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Simple Summary: To assess the impact of thoracic (low) dose irradiation on pulmonary function
changes after thoracic radiotherapy (RT) data of 62 patients were analyzed. There were several
significant correlations between pulmonary function and dose parameters of the lung and heart,
most of which remained significant in the multivariate analysis.

Abstract: Objective: To assess the impact of (low) dose irradiation to the lungs and heart on the
incidence of pneumonitis and pulmonary function changes after thoracic radiotherapy (RT). Meth-
ods/Material: Data of 62 patients treated with curative thoracic radiotherapy were analyzed. Toxicity
data and pulmonary function tests (PFTs) were obtained before RT and at 6 weeks, at 12 weeks,
and at 6 months after RT. PFTs included ventilation (e.g., vital capacity) and diffusion parameters
(e.g., diffusion capacity for carbon monoxide (DLCO)). Dosimetric data of the lung and heart were
extracted to assess the impact of dose on PFT changes and radiation pneumonitis (RP). Results: No
statistically significant correlations between dose parameters and changes in ventilation parameters
were found. There were statistically significant correlations between DLCO and low-dose parameters
of the lungs (V5Gy–V30Gy (%)) and irradiation of the heart during the follow-up up to 6 months after
RT, as well as a temporary correlation of the V60Gy (%) on the blood gas parameters at 12 weeks
after RT. On multivariate analysis, both heart and lung parameters had a significant impact on DLCO.
There was no statistically significant influence of any patient or treatment-related (including dose
parameters) factors on the incidence of ≥G2 pneumonitis. Conclusion: There seems to be a lasting
impact of low dose irradiation to the lung as well as irradiation to the heart on the DLCO after thoracic
radiotherapy. No influence on RP was found in this analysis.

Keywords: respiratory function tests; lung neoplasms; radiation injuries; organs at risk

1. Introduction

Pulmonary function test (PFTs) are commonly performed in patients that require
thoracic radiotherapy (RT). Before treatment, they are a part of the medical workup to
assess the suitability of the patient for radiation treatment, and after radiotherapy, they may
help to evaluate radiation induced lung damage. PFT parameters are known to change
after radiotherapy. Ventilation parameters such as vital capacity (VC) can both decrease or
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improve after treatment, presumably due to the re-opening of obstructed airways [1–7].
The diffusion, commonly measured using the diffusion capacity for carbon monoxide
(DLCO), however, has often been reported to decrease after RT [1,2,8–19] and to show little
to no recovery [5,12,20].

In clinical practice, the PFT changes are usually not a factor to be considered in
treatment planning. The dose constraints used for the organs at risk (OAR) derive from the
risk for acute and late treatment-related toxicities [21,22]. For the lung, this usually refers
to radiation pneumonitis, for which the percentage of the volume receiving 20 Gy (V20Gy
(%)) or 30 Gy (V30Gy (%)) as well as the mean lung dose measured in Gy (Dmean (Gy)) have
proven to be prognostic parameters [7,15,23–30].

However, many of the data on dose constraints come from the area of 3D conformal
radiotherapy or even 2D planning. With the introduction of multiple fields intensity modu-
lated radiotherapy (IMRT) or volumetric arc radiotherapy (VMAT), there is a tendency for
increased low dose irradiation of the healthy lung tissue.

There are some data suggesting that low-dose irradiation, as assessed by the dose–
volume parameters of the lung (e.g., V5Gy (%)), has an influence on outcome and toxici-
ties [31–33]. However, data on this topic are scarce.

Therefore, in this analysis, we focused on the effect of dose–volume parameters,
especially in terms of low-dose irradiation of the lungs and heart as the most critical OARs
in thoracic radiation on radiation pneumonitis as well as PFT changes after RT.

2. Results
2.1. Correlation between Dose Parameters and the Difference in PFTs

In this cohort, the ventilation parameters (e.g., VC) showed variable changes after RT
with up to half of the patients experiencing an improvement after RT. The DLCO, however,
largely declined, with 85% of patients showing a decrease in DLCO at any time point after
RT, half of whom showed a decrease of more than 20%. The median lung volume of
patients was 3847 mL (range 2101–6777 mL) with a median volume of the gross tumor
volume of 79.1 mL (range 12.4–406.8 mL) and 328.3 mL (102.7–1014.1 mL) for the planning
tumor volume.

Regarding the correlations between pulmonary function changes and dose and dose–
volume parameters, there were statistically significant correlations between the Dmean
of the lung and the ventilation parameter forced expiratory volume within 1s (FEV1) 12
weeks after RT (correlation coefficient (R) = −0.276, p = 0.035) and VC 6 months after RT
(R = −0.397, p = 0.006).

Regarding diffusion parameters, there were several statistically significant correlations
for the gross tumor volume (GTV) volume as well as Dmean and V5Gy–V30Gy of the lung
that are shown in Table 1. There was no significant correlation for >V30Gy of the lung.

Table 1. Correlation of GTV volume and lung V5Gy–V30Gy (%) with ∆ diffusion capacity for carbon
monoxide (DLCO) after thoracic radiotherapy (RT) (R (sign.)).

GTV and Lung
Parameters ∆ DLCO at 6 Weeks ∆ DLCO at 12 Weeks ∆ DLCO at 6 Months

GTV Volume (mL) n.s. n.s. −0.312 (0.047)
Lung Dmean (Gy) −0.471 (<0.001) −0.338 (0.011) −0.487 (0.018)

Lung V5Gy (%) −0.323 (0.016) −0.352 (0.008) −0.465 (0.002)
Lung V10Gy (%) −0.336 (0.012) −0.324 (0.016) −0.423 (0.006)
Lung V15Gy (%) −0.381 (0.004) n.s. −0.417 (0.007)
Lung V20Gy (%) −0.370 (0.005) n.s. −0.403 (0.009)
Lung V25Gy (%) −0.309 (0.022) n.s. −0.333 (0.034)
Lung V30Gy (%) −0.286 (0.034) n.s. −0.316 (0.044)

n.s.: p > 0.05.
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For the blood gas analysis (partial pressure of carbon dioxide (pCO2) and partial
pressure of oxygen (pO2)), there were statistically significant correlations with V60Gy (%)
12 weeks after treatment (pCO2: R = 0.294, p = 0.0031; pO2: R = 0.282, p = 0.0039), as well as
the Dmean 6 months after treatment (pO2: R = −0.351, p = 0.0018).

Regarding the heart dose parameters, there were several statistically significant corre-
lations with ∆ diffusion parameters but also with VC at 12 weeks after RT. The correlation
coefficients are shown in Table 2.

Table 2. Correlation of dosimetric heart values with ∆ vital capacity (VC) and ∆ diffusion parameters after RT (R (sign.)).

Heart
Parameters

∆ VC at 12
Weeks

∆ DLCO at 6
Weeks

∆ DLCO at 12
Weeks

∆ DLCO at 6
Months

∆ pCO2 at 6
Weeks

∆ pO2 at 6
Weeks

Heart Dmean (Gy) −0.346 (0.008) −0.302 (0.025) −0.416 (0.002) −0.371 (0.017) 0.272 (0.037) 0.319 (0.014)
Heart D33% (Gy) −0.340 (0.009) −0.274 (0.043) −0.371 (0.005) −0.365 (0.019) n.s. 0.299 (0.022)
Heart D50% (Gy) −0.359 (0.006) n.s. −0.366 (0.006) −0.351 (0.024) 0.284 (0.029) 0.297 (0.023)

n.s.: p > 0.05.

As possible confounders, the influence of clinically apparent (≥Common Terminol-
ogy Criteria for Adverse Events (CTCAE) G2, medical intervention indicated) radiation
pneumonitis (n = 7) and locally progressive disease (n = 9) on the difference in DLCO, pO2,
and pCO2 after RT was analyzed. No statistically significant impact of pneumonitis or
progression on the change of any diffusion parameter after radiotherapy was found.

2.2. Impact of Clinical and (Low) Dose Parameters on Clinically Apparent Pneumonitis

The seven patients with a ≥G2 pneumonitis predominantly suffered from primary
lung tumors (n = 6); one patient suffered from an esophageal carcinoma. The median
planning target volume (PTV) volume for those patients was 355.8 mL (range 102.7–857.9
mL) with a median V20Gy of 38.9% (range 17.1–50.5%) and a median Dmean of the lung of
19.5 Gy (range 9.9–22.2 Gy). When looking at the DLCO changes for those patients after
radiotherapy, they showed a variable course. Two patients showed an improvement or
stable DLCO at the point of their last follow-up, while the other 5 patients had a decrease in
DLCO, all of which had a decrease of more than 20%.

There was no statistically significant difference of patient-related parameters (gender,
T-Status, tumor entity, total treatment dose, chemotherapy, smoking history) for patients
with or without ≥G2 pneumonitis. Additionally, there was no statistically significant
difference for any dose parameter of either the lung or the heart.

2.3. Multivariate Analysis

In the multivariate analysis, several dose parameters of both the lungs and heart
proved to have a statistically significant influence on ∆ DLCO after treatment. For ∆ DLCO
at 6 weeks after treatment, V15Gy, V25Gy, and V30Gy (%) and Dmean (Gy) of the lung as well
as Dmean (Gy) of the heart, and for ∆ DLCO at 12 weeks after RT, Dmean and D50% (Gy) of
the heart remained significant. For ∆ DLCO after 6 months, those values were V20Gy, V25Gy,
and V30Gy (%) of the lung.

3. Discussion

The goal of this analysis was to assess the impact of (low) dose–volume parameters of
the lung and heart on changes in lung function after RT and pulmonary toxicity assessed
by clinically apparent pneumonitis.

Pulmonary function tests are easy to assess and help to identify radiation-induced
damage of lung tissue after RT [1–3,8–10,12,13,20,34,35]. In particular, diffusion parameters
such as DLCO have proven to be reliable as they show the largest decline and least recovery
after RT [1,2,8–19]. This also holds true for this cohort and was published in an earlier
report [13].
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When looking at the correlations between PFT changes and dose values of the lung,
there were mostly significant correlations for ∆ DLCO. All these correlations had a negative
correlation coefficient, in this case meaning that with increased dose, there was a greater
decline in DLCO. Interestingly, larger correlation coefficients were found for lower doses
like V5Gy and V10Gy. Notably, there were no statistically significant correlations for >V30Gy,
suggesting a larger impact of the low dose bath on DLCO. For ∆ pO2 and ∆ pCO2, assessed
by blood gas analysis, the opposite was the case. These values significantly correlated with
V60Gy. However, this correlation was only significant at 12 weeks after RT and therefore a
temporary phenomenon, unlikely to be clinically relevant.

There have been some studies regarding the correlation of dose–volume parameters
with PFT changes in the past. Some found no correlation between DLCO changes and
dose–volume parameters of the lung [10,15,17], while others were able to show significant
correlations of DLCO with both heart and lung parameters [9,14,16,18,19]. As for radiation
pneumonitis, most studies focused on V20Gy as an important dose parameter. For example,
Bral et al. and Enache et al. showed a significant impact of V20Gy [16,19]. A correlation of
DLCO decline with low-dose irradiation (percent or absolute volume receiving 700–1000
cGy) of the lungs was shown for a cohort of patients with esophageal carcinomas by Gergel
et al. [14].

Lopez-Guerra et al. demonstrated that in addition to dose parameters of the lung
(V20Gy (%)), heart parameters had a significant impact on DLCO decline as well [9]. This
also holds true in this cohort, where we found several significant correlations of heart dose
values and PFT changes after RT. For DLCO, this correlation remained until the last PFT
follow-up at 6 months after RT.

In addition, on multivariate analysis, the heart doses proved to have a significant
impact on ∆ DLCO after treatment. At 6 months after treatment, Dmean (Gy) of the heart
remained statistically significant next to V20Gy–V30Gy (%) of the lungs. This suggests that
the very low-dose bath (e.g., V5Gy) does not have a significant impact on long-term DLCO
changes when other dose parameters for both the lung and heart are taken into account. A
significant impact of the low dose bath was only seen 6 weeks after treatment, where V10Gy
(%) remained one of the significant parameters, suggesting that very low-dose irradiation
seems to only have a transient and not a lasting clinical effect. For the later time points,
dose–volume parameters of the lung in the mid-dose range (V15Gy–V30Gy) have a larger
impact on DLCO.

The clinical relevance of diffusion reduction lies in the fact that a reduction in DLCO
can have a significant impact on a patient’s well-being and quality of life after treatment.
This especially holds true if they already had a substantial impairment before therapy. In
this case, further reduction could mean an increase in physical impairment or even oxygen
dependency. However, existing planning objectives largely focus on radiation pneumonitis
as the most common radiation-induced lung toxicity, for which V20Gy (%) and Dmean (Gy)
are known to be significant predictors [7,15,23–26].

In this analysis, there was no influence of any dose–volume parameter of the lungs
or heart on the incidence of ≥G2 pneumonitis. Additionally, other patient- or treatment-
specific parameters failed to show a significant influence. This might be due to the low
number of events with seven patients with ≥G2 pneumonitis (11.3%). Published results on
pneumonitis come to different results regarding the relevant parameters. V20Gy (%) of the
lungs was identified as a significant factor in some studies [23,25,26], but not in others [28].
Additionally, there are data suggesting an influence of heart parameters on the incidence
of RP. Huang et al. found a significant influence of several dose–volume parameters of the
heart on the RP incidence [36], but published data are not congruent, as Tucker et al. could
not find a significant impact of heart dose parameters [37].

A limitation of this analysis is that as a result of testing several possible correlations at
a significance level of 0.05, the risk of encountering an incidentally significant finding is
obviously increased, as is the case with many retrospective analyses. While this is especially
true for borderline significant findings, several associations were encountered, such as
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the relation between Dmean and VC at 6 months following RT, showing a much stronger
correlation which mitigates this risk to a certain degree. However, as retrospective analyses
like this can only be considered as hypotheses-generating, prospective studies are needed
to confirm our findings. Another limitation lies in the limited number of patients available
for analysis and follow-up using PFTs up to 6 months only. However, several previous
studies assessed only one time point after RT. The strength of this study though is that
PFTs were done at three time points after RT, which enables the differentiation between
transient and more permanent radiation-induced lung toxicities.

4. Materials and Methods
4.1. Patient Characteristics

A total of 62 patients receiving curative thoracic radiotherapy for non-small-cell lung
cancer (NSCLC), small-cell lung cancer (SCLC), and esophageal carcinoma between April
2012 and October 2015 were included in this analysis. All patients had a Karnofsky perfor-
mance status score (KPS) of at least 70%. Patients with lung surgery in their medical history,
displaying relevant pleural effusion visible in the planning CT scan, and/or a forced expi-
ratory volume within 1s (FEV1) of less than 1 L were excluded from this analysis. NSCLC
patients received a total radiation dose of 74 Gy, SCLC patients 60 Gy, and patients with
esophageal carcinoma 66 Gy, all with a single-fraction dose of 2 Gy. Of the 34 patients with
primary lung tumors, the majority of patients had centrally located tumors (38%). Eligible
patients received concomitant chemotherapy according to intradepartmental standards.
During concurrent RCT, patients with NSCLC received Cisplatin and Vinorelbin. Patients
with SCLC received Cisplatin and Etoposid simultaneously. Patients with esophageal
carcinomas were treated with Cisplatin and 5-Fluoruracil (5 FU). If the glomerular filtration
rate was lower than 60 mL/min, patients received Carboplatin aria under the curve (AUC)
5 instead of Cisplatin. The median age of patients was 66 years. All patients included
in this analysis completed the treatment protocol. A total of 62 patients had at least one
follow-up appointment, 58 patients had at least two, and 45 patients had all three follow-up
appointments. Patient characteristics are shown in Table 3.

Table 3. Patient and treatment characteristics.

n (%)

Gender Female 12 (19.4%)
Male 50 (80.6%)

Smoking history Never 6 (9.7%)
Present 32 (51.6%)
Former 24 (38.7%)

Median pack years 30 (range 5–120)

Tumor entity (treatment dose) NSCLC (74 Gy) 24 (38.7%)
SCLC (60 Gy) 10 (16.1%)

Esophageal Cancer (66 Gy) 28 (45.2%)

UICC stage Ia–IIb 7 (11.3%)
IIIa 23 (37.1%)
IIIb 25 (40.3%)
IIIc 1 (1.6%)
IV 6 (9.7%)

RT technique IMRT 34 (54.8%)
VMAT 28 (45.2%)

Chemotherapy during primary treatment Concurrent and/or sequential 44 (71.0%)
none 18 (29.0%)

Total 62 (100%)
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4.2. Treatment Planning and Dose Parameters

All treatment plans had to match intradepartmental dose constraints and were iden-
tically standardized using the PTV. Dose–volume parameters were expressed as (1) per-
centage of the volume of an OAR receiving a certain dose (VxxGy), (2) mean and maximum
dose in Gy received by a certain OAR (Dmean and Dmax), or 3) dose in Gy received by a
certain percentage of the volume (Dxx%).

The applied dose constraints for the lungs were as follows: V20Gy < 30%, V30Gy < 20%,
and V20Gy < 1000 mL. The dose constraint for the spinal cord was Dmax < 47 Gy, and for the
esophagus was Dmax < 74 Gy. The dose constraints used for the heart were: Dmean < 35 Gy,
D33% < 60 Gy, and D50% < 45 Gy. The treatment plans were calculated using an anisotropic
analytical algorithm (AAA) in Eclipse software™ (Varian Medical Systems, Inc., Palo Alto,
CA, USA).

For our analyses, the following dose–volume parameters were analyzed: lung Dmean,
V5Gy–V60Gy in 5 Gy steps, as well as heart Dmean, D33%, and D50%. Furthermore, the GTV
and PTV volumes in mL were analyzed.

4.3. Follow-Up and Pulmonary Function Testing

Patients received regular clinical follow-up visits during radiotherapy, as well as at
6 weeks, at 12 weeks, and at 6 months after treatment. During clinical follow-up visits,
toxicity was scored according to the Common Terminology Criteria for Adverse Events
(CTCAE), version 4.0. Pulmonary function tests (PFT) were done before radiation treatment,
as well as at 6 weeks, 12 weeks, and at 6 months after RT. Both ventilation and diffusion
parameters were measured. For ventilation, the parameters were vital capacity (VC),
total lung capacity (TLC), and forced expiratory volume within 1 s (FEV1). The diffusion
capacity for carbon monoxide (DLCO) was measured, and capillary blood gas analysis was
performed to obtain the partial pressure of carbon dioxide (pCO2) and partial pressure of
oxygen (pO2).

4.4. Statistical Analysis

The differences (∆) in PFT compared to the baseline were calculated. Pearson’s corre-
lation coefficient was calculated to assess the correlation between dose–volume parameters
and ∆ PFT. The Mann–Whitney U-Test was applied to assess the influence of local progres-
sion within the first 6 months after RT, as well as radiation pneumonitis on the ∆ diffusion
parameters after RT. To assess the influence of patient and dose related factors on pneu-
monitis, U-Test and Chi-Square tests were used. Further, multivariate analysis was used for
multivariate linear regression. A p-value of ≤0.05 was considered statistically significant.
All statistical analyses were done with International Business Machines Corporation (IBM)
Statistical Package for the Social Sciences (SPSS) version 25 (IBM, Armonk, NY, USA).

5. Conclusions

In conclusion, there seems to be a significant lasting impact of low-dose irradiation
in the range of V15Gy–V30Gy to the lungs, as well as irradiation to the heart (Dmean, D50%
(Gy)) on the DLCO after thoracic radiotherapy. The impact of very low-dose irradiation to
the lungs (<V15Gy) seems to be transient with being only present at 6 weeks after RT and
not thereafter if other parameters are taken into account. Still, the low dose bath should
also be taken into account when planning patients’ treatments, especially in patients
that present with a low DLCO before treatment, as they might be clinically affected even
by transient effects. Within known dose constraints, an individual weighing of the risk
radiation-induced side effects on the lung for different dose levels (e.g., V20Gy, Dmean for
pneumonitis, V10Gy–V30Gy for DLCO decline, higher doses for fibrosis) should be done
according to each patient’s specifics on an individual basis.
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