.97

Cluster 3 3459
(19.3) 99.6 (0.3) 0.4± 0.4 −0.6, 1.4 0.75

Cluster 4 3831
(21.4) 99.1 (0.3)

Abbreviations: NHANES, National Health and Nutrition Examination Survey; TDPs, temporal dietary pat-
terns; SE, standard error; WC, waist circumference. 1 Models were adjusted for survey year, age group, sex,
race/ethnicity, poverty to income ratio, and energy misreporting. 2 Values are mean (standard error of the mean).
3 ß represents the difference of mean WC between two compared clusters. Least square means were used to
calculate the differences in mean WC. Significance level: * adjusted p < 0.05.

4. Discussion

The results of this study showed TDPs linked to BMI and WC though a data-driven
method which were then used to extract and validate a time and energy-based interpreta-
tion of the patterns from the visualization of the data-driven TDPs by showing their similar
significant relationship with obesity and percentage of overlap among cluster membership
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using both methods. To the best of our knowledge, this is the first study that created
temporal lifestyle patterns using a machine learning method and then extracted a practical
interpretation of the patterns that was also validated against U.S. weight outcomes, which
will add to the evidence of the link between multidimensional dietary patterns and health.
The mean differences in BMI and WC associated with TDPs were not only statistically sig-
nificant but also clinically meaningful [29,30], which indicates that the timing and amount
of dietary intake can be a potential important health exposure to predict and prevent obesity.
Since the practical interpretation extracted from the visualization of the data-derived TDPs
was similarly linked to the obesity-related indicators and the overlapping cluster member-
ship rate was also shown, the description of the patterns is a validated interpretation of
the TDPs. The evidence provides a basis that data-driven methods may be used to find
and extract practically translatable TDPs, a topic that is relevant to the timing of dietary
intake and highlighted as a question under consideration for the 2025 Dietary Guidelines
for Americans’ scientific committee to address [31].

Findings from this study show that three evenly spaced, energy balanced eating
occasions throughout the day are significantly associated with lower BMI and smaller WC
compared to the TDPs that have one energy intake peak at different times throughout the
day, which is supported by previous studies [3,4]. In addition, this study also showed
that participants in cluster 4 that have an energy intake peak around 12:00 have significant
higher BMI and larger WC compared to those in cluster 1. This finding is similar to a
previous study where overweight or obese adults reported approximately four eating
occasions a day, with the peak number of eating occasions occurring around 12:30 [32]. The
pattern of cluster 2 with an energy intake peak after 15:00 and significantly higher BMI and
larger WC compared to cluster 1, may have similarities with other findings. A previous
study [33] showed that late lunch eaters lost significantly less weight and had slower rates
of losing weight compared to early eaters after a 20-week intervention even though both
groups had similar habitual energy intakes, and total energy expenditure.

Furthermore, the pattern of participants in cluster 3 with the highest energy intake
peak at night (after 19:00), had significantly higher BMI and larger WC than those in
cluster 1. This finding is aligned with a previous U.S.-based study [34], Japanese-based
studies [35,36], Malaysian-based study [37] and Swedish-based study [38], all showing that
late-night eating is associated with higher risk of obesity. High energy intake in the evening
may be related to night eating syndrome [39], included in the fifth edition of the Diagnostic
and Statistical Manual of Mental Disorders and identified as an eating disorder related
to dysfunction of the circadian system. One of the reasons that night eating syndrome is
significantly associated with obesity may be due to decreased diet-induced thermogenesis
after dinner, which may lead to less energy expenditure and potential weight gain. This
may also be because that the circadian system increases the glucagon production and
reduces insulin production in anticipation of midnight fasting. Melatonin, a hormone
signaling night in the circadian system, may further decrease the release of insulin at night.
Thus late-night eating may cause a higher blood glucose rise and pose a risk for type 2
diabetes [40,41]. Late night eating is also significantly associated with increased energy
intake [42] and may be a risk factor for obesity [43].

One of the biggest challenges in this study was to interpret the visualization of different
clusters generated by the data-driven method. Unlike traditional clustering methods, DTW
was used to develop TDPs in this study. DTP uses an elastic distance measure that can
find the optimal matching paths among eating events of every pair of participants and
quantify the pairwise distances between participants where the matched path is minimized.
In addition, the kernel k-means algorithm was used to objectively divide participants into
different TDPs based on the distances calculated from DTW. Since this objective method
did not include predetermined standards or criteria for the temporal dietary patterns, the
characteristics of the patterns of each of the TDPs that are generated by the data-driven
method are not apparent. Visualization can be used to observe what the time, energy, and
proportion of the group’s distributions look like and extract the temporal dietary behavior
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characteristics from each TDP. Previous studies also used visualizations to capture each
TDPs’ characteristics [3,4,44] in either a DTW method coupled with the kernel k-means
algorithm or a latent class analysis approach. Both methods were also previously used to
identify unique and unknown patterns according to different observed indicators from
multiple layers of data. Other studies used principal components to describe the dietary
pattern [45,46]. In these principal component analyses, the major contributing food items or
groups were used to describe the sentinel characteristics of the dietary patterns. However,
the interpretation of the dietary patterns from these various methods only extracted certain
factors including food, time, or amount of energy. Yet, other factors or characteristics of the
patterns may be important. It is difficult to know whether other unobserved or observed
factors should be prioritized as sentinel characteristics to describe the commonalities of the
patterns, representing further needs to be addressed in future studies. Yet, validation of the
pattern interpretation is critical to determine whether the selected factors to describe the
patterns do indeed yield a similar cluster of participants and relationship with health.

The need for validation of data-derived patterns is in contrast with more traditional index-
derived patterns or model-based patterns that need no such validation as their interpretation
is already apparent and dependent on preconceived criteria. For example, the Healthy Eating
Index was created based on scoring linked to proportions of food groups as recommended
in the Dietary Guidelines for Americans. Data-driven clusters have no similar criteria from
which diets are judged or ranked and leave the interpretation of the patterns created through
data-driven methods open to investigators to subjectively describe. The results of this study
show that this limitation can be overcome by extracting descriptions based on visualizations
and then validating these interpretations. Based on the authors knowledge, this is the first
study that evaluates and validates a data-driven patterning interpretation through membership
overlap and associations with obesity-related health indicators. The results showed that cut-off-
derived clusters highly overlapped with data-driven clusters and demonstrated no differences
in strength or pattern relationships with obesity-related indicators between the two methods.
Therefore, although interpretation of the patterns has been a limitation for data-derived methods,
it can be addressed and removed.

Considering the cross-sectional study design, the results cannot be used to infer causation.
In addition, dietary data are from one weekday dietary recall, and data may not represent
participants’ regular patterns. However, a single 24-h dietary recall may be considered to be
representative to estimate the general dietary pattern if days of the week of dietary recalls
are evenly selected [47]. Moreover, smaller and specific TDPs, such as night shift patterns or
intermittent fasting, may exist but are not observed since these patterns may be combined with
other patterns preventing observation of their unique temporal characteristics.

The results provide evidence that data-driven methods have a high potential to dis-
cover patterns for which practical interpretations can be extracted and validated and
easily translated to practical temporal dietary guidance to prevent obesity such as in the
Dietary Guidelines for Americans. In addition, the development of time-based dietary
intake translation may also be useful in detecting and prompting interventions to modify
daily temporal patterns, potentially integrating other lifestyle behaviors including physical
activity and sleep, and informing individualized, precision nutrition.

5. Conclusions

Four cut-off-derived clusters based on the visualization of data-driven clusters highly
overlapped with data-driven clusters and showed no differences in strength or pattern
relationships with obesity. The results provide evidence that data-driven methods have
a high potential to discover patterns that are easily translatable to practical temporal
dietary guidance to prevent obesity such as in the Dietary Guidelines for Americans.
The developed time-based dietary intake translation may also be useful in detecting and
prompting interventions to modify daily temporal patterns, potentially integrating other
lifestyle behaviors including physical activity and sleep, and informing individualized,
precision nutrition.
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