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Background: The main purpose of this study is to predict the all-cause risk of 30-day 
readmission by employing the back-propagation neural network (BPNN) in comparison with 
traditional risk assessment tools of LACE index and HOSPITAL scores.
Methods: This was a retrospective cohort study from January 1st, 2018 to December 31st, 
2019. A total of 55,688 hospitalizations from a medical center in Taiwan were examined. The 
LACE index (length of stay, acute admission, Charlson comorbidity index score, emergency 
department visits in previous 6 months) and HOSPITAL score (hemoglobin level at dis-
charge, discharge from an Oncology service, sodium level at discharge, procedure during 
hospital stay, Index admission type, number of hospital admissions during the previous year, 
length of stay) are calculated. We employed variables from LACE index and HOSPITAL 
score as the input vector of BPNN for comparison purposes.
Results: The BPNN constructed in the current study has a considerably better ability with 
a C statistics achieved 0.74 (95% CI 0.73 to 0.75), which is statistically significant larger 
than that of the other two models using DeLong’s test. Also, it was possible to achieve higher 
sensitivity (70.32%) without penalizing the specificity (71.76%) and accuracy (71.68%) at its 
optimal threshold, which is at the 20% of patients with the highest predicted risk. Moreover, 
it is much more informative than the other two methods because of a considerably higher LR 
+ and a lower LR-.
Conclusion: Our findings suggest that more attention should be paid to methods based on 
non-linear classification systems, as they lead to substantial differences in risk-scores.
Keywords: healthcare quality, 30-day readmission, back-propagation neural network, 
BPNN, LACE, HOSPITAL

Introduction
The important goal for health policy and hospital management under the National 
Health Insurance (NHI) scheme is to contain the over-utilization of medical resources 
from both demand and supply side of healthcare on the one hand while without 
sacrificing the quality of healthcare on the other hand. Thus, the cost-saving and 
quality-improving constituted the two main pillars for NHI. The 30-day readmissions 
are considered as an accountability measure and quality indicator in the United States 
since 2014. In line with this, the Centers for Medicare and Medicaid Services (CMS) 
adjusts reimbursements to hospitals according to readmission rates. Some policy 
analysts worry that reductions in readmissions are being achieved by keeping returning 
patients in observation units or by simply labeling returning patients as outpatients 
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instead of formally readmitting them to the hospital.1,2 

However, it has been found that the readmission rate declined 
quickly shortly after passage of the Affordable Care Act 
(ACA) and then continued to fall at a slower rate without 
significant association between changes in observation-unit 
stays and readmissions after the implementation of the 
ACA.3 This indicated that the financial penalties for read-
missions under the ACA served as an efficient incentive 
mechanism for reducing readmissions.

In Taiwan, after the implementation of NHI in 1995, an 
organization of the Joint Commission of Taiwan (JCT) 
was established in 1999. The purpose of JCT is to pro-
mote, execute and certify the nation’s healthcare quality 
policies. Among which, reducing readmissions is a priority 
to the Ministry of Health and Welfare (MHW) because it 
represents a unique opportunity to simultaneously improve 
care and reduce costs. Similar to the readmission penalty 
conducted by CMS in the US, Taiwan’s MHW applies 
financial penalties through the reduction of reimbursement 
for NHI coverages to hospitals that have patients who are 
readmitted with the same or related diagnosis after dis-
charge within a short period of time.

Hospital readmissions are a burden on the health-care 
system, and put a strain on hospital resources. A model to 
predict patients at risk of readmission will help health-care 
administrators and providers to allocate appropriate resources 
to patients at highest risk of readmission. Several countries 
have developed predictive models for readmission. Of these, 
the most cited readmission risk assessment tools are the 
HOSPITAL score,4 LACE index5 and LACE+ index.6 The 
LACE index has been internally and externally validated only 
in Ontario,5 while HOSPITAL score has been internationally 
validated in US, Canada, Israel, and Switzerland.7 However, 
the LACE index was developed from middle-aged Canadian 
patients free of serious comorbidities. Likewise, the 
HOSPITAL score is derived in the US. The literature on 30- 
day readmission prediction tools emphasizes the importance 
of local validation before implementation, since each hospital 
has a patient casemix that reflects their surrounding population 
and may require a locally calibrated score threshold.8,9 Yet, 
most of the studies focused on 30-day readmission were 
performed in the US with very few exceptions in other 
countries.10–12 Little is known about the applicability of 
LACE index and HOSPITAL score to Asian population and 
health systems. Moreover, if there is a nonlinear relationship 
between predicting factors and 30-day readmissions, linear 
models such as logistic regression most often fail to predict 
the patient’s risk of readmission with high accuracy. As such, 

the prediction performance of traditional statistical models for 
readmissions has been generally poor.12 For example, existing 
methods that rely on regression-based models report area 
under the curve (AUC) for the receiver operating characteristic 
(ROC) in the range of 0.63 to 0.68, suggesting limited dis-
crimination for prediction.12–14 Recent use of more flexible 
prediction models that leverage machine learning (ML) algo-
rithms, such as random forest (RF), support vector machines 
(SVM) and artificial neural network (ANN) models, have 
attempted to address this limitation.15–18 Nonetheless, existing 
dedicated efforts employing ML for predicting 30-day risk of 
readmission are mostly tailored to particular cohort or to 
a specific disease, such as congestive heart failure,15,19–21 

chronic obstructive pulmonary disease (COPD),22 patients 
discharged from intensive care unit,23,24 emergency 
readmissions.25 As has been noted in previous studies, pre-
dicting risk of readmissions for a general cohort is 
a completely different medical and data mining problem invol-
ving large, heterogeneous patient population sizes compared 
to disease-specific cohorts.16,26 It has been pointed out that 
there is a lot of value in having readmission models that are not 
tied to a specific disease for patients who do not belong to any 
of the well-studied cohorts, or for incoming patients for which 
we do not know which cohort they belong to.11,16

Among few that predicts risk of readmissions for the 
entire population employed is SVM.16,26 However, it is 
well known that the medical utilization with patients’ risk 
factors exist nonlinear relation12 and the dataset is often of 
large-scale, which leads to the increased difficulties of 
training SVM that focused on supervised binary 
classification.27 Moreover, in a readmission prediction 
where the occurred cases are usually quite rare as com-
pared with the rest of the non-occurrences, a favorable 
classification model therefore is one that provides 
a higher identification rate on the minority class under 
a reasonably good prediction rate on the majority.17 It 
has been confirmed that although the prediction accuracy 
of SVM is greater than the ANN in some cases, the 
specificity and sensitivity of SVM were found to be 
lower than that of ANN.28,29 Thus, the usage of ANN 
over SVM as the best classifier has been suggested for 
prediction with skewed data of a large-scale.28,29 There is 
limited information on comparing the LACE index, 
HOSPITAL score and ANN model as risk assessment 
tools against readmission for Asian population under 
a compulsory NHI scheme. As there is no single prediction 
model that works well in all scenarios, most readmission 
prediction models require validation and evaluation using 
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real-world data in different settings.8,30 The goal of this 
study is therefore to evaluate how well the LACE index, 
HOSPITAL score and ANN model predict risk for all- 
cause unplanned readmissions within 30 days of discharge 
using administrative claims data provided by a large med-
ical center in Taiwan.

Materials and Methods
Setting, Data Source, and Ethical 
Concerns
This was a retrospective cohort study from January 1st, 
2018 to December 31st, 2019, using data extracted from 
the electronic hospital management system of Kaohsiung 
Veterans General Hospital (KVGH), a medical center in 
Taiwan. Ethical approval was obtained from the 
Institutional Review Board (IRB) of KVGH (IRB # 
KSVGH20-CT4-11).

Study Cohort, Enrolled Hospitalizations, 
and 30-Day Readmissions
We leverage the detailed clinical data, including ICD-10- 
CM/PCS (International Statistical Classification of Disease 
and Related Health Problems, Tenth Revision, Clinical 
Modification/Procedure Coding System) codes assigned 
at discharge using the hospital computer system. We 
employed two datasets for ANN model construction. One 
is from January 1st to December 31st, 2018 as the training 
sample. The other is from January 1st to December 31st, 
2019 as the testing set, which period is the same with that 
for HOSPITAL score and LACE index to allow for 
a direct comparison.

The dependent variable, ie, a 30-day readmission, was 
defined as a readmission for any diagnosis following an 
index hospitalization with the same department at hospital. 
Any cause readmission within 30 days of hospital dis-
charge endpoint was selected because it is the measure 
used by the MHW in Taiwan. Exclusion criteria were 
observation, inpatient admissions for psychiatry or rare 
disease (eg, ICD 10 CM codes E76.X), preterm labor 
without delivery (ICD10 CM codes O60.02, O60.03), 
elective readmission, hereditary factor deficiency (ICD 
10 CM codes D66, D67, D68.1, D68.2), transferred to 
another acute care hospital, hospice, nursing home or 
other home care facilities, leaving the hospital against 
medical advice. We also delete the hospital stays if the 
patient died within the hospital, since dead patients cannot 
be readmitted.

Data on age, gender, ICD 10 CM/PCS codes, and the 
variables in the HOSPITAL score and LACE index 
(Table 1) were extracted from the electronic health record 
in a de-identified manner for analysis. Laboratory tests 
were obtained on the day of hospital discharge for hemo-
globin and sodium. The comorbidities were identified 
using ICD 10 codes, which coding algorithms are devel-
oped by Quan et al,31 in any primary or secondary diag-
nosis fields dating back to one year preceding the index 
admission. The Charlson comorbidity index (CCI) was 
then computed for each patient.

The LACE Index, HOSPITAL Score and 
Backpropagation Neural Network 
(BPNN) Model
Both scores for LACE and HOSPITAL were calculated for 
each hospitalization using the variables summarized in 
Table 1. In the current study, we employed BPNN as 
a classifier to predict patient’s risk of all-cause 30-day 
readmission due to the advantages of its fast, simple and 
easy to program. The BPNN is constructed using the same 
variables in the LACE index and HOSPITAL scores as the 
input vector in order to allow for a direct comparison 
(Table 1). The BPNN is a typical multilayer forward 
neural network using a supervised learning algorithm 
with the architecture of an input layer, 1 or multiple hidden 
layers, and an output layer. The basic idea of BPNN is to 
learn a certain number of sample pairs (input and expected 
output). Specifically, the input data of the sample are sent 
to each neuron in the input layer, and after being calcu-
lated by the hidden layer and the output layer, each neuron 
of the output layer works out a corresponding forecast. 
BPNN needs to train the sample data before forecasting, 
and the network acquires associative memory and fore-
casting ability via training.

In specific, the output H of hidden layer is calculated as 
follows.

H ¼ f ∑
n

i¼1
ωijX � aj

� �

; j ¼ 1; 2 . . . ; l;

where X is the input vector, ωij is the connection 
weight between the input layer and the output layer, aj is 
the hidden layer threshold, l is the number of neurons in 
hidden layer, and f is the activation function of the hidden 
layer. In order to increase network learning efficiency, the 
logistic function with the form f(θ)=1/(1+e� θ) is employed 
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as the activation function, where θ is the input net of the 
hidden node, ie the sum of weighted risk adjusters∑xiwi.

Based on the hidden layer output H, the predicted out-
put Ŷ of the BPNN is calculated as follows.

Ŷk ¼ ∑
l

j¼1
Hjωjk � bk; k ¼ 1; 2; . . . ;m 

Where ωjk is the connection weight, and bk is the 
output layer threshold.

The prediction error ε, which is the difference between 
the network prediction output Ŷk and the expected out-
putYk, is calculated as follows.

ε ¼
1
2
ðY � ŶÞ0ðY � ŶÞ

The stopping criterion for a training iteration of BPNN is 
the root mean squared error (RMSE) of the sum of the 
difference between the actual and the forecasted 30-day 
readmission. In addition, across channel normalization is 
used to rescale the data in the range [0, 1] to obtain the 
stability of the neural networks. The transfer of signal in 
neurons of single input, hidden, and output layer obeyed 
the sigmoid function while the training of BPNN adopted 
the gradient steepest descent method. We follow the usual 
way in determining the remaining parameters, ie, the learning 
and momentum rates are 0.01 and 0.5, respectively.

Statistical Analysis and Evaluation
Statistical analyses and BPNN implementation were per-
formed using language programming and STATA, version 

Table 1 Risk Factors in BPNN, LACE and HOSPITAL

Variable BPNN LACE HOSPITAL

Length of Stay Days of LOS <1 day 0 ≥5 +2
1 day +1

2 days +2
3 days +3

4-6 days +4

7-13 days +5
≥14 days +7

Acute Admission Dummy variable for ED admission Yes +3 Yes +1

CCI Dummy variable for CCI group 1–17 0 0 –
1 +1

2 +2

3 +3
≥ 4 +5

ED visits in the past 6 months Numbers of ED visits in the past 6 
months

0 0 –
1 +1

2 +2

3 +3
≥ 4 +4

Hospital admissions in previous 12 
months

Numbers of hospital admissions in 
previous 12 months

– 0 0
1–5 +2

≥5 +5

Hemoglobin Value of hemoglobin – <12 g/dl +1

Sodium Value of sodium level – <135 

meq/L

+1

Oncology discharge – – Yes +2

Procedures during hospital stay – – Yes +1

Abbreviations: BPNN, Back-Propagation Neural Network; LACE index, Length of stay, Acute admission, Charlson comorbidity index score, Emergency department visits 
in previous 6 months; HOSPITAL score, Hemoglobin level at discharge, Discharge from an Oncology service, Sodium level at discharge, Procedure during hospital stay, Index 
admission Type, Number of hospital Admissions during the previous year, Length of stay; LOS, length of stay; ED, emergency department; CCI, Charlson comorbidity index.
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16.1.32 The differences between discharge w/ and w/o 30-day 
readmission for demographics and the factors that used to 
calculate LACE index and HOSPITAL scores were exam-
ined with independent t-tests for continuous interval data 
variables and Chi-squared test for categorical variables. 
Following the most common procedure for evaluating mod-
els for early predicting readmission, we constructed the ROC 
curves for LACE, HOSPITAL and BPNN model respec-
tively. The ROC curve plots the probability of detecting 
a true signal (sensitivity) and false signal (1-specificity) for 
the entire range of possible cut-off points. We compared 
discrimination with the areas under ROC curves (AUC) 
using an algorithm suggested by DeLong et al.33 It is sug-
gested that an AUC value of 0.5 indicates no ability to 
discriminate (might as well toss a coin), while a value less 
than 0.60 reflects poor discrimination, a value between 0.60 
and 0.75 indicates possibly helpful discrimination and 
a value more than 0.75 is considered clearly useful.34 

Moreover, measuring a model’s performance cannot be com-
pletely separated from its intended use. Therefore, in addition 
to AUC, the clinical utility was also evaluated in terms of true 
positive rate (TPR, sensitivity), true negative rate (TNR, 
specificity), accuracy, positive (LR+) and negative (LR-) 
likelihood ratio. However, these metrics require a yes/no 
intervention threshold before they can even be computed, 
something that is lacking in the BPNN model as it is not 
slated for a specific clinical program.20 For the purpose of 
comparison with LACE and HOSPITAL, we constructed the 
cut points for BPNN according to every ten percentile of the 
network prediction as the risk scores. The Youden’s index 
rule35 was used to determine the optimal cut point for the 
model in deciding the threshold of high-risk patients that 
deserved intervention. At this point, the sum of sensitivity 
and specificity as well as the differences between the true 
positive rate (TPR) and false-positive rate (FPR) are 
maximized.

Results
Study Population and 30-Day 
Readmission Rates
A total of 55,688 hospitalizations from a medical center 
during two years of 2018 and 2019 met the inclusion 
criteria described in section 2.1 and constituted the study 
population. Deletions of 43,529 include 2695 deaths dur-
ing hospitalization (2 suicides), 424 for transit or critically 
ill discharge, 40,410 for planned readmission and omission 
data. Among the 55,688 hospitalizations, 2557 (4.6%) 

were readmitted to the same division at the hospital within 
30 days while the rest of 53,131 (95.4%) were hospitaliza-
tion without 30-day readmission.

Table 2 shows that the baseline characteristics of all 
variables between patients w/ and w/o 30-day readmission 
were different with statistical significance. It is obvious 
from Table 2 that patients who readmitted within 30 days 
are mostly male (59.4% and 59.1%) and older with aver-
age age of 64.2 and 65.4 in 2018 and 2019, respectively. 
Also, patients with 30-day readmission are characterized 
by higher risk with a larger HOSPITAL score (5.09 vs 
3.38) and LACE index values (11.16 vs 7.44), longer 
average length of stays (13.43 vs 8.59), more index admis-
sion from ED, almost 2 times higher CCI comorbidities, 
more frequent visits to ED during the past six months 
(average 2.29 vs 0.87), nearly 3 times proportion of dis-
charge from an oncology service, higher numbers of hos-
pital admissions in the previous year (1.79 vs 0.87) and 
lower blood hemoglobin and sodium level at discharge. 
However, patients w/o 30-day readmission have more 
procedures during the hospital stay (0.53 vs 0.42).

Discrimination Abilities for BPNN, LACE 
Index and HOSPITAL Scores
Variables contained in the input vector of BPNN with the 
best performance are summarized in Table 1. Except for 
discharge from an oncology service and numbers of pro-
cedures during hospital stay, the rest variables of 
HOSPITAL and all variables of LACE are included in 
the input vector of BPNN. After evaluating a variety of 
neural network architectures, we found the best- 
performing model to be a three-layer neural network, 
containing single input, hidden and output layer. It has 
been suggested that 10 nodes in a hidden layer are usually 
sufficient for most forecasting problems while more nodes 
can be used but usually result in slower learning without 
an improvement in result.36 We found a marginal improve-
ment for a hidden layer with 15 nodes while the time spent 
in training is almost triple than that of a hidden layer with 
10 nodes. In addition, we also found that a hidden layer 
with 20 nodes results in an overfitting in the holdout 
sample. We chose 1000 times of training since the network 
always converges to stable when the amount of training 
reaches 1000.

Table 3 shows that the AUCs, expressed as a C statis-
tic, of BPNN, LACE index and HOSPITAL score for this 
population are 0.74 (95% CI 0.73 to 0.75), 0.73 (95% CI 
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Table 2 Descriptive Statistics for Patients w/ and w/o 30-Day Readmission

2018 2019

Risk Factor Total 

(N=26670)

DC w/o 30-Day RA 

(N = 25,430)

DC w/ 30-Day RA 

(N = 1240)

p-Value Total 

(N=29018)

DC w/o 30-Day RA 

(N =27,701)

DC w/ 30-Day RA 

(N = 1317)

p-Value

Gender 0.030 0.011

F 43.6% 43.8% 40.6% 44.2% 44.4% 40.9%

M 56.4% 56.2% 59.4% 55.8% 55.6% 59.1%

Age <0.001 <0.001

Mean (SD) 60.8 (20.56) 60.6 (20.47) 64.2 (22.15) 60.6 (20.69) 60.3 (20.59) 65.4 (21.98)

Min, Max 0.0, 106.5 0.0, 106.5 0.0, 103.9 0.0, 107.7 0.0, 107.7 0.0, 102.9

LOS <0.001 <0.001

Mean (SD) 9.67 (12.18) 9.47 (11.94) 13.78 (15.70) 8.84 (11.10) 8.59 (10.71) 13.43 (15.98)

Min, Max 1.0, 228.0 1.0, 208.0 1.0, 228.0 1.0, 315.0 1.0, 173.0 1.0, 315.0

L <0.001 <0.001

Mean (SD) 4.30 (1.74) 4.26 (1.74) 5.14 (1.56) 4.16 (1.73) 4.10 (1.72) 5.12 (1.56)

Min, Max 1.0, 7.0 1.0, 7.0 1.0, 7.0 1.0, 7.0 1.0, 7.0 1.0, 7.0

LOS � 5 <0.001 <0.001

Mean (SD) 0.58 (0.49) 0.57 (0.49) 0.81 (0.39) 0.56 (0.50) 0.54 (0.50) 0.81 (0.39)

Min, Max 0.0, 1.0 0.0, 1.0 0.0, 1.0 0.0, 1.0 0.0, 1.0 0.0, 1.0

IT <0.001 <0.001

Mean (SD) 0.38 (0.48) 0.37 (0.48) 0.61 (0.49) 0.37 (0.48) 0.35 (0.48) 0.64 (0.48)

Min, Max 0.0, 1.0 0.0, 1.0 0.0, 1.0 0.0, 1.0 0.0, 1.0 0.0, 1.0

A <0.001 <0.001

Mean (SD) 1.13 (1.45) 1.10 (1.45) 1.82 (1.47) 1.11 (1.45) 1.06 (1.44) 1.91 (1.44)

Min, Max 0.0, 3.0 0.0, 3.0 0.0, 3.0 0.0, 3.0 0.0, 3.0 0.0, 3.0

C <0.001 <0.001

Mean (SD) 1.59 (1.79) 1.55 (1.77) 2.45 (1.96) 1.55 (1.79) 1.50 (1.76) 2.48 (2.01)

Min, Max 0.0, 5.0 0.0, 5.0 0.0, 5.0 0.0, 5.0 0.0, 5.0 0.0, 5.0

Emerg visits 

past 6 mths

<0.001 <0.001

Mean (SD) 0.93 (1.61) 0.88 (1.54) 1.94 (2.52) 0.94 (1.77) 0.87 (1.61) 2.29 (3.40)

Min, Max 0.0, 31.0 0.0, 31.0 0.0, 18.0 0.0, 53.0 0.0, 38.0 0.0, 53.0

E <0.001 <0.001

Mean (SD) 0.82 (1.20) 0.79 (1.17) 1.52 (1.52) 0.81 (1.20) 0.77 (1.16) 1.66 (1.59)

Min, Max 0.0, 4.0 0.0, 4.0 0.0, 4.0 0.0, 4.0 0.0, 4.0 0.0, 4.0

HGB <0.001 <0.001

Mean (SD) 12.17 (2.22) 12.22 (2.21) 11.20 (2.18) 12.12 (2.20) 12.18 (2.19) 10.96 (2.10)

Min, Max 2.4, 26.7 2.4, 26.7 5.7, 22.1 2.8, 23.5 2.8, 23.5 5.8, 19.3

ONCLG <0.001 <0.001

Mean (SD) 0.01 (0.09) 0.01 (0.08) 0.03 (0.17) 0.01 (0.08) 0.01 (0.08) 0.03 (0.16)

Min, Max 0.0, 1.0 0.0, 1.0 0.0, 1.0 0.0, 1.0 0.0, 1.0 0.0, 1.0

Sodium <0.001 <0.001

Mean (SD) 138.18 (3.97) 138.24 (3.95) 137.09 (4.33) 138.06 (3.88) 138.13 (3.83) 136.66 (4.45)

Min, Max 107.0, 180.0 107.0, 180.0 117.0, 157.0 110.0, 176.0 110.0, 176.0 119.0, 156.0

Procedure <0.001 <0.001

Mean (SD) 0.80 (0.40) 0.80 (0.40) 0.70 (0.46) 0.52 (0.50) 0.53 (0.50) 0.42 (0.49)

Min, Max 0.0, 1.0 0.0, 1.0 0.0, 1.0 0.0, 1.0 0.0, 1.0 0.0, 1.0

(Continued)
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0.71 to 0.74) and 0.70 (95% CI 0.68 to 0.71), respectively. 
Figure 1 shows that the ROC curve of BPNN lies com-
pletely above those of the other two, indicating that 
BPNN is clearly a better prediction tool. Moreover, 
DeLong’s test demonstrated that the differences of the 
AUC value between BPNN with LACE index and 
HOSPITAL score are both statistically significant at 0.01 
level. According to Youden’s index rule,35 the optimal 
cut-off for the LACE index is a score of 10 or more 
with a sensitivity of 68.16% and specificity of 66.26%. 
The optimal threshold for BPNN is at the 20% of patients 
for the highest predicted risk with a sensitivity and 
a specificity of 70.32% and 71.76%, respectively. Both 
of which are substantially higher than those of LACE 
index. On the other hand, the optimal cut-off for the 
HOSPITAL score is 4 or more with a comparable sensi-
tivity of 78.18% but a low specificity of 51.37%. 
Furthermore, BPNN has the highest accuracy (71.68%) 

than either LACE index (66.35%) or HOSPITAL scores 
(52.66%). Also, BPNN is much more informative than the 
other two methods because of a considerably higher LR+ 
of 2.49 and a lower LR- of 0.41 compared to LACE index 
(LR+=2.02, LR-=0.48) and HOSPITAL scores (LR 
+=1.61, LR-=0.43). Moreover, BPNN is more powerful 
in ruling-in than ruling-out readmission as its LR+ is 
greater than the inverse of LR-.

Discussion
In this single-institution study, we found that the proposed 
BPNN works better for the risk prediction of the all-cause 
30-day readmission than the standardized risk prediction 
tool of LACE index and HOSPITAL score in all predictive 
criteria. The performance of the HOSPITAL score in this 
population was similar (0.70 vs 0.72) to what was reported 
in the multicenter international validation study and the 
initial derivation study.4,7 On the other hand, performance 

Table 2 (Continued). 

2018 2019

Risk Factor Total 

(N=26670)

DC w/o 30-Day RA 

(N = 25,430)

DC w/ 30-Day RA 

(N = 1240)

p-Value Total 

(N=29018)

DC w/o 30-Day RA 

(N =27,701)

DC w/ 30-Day RA 

(N = 1317)

p-Value

No. for hosp. in 

past year

<0.001 <0.001

Mean (SD) 0.88 (1.80) 0.85 (1.77) 1.58 (2.30) 0.91 (1.90) 0.87 (1.84) 1.79 (2.56)

Min, Max 0.0, 39.0 0.0, 39.0 0.0, 22.0 0.0, 30.0 0.0, 30.0 0.0, 26.0

ADM-H <0.001 <0.001

Mean (SD) 0.85 (1.18) 0.83 (1.17) 1.32 (1.37) 0.86 (1.21) 0.83 (1.19) 1.38 (1.42)

Min, Max 0.0, 5.0 0.0, 5.0 0.0, 5.0 0.0, 5.0 0.0, 5.0 0.0, 5.0

LACE <0.001 <0.001

Mean (SD) 7.85 (4.16) 7.69 (4.11) 10.93 (3.98) 7.63 (4.16) 7.44 (4.08) 11.16 (4.03)

Min, Max 1.0, 19.0 1.0, 19.0 1.0, 19.0 1.0, 19.0 1.0, 19.0 1.0, 19.0

HOSPITAL <0.001 <0.001

Mean (SD) 3.79 (2.10) 3.72 (2.07) 5.21 (2.14) 3.47 (2.18) 3.38 (2.14) 5.09 (2.22)

Min, Max 0.0, 12.0 0.0, 12.0 0.0, 12.0 0.0, 12.0 0.0, 12.0 0.0, 12.0

Abbreviations: w/ and w/o, with and without; SD, standard deviation; DC, discharge; RA, readmission; LOS, length of stay; L, LACE point for length of stay; IT, index 
admission type (whether or not from emergent admission); A, LACE point for emergent admission; C, LACE point for CCI; Emerg visits past 6 months, Emergency 
department visits in previous 6 months; E, LACE point for emergency department visits in previous 6 months; HGB, hemoglobin level at discharge; ONCLG, discharge from 
an oncology service; No. for hosp. in past year, number of hospital admissions during the previous year; ADM-H, HOSPITAL score for the numbers of hospital admissions 
during the previous year.

Table 3 AUC, Cutoff Point, Sensitivity, Specificity, LR+ and LR- of LACE, HOSPITAL and BPNN

Model AUC (S.E., 95% CI) Cutoff Point Sensitivity Specificity Accuracy LR+ LR-

BPNN 0.74 (0.01, 0.75, 0.73) 8 70.320 71.759 71.68 2.490 0.414

LACE 0.73 (0.01, 0.74, 0.71) 10 68.161 66.256 66.35 2.020 0.481

HOSPITAL 0.70 (0.01, 0.71, 0.68) 4 78.182 51.374 52.66 1.608 0.425

Abbreviations: AUC, area under the curve; LR+, positive likelihood ratio; LR-, negative likelihood ratio.
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of the LACE index in this study was considerably better 
(C-statistic of 0.73 vs 0.684) when compared with the 
derivation study.5

The 4.6% 30-day readmission rate in our study seems 
considerably lower than that of studies performed in other 
countries.4,37–39 Explanations for this comparatively lower 
readmission can be considered as follows. First, we define 
the 30-day readmission as patients with the same or related 
diagnosis who readmitted to the same department at the 
hospital after discharge. We use this definition because it is 
the way that the hospital management held each depart-
ment accountable under the MHW’s financial penalties. 
The criteria applied thus may lead to a relatively low 
readmission rate. Second, local factors may contribute to 
this relatively low readmission rate since the KVGH is the 
tertiary care center with a multidisciplinary healthcare 
management and a high proportion of patients with posi-
tive social determinants of health, such as better healthcare 
access and urban residence. Compared to the average 
unplanned readmission rates of 7.5%, 5.83% and 5.87% 
for the year 2016, 2017 and 2018, respectively, in 
Taiwan,40 the readmission rate is lower in the current 
study cohort. Moreover, this low 30-day all-cause read-
mission rate may also be explained by the coverage 

provided by NHI in Taiwan since, according to Gusmano 
et al,41 inadequate insurance coverage may result in more 
severe illness and consequently more hospitalizations. 
Similar finding has been reported in a recent study carried 
out in France where the readmission rate was 3.5% under 
a universal insurance system.11 However, several studies 
have shown mixed results regarding the effect of insurance 
types (public or private) on readmission.42–46 Future work 
is necessary to investigate the consequences of the dispar-
ity by insurance status on readmission.

In line with this, other factors including the presence of 
a complex chronic health condition, insurance type, demo-
graphic and socioeconomic factors are important in examin-
ing the rate of hospital readmission since the causes for 
readmissions are multidimensional reflecting demographics, 
disease severity, utilization, and psychosocial factors.11 For 
comparison purposes, the current study employed variables 
only from LACE index and HOSPITAL score. Several 
regression-based studies have demonstrated better prognostic 
capability using other combinations of clinical or patient 
variables. Even the LACE index itself was later improved 
by adding other covariates including patient age and sex, 
teaching status of discharge institution, number of urgent 
and elective admissions in previous year, case-mix group 

Figure 1 ROC curve for the LACE index, BPNN and HOSPITAL. 
Notes: The ROC curve illustrates the performance of the BPNN, LACE index and HOSPITAL scores for predicting all-cause 30-day readmission at different cutoff points. 
BPNN AUC: 0.74 (95% CI 0.73 to 0.75), LACE AUC: 0.73 (95% CI 0.71 to 0.74), HOSPITAL AUC: 0.70 (95% CI 0.68 to 0.71). 
Abbreviations: ROC, receiver operator characteristic; AUC, area under the curve; BPNN, BackPropagation Neural Network; LACE index, Length of stay, Acute 
admission, Charlson comorbidity index score, Emergency department visits in previous 6 months; HOSPITAL score, Hemoglobin level at discharge, Discharge from an 
Oncology service, Sodium level at discharge, Procedure during hospital stay, Index admission Type, Number of hospital Admissions during the previous year, Length of stay.
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score and number of days on alternative level of care status.6 

Although some factors, such as prior utilization, comorbid-
ities, and age, are very predictive by themselves, improving 
the predictive power beyond LACE or HOSPITAL requires 
models that capture the interdependencies and non-linearity 
of those factors more efficiently.12,20 A recent study con-
ducted in Belgium has proved that a model with a sufficient 
predictive performance can be derived from structured 
pathology data using ML techniques.18 The BPNN, by mod-
eling nonlinear interactions between factors and learning 
a feature representation from raw data automatically, pro-
vides an opportunity to capture those complexities. Further 
investigations on the trade-off between model complexity 
and goodness-of-fit are needed to determine a model that is 
well balanced between prediction performance and practical 
application as a clinical decision support system for health- 
care providers.

For the purpose of performance comparison on the 
same basis, we evaluated models using area under the 
ROC curve (AUROC), which is also adopted in the origi-
nal derivations of LACE and HOSPITAL. The ROC curve 
is commonly preferred over other measures in situations 
where the data is skewed as in this study and other health- 
care datasets.18,20 However, a growing literature has 
favored the use of precision-recall (PR) curves for binary 
decision problems in ML or data mining.18,47 Precision or 
confidence (as it is called in data mining) denotes the 
proportion of predicted positive cases that are correctly 
real positives, which is what ML, data mining and infor-
mation retrieval focus on.48 Nonetheless, evaluation of 
readmission prediction is a matter of concern in medical 
care not only for confirming the presence of readmitted but 
also to rule out the possibilities in non-readmitted 
patients.16,17 Moreover, the key difference between these 
two measures is that ROC curves will be the same no 
matter what the baseline probability is whereas precision 
is a probability conditioned on the estimate of the class 
label and will thus vary if the classifier is in different 
populations with different baseline probabilities.49 This 
indicated that AUROC is more applicable to the general-
izability of the current BPNN to other medical centers 
since different populations have different baseline prob-
abilities of readmission. To serve these purposes, we 
deemed that an AUROC is suitable to illustrate the error 
tradeoffs available with the model. Nevertheless, it should 
be noted that although AUROC provides a standard way to 
report results and compare studies, for some specific dis-
ease or situations where the consequences of readmitted is 

grave or fatal, the area under the precision-recall curve 
(AUCPR) may be useful. For example, in some cases such 
as in-hospital mortality or heart failure readmission, too 
many false positives appear in the more imbalanced-class 
data will inevitably increase the clinicians’ burden.18,50,51 

Under such circumstances, the strategy to minimize the 
number of false positives, and thus the precision is of 
paramount importance. In contrast to the usual interven-
tions to prevent readmissions, such as medical reconcilia-
tion, patient education, arranging timely outpatient 
appointments, and providing telephone follow-up, redu-
cing fatal readmissions or in-hospital mortality needs 
much more adequately and timely intensive, even futile 
care by health-care providers.18,50,51 In such cases, where 
the unusual or interesting class is rare and as the class 
distribution becomes more skewed and to avoid unneces-
sary treatment or over-allocation of hospital resources due 
to a false-positive result, evaluation based on AUCPR18,47 

or a partial AUROC52 may be preferred. The way to 
decide on which curve is better to optimize is context- 
dependent. It requires healthcare expertise in order to 
determine on where the algorithm should stand in the 
trade-off.

While AUC measures model performance across the 
full range of possible uses, in practice it is of great impor-
tance for providers or health policy makers to flag a patient 
with high risk of 30-day readmission with a threshold, 
which subsequently determines the rates of true positive 
(TP), true negative (TN), false positive (FP), and false 
negative (FN) prediction results. Choosing an appropriate 
cut-off value is of crucial importance for high-risk read-
mission since there is a tradeoff between sensitivity and 
specificity. Several criteria, mostly based on ROC analysis, 
have so far been proposed for choosing the most appro-
priate cut-off value.53 For the current scenario in predict-
ing risk of the 30-day readmission, higher sensitivity is 
more desirable since the cost of false negatives (which 
correspond to readmitted patients incorrectly predicted as 
non-readmitted) is usually much higher than the cost of 
false positives (which correspond to non-readmitted 
patients incorrectly predicted as readmitted cases) from 
the perspective of a hospital.16,54 Especially when provi-
ders face the financial penalties on higher-than-average 30- 
day readmission rates, sensitivity is more important than 
specificity to correctly identify patients at risk of read-
mission. This is because the penalties that have to be 
paid through the reduction of reimbursement for NHI 
coverages may be larger than the costs of interventions 
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to prevent 30-day readmission. However, on the other 
hand, in the circumstances where providers may consider 
the subsequent interventions being too resource-intensive 
to be arranged or the intervention costs being extraordina-
rily larger than the financial penalties, specificity may be 
preferred over sensitivity. In such situations, a lower 
threshold decided for a higher specificity will inevitably 
be compromised with a lower sensitivity. This in turn may 
result in a poor prediction ability of the model, which may 
fail to serve as an early warning for identifying patients at 
high risk of readmission. The current study shows that 
BPNN is possible to achieve higher sensitivity without 
penalizing the specificity and accuracy at its optimal 
threshold.

This study had several limitations. First, deaths outside 
hospital stays are not included in the current dataset since 
this information is not available. Ideally, if out-of-hospital 
deaths could be identified, models would consider death as 
a competing risk for readmission. Second, all data are 
from a single institution in Taiwan and the results need 
to be validated externally with other datasets in future 
studies. Third, as discussed above, we did not include 
hospital-specific or patient-related characteristics, which 
may further increase the AUC in practice for certain hos-
pitals and patient cohort. Notwithstanding the limitations, 
we believe that the results are meaningful for practical use 
in hospitals. The ease of implementation, as well as the 
relatively high reliability of predictions by BPNN brings 
new possibilities for decision makers in the health-care 
system.

Conclusion
The BPNN with more sophisticated classification techni-
ques can offer superior nonlinear feature to increase per-
formance. Our findings suggest that more attention should 
be paid to methods based on non-linear classification sys-
tems, as they lead to substantial differences in risk-scores.
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