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Schwann cell Myc-interacting zinc-finger protein 1 
without pox virus and zinc finger: epigenetic 
implications in a peripheral neuropathy

The deletion of Myc interacting zinc finger protein 1 (Miz1) 
causes a late onset neuropathy with a spontaneous remission 
(Fuhrmann and Elsässer, 2015; Sanz-Moreno et al., 2015). 
Miz1 is a zinc finger transcription factor of 794 amino acids 
(Peukert et al., 1997) which preferentially binds to a con-
sensus sequence near the initiation region of transcription 
(Wolf). Binding of other proteins to Miz1 can either stim-
ulate (e.g., Npm, p300, Smad3/4) or inhibit (e.g., Myc, Gfi1, 
TopBP, Bcl 6) its transactivating function (Herkert and 
Eilers, 2010). About the first 100 N-terminal amino acids 
comprise a poxvirus and zinc finger (POZ) domain (Bardwell 
and Treisman, 1994), while 13 zinc finger (ZF) motifs are 
scattered over the mid and C-terminal part of the protein 
with a larger gap between ZF12 and ZF13. 

Miz1 binds to DNA as a homotetramer and tetramer-
isation depends on the POZ domain (Stead and Wright, 
2014). Consequently, the deletion of the Miz1 POZ domain 
abrogates its function as a transcription factor. In a Cre/lox 
mouse model (Gebhardt et al., 2007) the Miz1ΔPOZ geno-
type was introduced into Schwann cells expressing the Cre 
recombinase under the control of the desert hedgehog (dhh) 
promotor (Sanz-Moreno et al., 2015). Mice with Miz1ΔPOZ 
Schwann cells developed a late onset demyelinating neu-
ropathy with severe hind leg paresis around day 90 after 
birth (P90), with a spontaneous remission of the clinical 
symptoms from P120 on (Fuhrmann and Elsässer, 2015; 
Sanz-Moreno et al., 2015). 

Tracing back the development of the Miz1ΔPOZ neurop-
athy, Fuhrmann et al. (2018) have shown in a recent paper 
that the upregulation of demyelinating genes and the re-
pression of myelin genes started not earlier than at P60, and 
that morphological hallmarks like myelin loops, tomacula, 
degradation of myelin by Schwann cell autophagy or mac-

rophages were not visible ultrastructurally before P60. This 
means that between the completion of the postnatal devel-
opment of the peripheral nervous system (PNS) at P30 and 
the occurrence of the Miz1ΔPOZ phenotype at P60 no ob-
vious pathological features have been observed. As expected 
from these findings, an RNAseq analysis at P30 revealed a 
small group of deregulated genes, most likely involved in 
the very initial pathogenesis of the Miz1ΔPOZ neuropathy. 
Strikingly, using gene ontology analysis, a strong correlation 
of these genes with the regulation of the cell cycle and cell 
proliferation became evident (Fuhrmann et al., 2018).

Usually the proliferation of Schwann cell precursors and 
Schwann cells peaks around birth, ceases during the postna-
tal PNS development and is completely shut off around P30 
(Brown and Asbury, 1981; Stewart et al., 1993). In contrast, 
the amount of cycling Miz1ΔPOZ Schwann cells was signifi-
cantly elevated at P30, compared with control Schwann cells, 
and the percentage of cycling Miz1ΔPOZ Schwann cells 
continuously rose until P90 and reached up to 3–4% of the 
total Schwann cell population (Fuhrmann et al., 2018). This 
confirmed that the upregulation of the cell cycle relevant 
genes was associated with a progressive increase in Schwann 
cell proliferation. So far, it is not clear whether there is a 
subpopulation of Schwann cells which remains in the cell 
cycle and expands, or whether already arrested Schwann 
cells reenter the cell cycle. Interestingly, although Schwann 
cell proliferation was still present in older Miz1ΔPOZ ani-
mals, it was 4–5 fold lower than at P90, indicating that the 
spontaneous remission and regeneration is accompanied by 
a reduction in the proliferation phenotype. 

When testing which of the genes deregulated at P30 in 
Miz1ΔPOZ animals are direct target genes of Miz1, chroma-
tin immunoprecipitation (ChIP) analysis exposed the two 
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Figure 1 Implications of histone methylation in Schwann cells upon peripheral nerve injury and development. 
(A) The Schwann cell enhancer (SCE) element of the Pou3f1 gene (also referred to as Oct6) and the myelinating Schwann cell element (MSE) of Egr2 (better 
known as Krox20) is tri-methylated at lysine (K) 9 of histone H3 (H3K9me3) in adult Schwann cells. (A’) One day post nerve lesion (dpl) histone demethylase 
complex 2 (HDAC2) recruits the transcription factor Sox10 and the histone demethylases (HDM) Kdm3a and Kdm4c to the Pou3f1 SCE element, resulting 
in H3K9me3 demethylation, enhancer activation and increased Pou3f1 expression. The same complex also activates Egr2 expression via the MSE enhancer 12 
dpl. (B) H3K37me3 silences promoter regions of the p19Arf gene in adult Schwann cells (B’). Following nerve injury or oncogenic challenges, H3K27me3 is 
removed by the HDM Kdm6b, leading to increased p19Arf gene expression and activation of Schwann cell senescence via the ARF and Rb pathway, thereby 
preventing uncontrolled Schwann cell proliferation. (C) Similarly, H3K27-tri-methylation in promoter and gene regions blocks transcription in adult Schwann 
cells of many genes, which are exclusively expressed in repair Schwann cells or upon Schwann cell development (e.g., Shh or Gdnf). The di- and tri-methyaltion 
of H3K27 is mediated by the multi-subunit histone methyltransferase (HMT) complex Prc2, consisting of RbAP48, Suz12, Ezh2 and Eed subunits. Simultane-
ously, many promoters display activating H3K4me3 histone marks. H3K4me3 might be restricted to promoter regions by the HDM Rbp2, which is able to in-
teract with Prc2. (C’) In injured nerves H3K27-tri-methylation is lost in injury-associated gene promoters and the H3K4me3 expands. A comparable situation 
can be introduced via experimental gene knock out of the Eed subunit of the Prc2 HMT complex (dashed box). (D) In many G2/M-cell-cycle associated genes 
H3K36-di-methylation increases throughout the gene body towards the 3’-end. The same distribution is reported for H3K36me3 in different cell types. Here, 
H3K36me3 recruits HDACs, which convey a repressive, closed chromatin state, to prevent spurious initiation of transcription from cryptic promoters. (D’) In 
Miz1∆POZ mice increased expression of the HDM Kdm8 results in demethylation of H3K36me2 and elevated expression of G2/M-associated genes. During 
postnatal development of control Schwann cells Kdm8 is progressively repressed (probably through Miz1), indicating that H3K36-di-methylation contributes 
to the silencing of G2/M-genes and the exit of Schwann cells from the cell cycle, possibly through the recruitment of Hdacs.
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genes Kdm8 and Znhit3 as directly bound by Miz1 at the 
transcription start site, with Znhit3 as the only gene which 
was downregulated (Fuhrmann et al., 2018). Znhit3, the 
mammalian homolog of the yeast Hit1p, is part of the as-
sembly pathway of Box C/D small nucleolar ribonucleopar-
ticles (snoRNPs) (Bizarro et al., 2014) which are involved in 
post-transcriptional rRNA modifications like 2′-O-methyl-
ation of ribose (Watkins and Bohnsack, 2012), but its func-
tion in Schwann cells remains to be elucidated. Lysin (K-) 
demethylase 8 or Jumonji C domain-containing demethy-
lase 5 (Kdm8/Jdmd5) is a histone H3 demethylase with spec-
ificity for H3K36me2 (Klose et al., 2006; Kooistra and Helin, 
2012). This demethylase has been described in the context 
of G2/M cell cycle transition, promoting the proliferation of 
cells by enhancing the expression of Cyclin A1 (Hsia et al., 
2010), by repression of Cdkn1b (encoding p21cip) (Ishimura 
et al., 2012) or by negatively regulating p53 function (Huang 
et al., 2015). In control Schwann cells Kdm8 expression was 
continuously downregulated during the postnatal develop-
ment, parallel to the shutdown of proliferation (Fuhrmann 
et al., 2018). In contrast, in Miz1ΔPOZ Schwann cells ex-
pression of Kdm8 progressively increased until P30 (Fuhr-
mann et al., 2018). These data, together with the observation 
that cells from the Schwann cell line mSC80 proliferated 
faster in the presence of Kdm8, allow the hypothesis, that 
under normal conditions Kdm8, and hence H3K36 demeth-
ylation, is involved in the exit of Schwann cells from the cell 
cycle. Postnatal repression of Kdm8 was accompanied by a 
peak expression of Zbtb17 (encoding Miz1) suggesting that 
Miz1 participates in Kdm8 repression. Taken together, the 
scenario of the Miz1ΔPOZ neuropathy could start with an 
insufficient repression of Kdm8 during the postnatal devel-
opment of the PNS, leading to an impaired cell cycle exit 
in a subset of Schwann cells which consequently keep on 
proliferating after P30. Alternatively, reduced H3K36me2 
could favor a G0/G1 transition in already arrested Miz1ΔPOZ 
Schwann cells.

The exact link between consistently cycling Schwann cells 
and the onset of demyelination is not clear. However, during 
Wallerian regeneration after nerve injury, repair Schwann 
cells, which exhibit a similar phenotype as Miz1ΔPOZ 
Schwann cells (Fuhrmann and Elsässer, 2015; Sanz-Moreno 
et al., 2015), induce dedifferentiation and demyelination of 
Schwann cells which are located distally from the initial in-
jury site, indicating that repair Schwann cells can induce de-
differentiation in a paracrine mode (Jessen et al., 2015). Fol-
lowing this notion, the onset of the Miz1ΔPOZ neuropathy 
might occur when a certain threshold of cycling Schwann 
cells is achieved, explaining the late onset of the Miz1ΔPOZ 
neuropathy. In this model Miz1 is necessary to repress 
Kdm8 expression during the postnatal development. As 
mentioned above, Miz1 represses genes in cooperation with 
different binding partners, but the corepressor in Schwann 
cells is still unknown.

A variety of epigenetic modifications have been shown in 
Schwann cells during development and nerve injury, con-
cerning histone acetylation/deacetylation, histone methyla-

tion/demethy-lation and DNA methylation/demethylation 
(Jacob, 2017; Ma and Svaren, 2018). Specifically, in response 
to nerve injuries, the Jmjc domain histone demethylases Kd-
m3A and Kdm4c build a complex with the histone deacety-
lase 2 (Hdac2) and the transcription factor Sox10. This 
protein complex demethylates the repressive H3K9me2/3 
histone mark at an enhancer element of Pou3f1 (Oct6) one 
day post lesion (dpl), leading to a higher expression of Oct6 
and, subsequently, to an inhibition of Jun expression and 
attenuated demyelination (Brügger et al., 2017) (Figure 1A, 
A’). On the other hand, the same complex also de-represses 
the Egr2 (Krox20) enhancer at 12 dpl and promotes P0 
re-expression and remyelination. Strikingly, this indicates 
that recruitment of histone deacetylases, such as Hdac2, 
does not always correlate with transcriptional repression. 
Furthermore, the proliferation of Schwann cells is limited 
upon oncogenic stimuli or nerve injury by the demethyl-
ation of H3K27me2/3 at the promotors of p19Arf, p16Ink4a 

and p15Ink4bA by enhancing the expression of these cell 
cycle inhibitor genes and by induction of senescence (Go-
mez-Sanchez et al., 2013) (Figure 1B, B’). Similar to histone 
demethylases (HDM) which function as erasers on histone 
methyl modifications, histone methyl transferases (HMT) 
can play a part as writers in regulating chromatin. For exam-
ple the polycomb repression complex 2, which catalyzes the 
methylation of H3K27, is part of an epigenetic pathway that 
represses genes which are not expressed in Schwann cells 
(such as Shh) or only during Schwann cell differentiation 
(such as Gdnf) (Ma et al., 2015) (Figure 1C, C’). Prc2 estab-
lishes the repressive H3K27me3 mark in promoter regions 
and the gene body. Simultaneously, the promoter regions 
also exhibit active H3K4me3 marks, which are possibly 
restrained to promoter regions by the HDM Rbp2, which 
is able to interact with Prc2 (Pasini et al., 2008). Following 
nerve injury or knock out of an essential Prc2 subunit, the 
H3K27me3 repressive mark is lost resulting in increased 
H3K4 trimethylation and expression of repair Schwann cell 
specific genes (e.g., Shh or Gdnf). The function of Kdm8 for 
the proliferation of Schwann cells during development by 
controlling the H3K36 methylation status adds a new facet 
of epigenetic regulation in this cell type (Fuhrmann et al., 
2018) (Figure 1D, D’). The work indicates, that Kdm8 de-
methylates H3K36me2, which is increasingly distributed 
in the distal 3’ gene body of cell cycle associated genes (e.g., 
Psrc1, Iqgap3, Top2a or Ckap2), similar to the distribution 
observed for H3K36me3 (Carrozza et al., 2005; Keogh et al., 
2005). According to the established mode of transcription-
al regulation (studied in yeast) H3K36 is trimethylated by 
Setd2, which interacts with the RNA-Polymerase, during the 
process of active transcription. Subsequently, H3K36me3 
recruits HDACs thereby introducing a closed chromatin 
state to prevent spurious transcription from cryptic pro-
moters. H3K36me2 might have a preceding function be-
cause trimethylation of H3K36 depends on the presence 
of H3K36me2. Demethylation of H3K36me2 may prevent 
HDAC recruitment and favor transcription of cell cycle as-
sociated genes during development. 
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The function of H3K36 methylation in Schwann cell biol-
ogy and the pathogenesis of neuropathies is unknown and 
the impact of Kdm8 overexpression in Schwann cells for the 
development of a demyelinating neuropathy needs further 
investigation using appropriate mouse models. Also, so far 
Kdm8 mutations or variations have not been described in 
Charcot-Marie-Tooth (CMT) patients. However, as men-
tioned above, other histone 3 methylations have been shown 
to be involved in the regulation of proliferation and differ-
entiation of Schwann cells (Gomez-Sanchez et al., 2013; Ma 
et al., 2015; Brügger et al., 2017). Moreover, in cancer cells, 
derived from other cell types, cancer cell behavior has been 
linked to epigenetic modifications of histone H3 including 
its methylation status. Histone demethylases are now targets 
for therapeutic approaches, e.g., in acute myeloid leukemia 
(Castelli et al., 2018), and a variety of inhibitors have been 
developed for the monoamino oxidase like lysine-specific 
demethylase 1 and 2 (LSD1 and 2/Kdm1A and B) and the 
Jumonji C (JmjC) histone demethylases (Jambhekar et al., 
2017). A few of them have already been used in mouse mod-
els and the best documented inhibitor is probably GSK-J1/4 
developed with its highest specificity for KDM5B, KDM5C, 
KDM6A, KDM6B (Kruidenier et al., 2012). GSK-J1/4 has 
successfully been used for the reduction of human glioma 
tissue in a mouse xenograft model (Hashizume et al., 2014) 
demonstrating the potential of Kdm inhibitors for therapeu-
tic in vivo approaches, suggesting that Kdm8 could become 
a new target in the therapy of neuropathies.
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