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Abstract

Eastern equine encephalitis virus (EEEV) is a mosquito-borne virus that can cause both human and equine encephalitis with
high case fatality rates. EEEV can also be widespread among birds, including pheasants, ostriches, emu, turkeys, whooping
cranes and chickens. The E2 protein of EEEV and other Alphaviruses is an important immunogenic protein that elicits
antibodies of diagnostic value. While many therapeutic and diagnostic applications of E2 protein-specific antibodies have
been reported, the specific epitopes on E2 protein recognized by the antibody responses of different susceptible hosts,
including avian species, remain poorly defined. In the present study, the avian E2-reactive polyclonal antibody (PAb)
response was mapped to linear peptide epitopes using PAbs elicited in chickens and ducks following immunization with
recombinant EEEV E2 protein and a series of 42 partially overlapping peptides covering the entire EEEV E2 protein. We
identified 12 and 13 peptides recognized by the chicken and duck PAb response, respectively. Six of these linear peptides
were commonly recognized by PAbs elicited in both avian species. Among them five epitopes recognized by both avian,
the epitopes located at amino acids 211–226 and 331–352 were conserved among the EEEV antigenic complex, but not
other associated alphaviruses, whereas the epitopes at amino acids 11–26, 30–45 and 151–166 were specific to EEEV
subtype I. The five common peptide epitopes were not recognized by avian PAbs against Avian Influenza Virus (AIV) and
Duck Plague Virus (DPV). The identification and characterization of EEEV E2 antibody epitopes may be aid the development
of diagnostic tools and facilitate the design of epitope-based vaccines for EEEV. These results also offer information with
which to study the structure of EEEV E2 protein.
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Introduction

Eastern equine encephalitis virus (EEEV) is an arbovirus that

causes severe neurological disease in humans and equines

throughout the Americas [1]. EEEV is recognized as a potential

agent of biowarfare and bioterrorism, and is listed as a National

Institute of Allergy and Infectious Disease (NIAID) Category B

priority pathogen and as a Human Health and Services (HHS)

select agent [2]. EEEV belongs to the family Togaviridae, genus

Alphavirus, and is considered a New World Alphavirus along with

Venezuelan equine encephalitis Virus (VEEV) and Western

equine encephalitis Virus (WEEV), as opposed to the Old World

Alphaviruses, which include the Ross River virus (RRV), Semliki

Forest virus (SFV) and Sindbis virus (SINV) [3]. On the basis of

the difference of hemagglutination inhibition activity, EEEV can

be divided into two types, North America (NA) and South

America (SA). NA EEEV is represented by only one subtype,

subtype I, which is highly conserved across various geographic

locations and over time. In contrast, SA EEEV includes subtypes

II–IV, which are associated with different geographic regions

[4–6].

NA EEEV is transmitted among migratory passerine songbirds,

starlings, and wading birds in freshwater swamps by mosquitoes

[7], and is also an important pathogen of mammalian hosts,

including equids and humans. In addition to playing important

roles in expanding geographical distribution of EEEV, bird hosts

are also necessary for the amplification of NA EEEV [8]. High

attack and fatality rates are commonly associated with EEEV

infection of horses, but has also been documented in swine [9],

pheasants [10], ostriches [11], emus [12], turkeys [13] and

whooping cranes [14]. Many domesticated birds can be infected

with EEEV by pecking and preening [15], and subsequently

develop both a viscerotropic disease and encephalitis after EEEV

infection [16]. Usually several weeks before EEEV becomes

enzootic, EEEV-reactive antibodies can be detected in samples

collected from local birds and virus can be isolated. Thus, avian

species and specifically chickens can serve as sentinels to monitor

EEEV activity. SA EEEV is principally an equine pathogen with
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high susceptibility and fatality rates, but SA EEEV infections are

rarely detected in humans. Even during major equine epizootics,

only three human cases have been described [17]. Horse

epizootics have occurred in Panama [18], Brazil [19] and

Argentina [20], and hamsters can act as a sentinel species for

EEEV in the Catatumbo region [21]. However, up to now, there is

no definitive information on the reservoir and amplification hosts

of SA EEEV. Studies evaluating EEEV seroprevalence and

experimental infection parameters suggest that rodents may play

an important role in tropical EEEV transmission [1].

The genome of EEEV is a single-stranded, positive-sense RNA

of approximately 11.7 kb that is capped at the 59 end and

polyadenylated at the 39 end. The EEEV genome encodes two

open reading frames (ORFs) for the non-structural and structural

polyproteins. The nonstructural proteins (NSP1-4) are involved

with the transcription and replication of viral RNA, polyprotein

cleavage, and RNA capping during the virus replication process

[22]. The structural proteins include the capsid protein, and

envelope glycoproteins E3, E2, 6K and E1. The EEEV structural

proteins are involved in receptor recognition, virus attachment

and penetration, membrane fusion, virion assembly, as well as

other viral functions [23]. Among structural proteins, the E2

protein is highly immunogenic in the context of infection and

immunization, and elicits neutralizing and hemagglutination

inhibiting antibodies. E2 protein-reactive antibodies are known

to limit EEEV infection and inhibit viral RNA levels in infected

cells [2,23].

As a virally encoded virion glycoprotein, the E2 proteins of

alphaviruses have important antigenic characteristics of diagnostic

value. Administration of VEEV E2-specific monoclonal antibodies

(MAbs) provided broad protection against several different

serogroups in murine models with a protection rate over 75%

[24]. The EEEV E2 protein-specific MAbs have been used in the

EEEV antigen-capture ELISA assays for infected mosquito

surveillance [25]. Identification of E2 protein-specific antibody

epitopes will further contribute to the development of diagnostic

tests based on EEEV E2 protein antigenicity. Most information

regarding antibody recognition of EEEV E2 stems from studies of

the murine immune response [26], and there have been no reports

describing E2 epitopes recognized by antibodies generated in

avian species. In this study, we characterized the E2 protein

epitopes recognized by the avian antibody response, and defined

the common immunodominant E2 epitopes that were targeted by

antibodies in chickens and ducks. Furthermore, we evaluate the

conservation of the commonly recognized epitopes among the

EEEV lineages and associated alphaviruses, and defined epitopes

as EEEV lineage I-specific or EEEV antigenic complex-specific.

These results provide a foundation for the development of

diagnostic assays for the different EEEV lineages and will facilitate

the design of epitope-based EEEV vaccines. Moreover, the

resolution of antibody binding E2 epitopes can be applied to

studies to define the reservoirs and amplification hosts for NA and

SA EEEV.

Results

E2-reactive avian PAb titers
Chickens and ducks were immunized with purified recombinant

E2 protein to elicit E2-reactive antibodies. Antibody titers were

determined by indirect ELISA and an immunofluorescence assay

(IFA) using sera collected prior to each immunization and serum

from the terminal blood collection which was performed two

weeks after the final booster immunization. The titer of EEEV E2-

reactive antibodies increased with each sequential immunization

of chickens and ducks, whereas unimmunized control animals did

not have detectable levels of E2 protein-reactive antibodies at any

time point (Table 1). The final PAb titers from chicken and duck

were 1:106 and 1:105, respectively, when measured using an

indirect ELISA. By IFA using E2 expressed in BHK-21 cells, E2-

reactive PAb titers were 1:256 for the chicken sera and 1:128 for

the duck sera.

Comprehensive mapping of linear avian epitopes on
EEEV E2 protein

We next sought to identify antibody binding linear epitopes on

the EEEV E2 protein. The PAbs elicited in chickens and ducks

through immunization with recombinant E2 protein were used to

screen a series of 42 partially overlapping peptides derived from

the entire EEEV E2 protein by Western blot (WB). Each peptide

was 16 amino acids in length and was expressed as a fusion with

mannose binding protein (MBP). As shown in Table 2, 12 peptides

in the series were recognized by chicken PAbs (E2-2/4/15/16/

18/19/22/24/30/31/34/35). Thirteen peptides were recognized

by duck PAbs (E2-1/2/3/4/5/6/11/12/16/22/32/34/35). Six

peptide epitopes were recognized by both PAbs in the serum of

immunized chickens and ducks (E2-2/4/16/22/34/35). There

were six other E2 peptide epitopes specifically recognized by the

chicken antibody response that were not recognized by the PAbs

elicited in duck, and seven E2 peptide epitopes recognized by the

duck antibody response that were not recognized by the PAbs

elicited in chicken. As expected, PAbs in the serum of ducks and

chickens recognized the full-length purified E2 protein, and no

reactivity of antisera with the MBP-tag alone was observed. Sera

from unimmunized poultry did not react with any of the 42 MBP-

fused polypeptides or MBP-tag alone (data not shown).

Confirmation of the PAb epitopes on the E2 protein by
peptide ELISA

We next confirmed the reactivity of avian E2-reactive PAbs with

the identified peptide epitopes. The 19 candidate polypeptides

identified in the WB screen were synthesized and screened by

peptide ELISA using the poultry PAbs. The pattern of PAb

binding to the 19 candidate peptides by ELISA was consistent with

the results of the WB screen against the E2 peptide series expressed

as MBP fusion proteins. The six E2 epitopes commonly recognized

by chicken and duck PAb responses by WB (E2-2/4/16/22/34/

35) were also recognized by the indicated PAb response when the

peptides were synthesized and used as target antigen in an ELISA

(Figure 1). As expected, PAbs in the serum of ducks and chickens

recognized the full-length purified E2 protein in the ELISA,

Table 1. Determination of the titers of PAbs from different
species by IFA/ELISA.

Immunization Time Points

Titer of PAbs 0 week 2nd week 4th week 5th week 6th week

Chicken PAbs 2/2 1:32/1:103 1:64/1:104 1:256/1:106 1:256/1:106

Chicken control 2/2 2/2 2/2 2/2 2/2

Duck PAbs 2/2 1:16/1:102 1:64/1:104 1:128/1:105 1:128/1:105

Duck control 2/2 2/2 2/2 2/2 2/2

2, titer below the limit of detection (LOD): IFA = 1:2; LOD ELISA = 1:10.
Left showed the value detected by IFA, and right showed the value detected by
ELISA.
doi:10.1371/journal.pone.0069349.t001
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whereas there was no reactivity of the antisera with an irrelevant

peptide control and the anti-MBP-mAb (antibody control) did not

react with any polypeptides and E2 protein (Figure 1). Sera from

unimmunized poultry did not react with any of the synthesized

polypeptides and E2 protein (data not shown).

Location analysis of the epitopes in the E2 protein
PEPSCAN analysis of PAbs from immunized chicken and duck

identified 16-residue peptides of the EEEV E2 protein that were

targeted by the poultry immune system. For comprehensive

analysis spatial distribution of the identified epitopes on E2

protein, homology modeling and structural visualization were

employed to identify the specific series residues in each epitope

responsible for antibodies. Finally, the locations of the epitopes on

the surface of the E2 homology model were visualized (Figure 2).

Analysis of the conservation of the five common
epitopes among alphaviruses

We next evaluated the conservation of the five common EEEV

E2 linear peptide epitopes recognized by avian PAbs among

EEEV antigen complex viruses and other associated alphaviruses.

The regions corresponding to the five common EEEV E2 epitopes

were identified by aligning amino acid sequences of EEEV antigen

complex viruses and other associated alphaviruses (Figure 3).

When the amino acid sequence in the identified epitope region

differed by one or more amino acids from the EEEV NA lineage I

E2 epitope sequence, the peptide was synthesized and tested by

ELISA using chicken and duck EEEV E2 antisera. We found that

the E2-2, 4 and 16 peptide epitopes, located at amino acids 11–26,

30–45 and 151–166, were EEEV lineage I-specific epitopes, as

peptides synthesized from the corresponding region of EEEV

lineages II–IV, VEEV and WEEV were not recognized by chicken

or duck antisera (left panels of Figure 3 a, b and c). The E2-22 and

34/35 epitope, located at amino acids 211–226 and 331–352 of

the E2 protein, was conserved among all EEEV lineages, but

peptides synthesized based on the corresponding region of VEEV

and WEEV were not recognized by the chicken and duck antisera

(Figure 3 d and e). As expected, no reactivity was detected between

the PAbs and an irrelevant peptide control. Similarly, the sera

from unimmunized poultry did not detectably react with any of

the synthesized peptides (data not shown).

Then we used the software to analyze of the amino acid

substitution in EEEV type-I epitopes to determine if the

substitution would influence on the conformation of E2 protein

(Figure 4). The results showed: 20PRS20 and 25SRG25 (Figure 4

a and b), 35ERD55 (Figure 4 c and d), 44VRY44 (Figure 4 e and

f) and 152RRK152 (Figure 4 g and h) did not influence on protein

conformation, but after 44VRY44 mutation (Figure 4 e and f) the

amino acid showed little invagination.

Antisera elicited by AIV and DPV do not recognize the
five common immunodominant E2 epitopes

The five common E2 epitopes were further evaluated using

antisera generated in chickens against Avian Influenza Virus (AIV)

and in ducks against Duck Plague Virus (DPV). Avian PAbs

generated against AIV and DPV did not react with the five E2

epitopes commonly recognized by antisera generated by chickens

and ducks with EEEV E2 protein (Figure 5).

Discussion

In this study, linear peptide epitopes on the EEEV E2 protein

were identified using E2-reactive PAbs generated in chickens and

ducks. Avian E2-reactive PAbs were elicited by immunizing

T
a

b
le

2
.

Id
e

n
ti

fi
ca

ti
o

n
o

f
lin

e
ar

p
e

p
ti

d
e

e
p

it
o

p
e

s
in

th
e

EE
EV

E2
p

ro
te

in
u

si
n

g
P

A
b

s
fr

o
m

av
ia

n
b

y
W

B
.

P
A

b
s

O
ri

g
in

P
e

p
ti

d
e

s
D

e
n

o
m

in
a

ti
o

n
E

2
-1

E
2

-2
E

2
-3

E
2

-4
E

2
-5

E
2

-6
E

2
-7

E
2

-8
E

2
-9

E
2

-1
0

E
2

-1
1

E
2

-1
2

E
2

-1
3

E
2

-1
4

E
2

-1
5

E
2

-1
6

E
2

-1
7

E
2

-1
8

E
2

-1
9

E
2

-2
0

E
2

-2
1

E
2

-2
2

A
vi

an
C

h
ic

ke
n

+
+

+
+

+
+

+

D
u

ck
+

+
+

+
+

+
+

+
+

+

P
A

b
s

O
ri

g
in

P
e

p
ti

d
e

s
D

e
n

o
m

in
a

ti
o

n
E

2
-2

3
E

2
-2

4
E

2
-2

5
E

2
-2

6
E

2
-2

7
E

2
-2

8
E

2
-2

9
E

2
-3

0
E

2
-3

1
E

2
-3

2
E

2
-3

3
E

2
-3

4
E

2
-3

5
E

2
-3

6
E

2
-3

7
E

2
-3

8
E

2
-3

9
E

2
-4

0
E

2
-4

1
E

2
-4

2
E

2
p

ro
te

in
M

B
P

-
ta

g

A
vi

an
C

h
ic

ke
n

+
+

+
+

+
+

D
u

ck
+

+
+

+

N
o

te
:

+
re

p
re

se
n

ts
p

o
si

ti
ve

re
ac

ti
o

n
w

it
h

re
sp

e
ct

iv
e

ly
e

xp
re

ss
e

d
p

o
ly

p
e

p
ti

d
e

u
si

n
g

an
ti

se
ra

b
y

W
B

.
d

o
i:1

0
.1

3
7

1
/j

o
u

rn
al

.p
o

n
e

.0
0

6
9

3
4

9
.t

0
0

2

E2 Epitope Mapping

PLOS ONE | www.plosone.org 3 July 2013 | Volume 8 | Issue 7 | e69349



chickens and ducks with purified recombinant E2 protein and

peptide epitopes were identified by screening peptides derived

from the amino acid sequence of E2 with the high titer avian

PAbs. Twelve peptide epitopes were recognized by chicken PAbs,

while thirteen epitopes were recognized by duck PAbs. Six

epitopes were recognized by PAbs obtained from both chicken and

duck (E2-2/4/16/22/34/35). The peptide E2-34 and 35 were

adjacent, we conjectured that the epitope contained may focused

on the common region, but the value (OD492nm) against E2-34

was significantly higher than E2-35 (P,0.05), so we used the

peptides based E2-34 for further specific identification.

Sequence alignments were performed to define the regions of

associated alphaviruses corresponding to the identified common

EEEV E2 linear epitopes. Peptides corresponding to the epitope

region were synthesized and used as target in an ELISA to

evaluate the specificity of the E2 epitope among related

alphaviruses. Additionally, PAbs raised against other avian viruses

were used as an additional specificity control. Two EEEV

antigenic complex-specific epitope and three EEEV subtype I-

specific (NA EEEV-specific) epitopes were defined from this

analysis. Based on the sequence alignment and the reactivity of

PAbs in Figure 3 a, we can infer that 25S is a key amino acid in the

epitope located at amino acids 11–26 of the EEEV E2 protein.

Similarly, we can conclude that 35E and 44V in E2-4 and 152R in

E2-16 are essential residues in the corresponding epitopes of the

EEEV E2 protein (Figure 3 b and c).

According to results of previous studies, the amino acid 120

(contained in E2-12), 193 (contained in E2-19), 213 (contained in

E2-22), 216 (contained in E2-22) and 218 (contained in E2-22) are

located at the surface of E2 protein [27,28]. Amino acids 180–220

(SINV; epitopes E2-18, 19 and 22) probably located on the virus

surface and E2-216 (RRV) may contribute to a neutralizing

epitope [29]. The amino acid residues locating on 182–207 (E2-

19) and 115–119 (E2-12) of VEEV E2 protein are located at the

tip of the spikes [30,31]. And amino acids locating in 55 (E2-6),

Figure 1. Verification of the E2 peptide epitopes recognized by PAbs raised in different avian. E2-reactive PAbs were elicited in chickens
and ducks immunized with purified recombinant EEEV E2 protein. A Western blot screen of forty-two 16-mer peptides derived from the E2 protein
sequence identified a panel of putative peptide epitopes recognized by the E2-reactive PAbs of one or more species. The candidate epitopes were
synthesized as short peptides and used in an ELISA to measure PAb binding to each linear peptide epitope. PAb binding was determined by
measuring optical density (OD) at 492 nm. Error bars indicate standard deviation. Positive value/Negative value $2.1 was considered as positive result.
doi:10.1371/journal.pone.0069349.g001

Figure 2. Location analysis of the epitopes in the EEEV E2
protein. A and B showed ribbon diagram of the epitopes recognized
by chicken and duck immune response on EEEV E2 protein,
respectively. The epitope E2-2 (11-26aa), 4 (31-46aa), 15+16 (141-
166aa), 18+19 (171-196aa), 22 (211-226aa), 24 (231–246), 30+31 (291–
316) and 34+35 (331–356) in figure A was showed by color red, brown,
green, limen, blue, yellow, magenta and cyan, respectively. And the
epitope E2-1,6 (2-66aa), 11/12 (101-126aa), 16 (151-166aa), 22 (211-
226aa), 32 (311–326) and 34+35 (331–356) in figure B was showed by
color red, green, blue, yellow, magenta and cyan, respectively.
doi:10.1371/journal.pone.0069349.g002
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116, 117, 116–119 and 120 (E2-11+12) are important for virus

receptor binding suggested by mutagenesis and antibody epitope

mapping studies [32]. Even though the accurate positions of the

epitopes which identified in our work in the E1–E2 heterodimer

also need further study.

Emerging infectious zoonoses are of high importance to both

human and animal public health. Interest has arisen in using

animal health data to inform human public health surveillance

activities in many regions. In 1978, the Florida Sentinel Chicken

Arboviral Surveillance Program was established to monitor

sentinel chickens to detect arboviral activity throughout the state

[33]. According to that sentinel chickens may also be the better

indicator of EEEV activity, although they were not useful for

detecting EEEV activity in all regions [34]. Nonetheless, domestic

chickens remain the most widely used sentinel animal NA EEEV,

primarily because the time and place of virus exposure can be

defined for domestic chicken sentinels. In contrast, the hamster

was recognized as the sentinel animal for SA EEEV, especially for

Venezuelan isolates. However, the enzootic transmission cycles of

SA EEEV are poorly understood and the role of birds versus small

mammals as enzootic hosts remains unclear [1]. The avian-specific

E2 epitopes and the common immunodominant E2 epitopes

identified in our study may offer a mechanism to define the

reservoirs and hosts of NA and SA EEEV through an evaluation of

the seroprevalence of antibodies against these defined epitopes in

different avian species. In our study, the results get from the

expressed protein immunized poultry and not the live virus

infected animal is a deficiency, so the actual value of applications

of the epitopes in diagnosis and vaccine development needs further

identification.

Materials and Methods

Ethics statement
All animal studies were approved by the Review Board of the

Harbin Veterinary Research Institute, Chinese Academy of

Agricultural Sciences. The Animal Ethics Committee approval

number was Heilongjiang-SYXK 2006-032.

Avian species, proteins and plasmid
EEEV-negative chickens and ducks were supplied by the Centre

of Experimental Animals, Harbin Veterinary Research Institute,

Chinese Academy of Agricultural Sciences (CAAS). A set of 42

partially overlapping polypeptides, each 16 amino acids in length,

Figure 3. Specificity of avian-specific E2 peptide epitopes among associated alphaviruses. Amino acid alignments of the three commonly
recognized EEEV E2 peptide epitopes with the corresponding region of E2 from other EEEV lineages and associated alphaviruses were performed
(right panels). The corresponding peptides were synthesized and used as target antigen in ELISA to determine if the chicken and duck PAbs were
specific for individual EEEV lineages, the entire EEEV antigen complex, or also recognized VEEV and WEEV (left panels). Positive value/Negative value
$2.1 was considered as positive result. The sequences from Ross River Virus and Sindbis Virus are shown for comparison.
doi:10.1371/journal.pone.0069349.g003

Figure 4. Analysis of conformation change of amino acid substitution in the EEEV subtype I epitopes. Comprehensively analysis the
amino acid residue substitution using 3D structure showed that if amino acid substitution would influence on the structure of EEEV E2 protein. a and
b: 20PRS20 and 25SRG25 mutation; c and d: 35ERD55 mutation; e and f: 44VRY44 mutation; g and h: 152RRK152 mutation.
doi:10.1371/journal.pone.0069349.g004

E2 Epitope Mapping
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covering the entirety of the EEEV E2 protein (E2-1 to E2-42,

Table S1) were generated in our laboratory according to the

methods previously described [35,36]. The E2 sequence used for

the experiments in this study was synthesized from an EEEV NA

variant strain (GenBank accession number X63135.1) and cloned

into pCI-neo, and maintained in our laboratory. The plasmid

pShuttle-E2 were constructed and maintained in our laboratory

[35,36].

Express and purify recombinant EEEV E2 protein
Express and purify recombinant EEEV E2 protein was

prepared as previously described [31]. In brief, the E2 gene was

cloned into the pFastBacTM vector. The recombinant pFastBacTM

vector was then transformed into competent DH10BacTM E. coli

cells, and got the colonies containing the recombinant bacmid

DNA which appeared white. Insect cells were transfected with

recombinant Bacmid DNA by using CellfectinH. Recombinant

protein was analyzed by sodium dodecyl sulfate-polyacrylamide

gel electrophoresis (SDS-PAGE) and purified by Ni-nitrilotriacetic

acid affinity chromatography (Qiagen) according to the manufac-

turer’s instructions, then identified by WB [35,36].

Preparation and characterization of avian PAbs
Five six-week-old chickens and ducks were immunized intra-

dermally and subcutaneously with purified recombinant E2

protein in Freund’s complete adjuvant (Sigma, USA), respectively.

Animals were administrated two booster immunizations contain-

ing purified E2 protein in Freund’s incomplete adjuvant at 2-week

intervals. Immediately prior to each immunization, blood was

collected to measure E2-reactive antibody titers by indirect ELISA

and IFA. Two weeks after the final booster immunization, sera

were collected and used to define antibody binding epitopes in the

EEEV E2 protein.

For indirect ELISAs, purified recombinant E2 protein was

plated at 100 ng ml21 as target antigen, the sera from immunized

and unimmunized chickens and ducks served as a primary

antibody source and were tested at serial ten-fold dilutions (1:10 to

1:106). HRP-conjugated goat anti-chicken and rabbit anti-duck

secondary antibodies at a 1:2,000 and 1:1000 dilutions, respec-

tively, were used in the indirect ELISA. IFA was performed using

Sf9 insect cells infected with the E2-expressing recombinant

baculovirus BACV-E2, and BHK-21 cells transfected with the E2-

expressing eukaryotic expression plasmid pShuttle-E2. Serial two-

fold dilutions of sera (1:2 to 1:1024) were used for detection. FITC-

conjugated goat anti-chicken and rabbit anti-duck secondary

antibodies were at a 1:100 and 1:50 dilutions, respectively, for the

IFA. All the detection repeated three times.

Comprehensive mapping of epitopes on EEEV E2 protein
using avian PAbs by WB

A set of 42 partially overlapping 16-mer peptides obtained from

the amino acid sequence of the EEEV E2 protein were expressed

as MBP-fused polypeptides. The adjacent peptides had 6 amino

acids in common. The screen of antisera against the MBP fusion

polypeptides by WB has been described previously [36]. The full-

length recombinant E2 protein was used as a positive control, with

the MBP-tag serving as a negative control. The sera of immunized

or unimmunized poultry at a 1:100 dilution were used as the

primary antibody source. HRP-conjugated goat anti-chicken and

rabbit anti-duck secondary antibodies at a 1:1,000 and 1:500

dilutions, respectively, were used for detection.

Further confirmation of the epitopes identified by WB
using synthesized peptide ELISA

The polypeptides recognized by avian PAbs by WB were

synthesized and used as coating antigen to confirm antibody

binding epitopes in the E2 protein (Table 3, Shanghai Bootech Bio

Science & Technology, China). The ELISA was performed as

described previously [36,37]. The irrelevant polypeptide (V5-Tag,

GKPIPNPLLGLDST) was used as an irrelevant peptide control

and the anti-MBP-monoclonal antibody (mAb) was used as an

irrelevant antibody control. Sera from unimmunized chickens and

ducks served as negative controls. All the sera were used at a 1:100

dilution, with HRP-conjugated goat anti-chicken and rabbit anti-

Figure 5. Reactivity of AIV and DPV PAbs against the common epitopes recognized by avian PAbs raised against the EEEV E2
protein. PAbs against AIV and DPV were evaluated for binding to the three common peptide epitopes of EEEV E2 by ELISA. Each bar indicates PAb
reactivity as determined by the mean optical density (OD) at 492 nm. Error bars indicate standard deviation. Positive value/Negative value $2.1 was
considered as positive result.
doi:10.1371/journal.pone.0069349.g005
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duck secondary antibodies at a 1:2,000 and 1:1000 dilutions,

respectively, for detection.

Reactivity of EEEV E2-reactive PAbs with the
polypeptides corresponding to the common E2 epitope
regions of other alphaviruses

Amino acid alignments were carried out to identify the

corresponding regions of E2 protein in related alphaviruses,

including EEEV antigen complex (lineage I to IV), VEEV,

WEEV, RRV and SINV (Lasergene, DNASTAR Inc., Madison,

WI). Representative strains of different alphaviruses were chosen

for alignment. The accession numbers of EEEV antigen complex

(Lineage I to IV) were X63135 and U01556, AF159559,

GU001934 and AF159561, respectively. The accession numbers

of VEEV, WEEV, RRV and SINV were ACV42439, ACN87270,

AEC49788 and AAC83379, respectively. Based on the results of

amino acid alignments, polypeptides that corresponded to the

common immunodominant epitopes in alphaviruses were synthe-

sized (Table 4, Shanghai Bootech BioScience&Technology,

China). The reactivity of synthesized polypeptides with avian

PAbs was evaluated by ELISA as described above. V5-Tag served

as an irrelevant polypeptide control, and sera from unimmunized

poultry served as negative controls for all peptide ELISAs.

Specificity evaluation of the common immunodominant
epitopes used other avian virus’ antisera

We used antisera generated against AIV and DPV to verify that

other avian viruses did not elicit antibody responses against the

common EEEV E2 immunodominant epitopes. Five antisera

generated against AIV and three antisera generated against DPV

were tested for reactivity with the three E2 peptide epitopes

recognized commonly by chicken and duck antisera following

immunization with EEEV E2 protein by peptide ELISA as

described above. The reactivity of synthesized polypeptides with

avian PAbs was evaluated by ELISA as described above.

Location analysis of epitopes in the EEEV E2 protein
Location analysis of epitopes was made on one E2 protein

(Accession NO. X63135.1) of EEEV to explain the general spatial

relationship using UCSF Chimera 1.7rc according the crystal

structure of VEEV E2 protein (PBD accession no. 3J0C-chain K)

[38].

Statistical analysis
ELISA antibody titers were statistically analyzed. Student’s t

tests were used to compare differences in antibody titers between

two groups. Statistical significance was defined as P,0.05 [39].

Supporting Information

Table S1 The complementary oligonucleotide pairs
encoding 42 overlapping, 16-mer peptides that cover
the entire E2 protein amino acid sequence from an
EEEV NA variant strain (GenBank accession number
X63135.1).

(DOC)

Table 3. Synthesized polypeptides used to further identify
linear peptide epitopes recognized by WB screening with
avian PAbs.

Peptides Denomination Peptides Sequence

PEP-E2-1 DLDTHFTQYKLARPYI

PEP-E2-2 LARPYIADCPNCGHSR

PEP-E2-3 NCGHSRCDSPIAIEEV

PEP-E2-4 PIAIEEVRGDAHAGVI

PEP-E2-5 HAGVIRIQTSAMFGLK

PEP-E2-6 AMFGLKTDGVDLAYMS

PEP-E2-11 AQCPPGDTVTVGFHDG

PEP-E2-12 VGFHDGPNRHTCTVAH

PEP-E2-15 PPEHGVELPCNRYTHK

PEP-E2-16 NRYTHKRADQGHYVEM

PEP-E2-18 LVADHSLLSIHSAKVK

PEP-E2-19 HSAKVKITVPSGAQVK

PEP-E2-22 SDYTTTCTDVKQCRAY

PEP-E2-24 KKWVYNSGRLPRGEGD

PEP-E2-30 LLTTRSLGSDANPTRQ

PEP-E2-31 ANPTRQWIERPTTVNF

PEP-E2-32 PTTVNFTVTGEGLEYT

PEP-E2-34 PPKRVWAQESGEGNPH

PEP-E2-35 GEGNPHGWPHEVVVYY

doi:10.1371/journal.pone.0069349.t003

Table 4. Synthesized polypeptides used to assess the
specificity of five common epitopes.

Peptides Denomination Peptides Sequence

PEP2-EVNA-I LARPYIADCPNCGHSR

PEP2-EVSA-II/III LARPYIADCSNCGHGR

PEP2-EVSA-IV LARPYIADCPNCGHGR

PEP2-VEEV PYMAKCVRCAVGS

PEP2-WEEV PYLGFCPYCRHST

PEP4-EVNA-I PIAIEEVRGDAHAGVI

PEP4-EVSA-II PIAIEDIRGDAHAGYI

PEP4-EVSA-III/IV PIAIEDVRGDAHAGYI

PEP4-VEEV PIAIEAVRSDGHDGYI

PEP4-WEEV PIKIEVWDESDDGSI

PEP16-EVNA-I NRYTHKRADQGHYVEM

PEP16-EVSA-II TKYTHKRADQGHYVEM

PEP16-EVSA-III/IV NKYTHKRADQGHYVEM

PEP16-VEEV RVYVHDAQKKDAYVEM

PEP16-WEEV HVYDHLKETSAGYITM

PEP22-EVNA-I(1) SDYTTTCTDVKQCRAY

PEP22-EVNA-I(2) SDHTTTCTDVKQCRAY

PEP22- EVSA-II SDYTTACTNLKQCRAY

PEP22- EVSA-III GDYTTTCTDLKQCRAY

PEP22- EVSA-IV GEHTTTCTDVKQCRAY

PEP34/35-EEEV-I/III/IV PPKRVWAQESGEGNPHGWPHEV

PEP34/35-EVSA-II PPKRVWAQESGEGNPHGWPHEI

PEP34/35-VEEV DPVRVYAQESAPGDPHGWPHEI

PEP34/35-WEEV EPVRVWAQESAPGDPHGWPHEI

doi:10.1371/journal.pone.0069349.t004
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