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LncRNA THRIL is involved in the proliferation, migration, and 
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Background: Fibroblast-like synoviocytes (FLSs), which can migrate and directly invade the cartilage and the 
bone, are crucial players in joint damage in rheumatoid arthritis (RA). Nevertheless, the detailed mechanisms 
underlying the aberrant activation of RA FLSs remain unclear. Several studies have attempted to explore the 
relationship between long non-coding RNAs (lncRNAs) and RA pathology; however, the role of lncRNAs in RA 
is unknown. The present study aimed to determine the functions of tumor necrosis factor-α and heterogeneous 
nuclear ribonucleoprotein L-related immunoregulatory lincRNA (THRIL) in RA FLSs migration and invasion.
Methods: Small interfering RNA targeting THRIL or lentivirus overexpressing THRIL was used to knockdown 
or overexpress THRIL. Quantitative reverse transcription polymerase chain reaction (PCR) was employed for the 
detection of RNA expression. The proliferation rate of RA FLSs was measured using a 5-ethynyl-2'-deoxyuridine 
(EdU) incorporation assay. Migration and invasion were detected using a transwell chamber. Downstream targets 
were identified using a human cell cycle real-time PCR array and a human cell motility real-time PCR array.
Results: A significant decrease in THRIL expression was found in RA FLSs compared with cells from 
healthy control (HC)patients. THRIL is mainly localized in the nucleus. Knockdown of THRIL increased 
the proliferation, migration, and invasion of RA FLSs. In contrast, THRIL overexpression had the opposite 
effect. THRIL knockdown increased interleukin-1β (IL-1β)-triggered expression of matrix metalloproteinase 
(MMP)-1, MMP-3, and MMP-13. THRIL overexpression led to a significant decrease in MMP-13 expression 
in response to stimulation with IL-1β. Furthermore, we observed that the expression levels of cyclin-
dependent kinase 1 (CDK1) and G2 and S phase-expressed-1 (GTSE1), both of which are associated with 
cellular mobility and proliferation, were downregulated with THRIL overexpression.
Conclusions: Reduced expression of lncRNA THRIL represses the proliferation, migration, and invasion 
of RA FLSs, suggesting that lncRNA THRIL might be a potential target for RA therapy.
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Introduction

As one of the most prevalent systemic rheumatoid 
diseases, rheumatoid arthritis (RA), which is characterized 
by synovitis and progressive joint damage, has been 
perceived as a major cause of extremity disability (1,2). To 
date, however, the etiology of RA has not yet been fully 
clarified. It has been well established that fibroblast-like 
synoviocytes (FLSs), located in the highly inflamed and 
invasive RA pannus, play vital roles in RA pathology (3-5). 
Previous studies have demonstrated that RA FLSs exhibit 
enhanced secretion of various proinflammatory cytokines, 
chemokines, and matrix metalloproteinases (MMPs) 
that participate in inflammatory infiltration and joint 
destruction. Interestingly, RA FLSs display an aggressive 
phenotype that surprisingly resembles that of tumor cells, 
including uncontrolled proliferation, resistance to apoptosis, 
invasiveness to cartilage, and migration to unaffected joints 
(3,5). Considerable research has been devoted to exploring 
the mechanisms underlying the “tumor-like transformation” 
of RA FLSs, but these mechanisms are still largely 
unknown. Therefore, identifying key regulators that control 
the pathogenetic behaviors of RA FLSs could shed light on 
novel FLS-targeted therapy for RA.

The past 2 decades have seen dramatic development in 
non-coding RNA research, especially in long non-coding 
RNAs (lncRNAs). Increasing evidence indicates that 
lncRNAs participate in regulating various cellular biological 
processes (6-8) and initiating and developing various 
diseases, including RA (9-11). Attempts have been made 
to investigate the function of lncRNAs in regulating the 
aberrant behaviors displayed by RA FLSs. Our previously 
published work identified a novel downregulated lncRNA, 
lowly expressed in rheumatoid fibroblast-like synoviocytes 
(LERFS), which suppresses the proliferation, migration, 
and invasion of RA FLSs by abrogating the expression of 
small GTPase proteins through interaction with hnRNP 
Q (12). In addition, lncRNA Fer-1-like protein 4 (FER1L4) 
has been found to modulate synovial inflammation 
by targeting nucleotide oligomerization domain-like 
receptors 5 (NLRC5) (13). However, several lncRNAs, 
including ZNFX1 antisense RNA 1 (ZFAS1) (14), gastric 
adenocarcinoma associated, positive CD44 regulator, long 
intergenic non-coding RNA (GAPLINC) (15), and P38 
inhibited cutaneous squamous cell carcinoma associated 
lincRNA (PICSAR) (16), are involved in modulating the 
activated phenotype of RA by working as competing 
endogenous RNAs through sponging microRNAs. To date, 

accumulating evidence indicates that lncRNAs could be 
pivotal regulators and promising therapeutic targets in RA; 
however, little is currently known about the function of 
lncRNAs on synovial inflammation and articular damage.

Recently, lncRNA tumor necrosis factor-α (TNF-α) and 
heterogeneous nuclear ribonucleoprotein L (hnRNPL)-
related immunoregulatory lincRNA (THRIL) has shown 
crucial regulatory effects on inflammation and immune 
response. For instance, THRIL was found to be required 
for the expression of a wide variety of cytokines, especially 
TNF-α, by interacting with hnRNPL to form a functional 
complex that binds to the promoter of target genes in 
human macrophages. In addition, the expression level of 
THRIL is associated with the severity of Kawasaki disease, 
an autoimmune-related vasculitis of children (17). T cells 
isolated from RA patients display increased expression of 
THRIL compared with T cells from healthy individuals (18).

Interestingly, a recent study reported the possible 
involvement of THRIL in regulating RA FLS growth and 
inflammatory response (19). However, it is still unclear 
whether THRIL is involved in modulating the transformed 
and invasive phenotype of RA FLSs. Therefore, in the 
present study, we primarily focused on the involvement of 
THRIL in the migration and invasion behaviors displayed 
by RA FLSs. We present the following article in accordance 
with the MDAR reporting checklist (available at https://
dx.doi.org/10.21037/atm-21-1362).

Methods

Preparation of human specimens

We used synovial tissue (ST) specimens from RA patients 
with active disease (n=10, 7 females and 3 males; age range: 
46–61 years) and osteoarthritis patients (n=5, 3 females 
and 2 males; age range: 54–66 years) who underwent 
synovectomy, joint replacement of the knee joint, or 
Parker-Pearson needle synovial biopsy at the First Affiliated 
Hospital, Sun Yat-sen University, China. All RA patients 
were diagnosed based on the 2010 ACR/EULAR criteria 
for RA classification (20). STs of healthy controls (HCs) 
(n=9, 6 females and 3 males; age range: 32–66 years) were 
obtained from individuals who underwent orthopedic 
surgery because of trauma, meniscus injury, or cruciate 
ligament injury. Individuals with manifestations of acute 
or chronic arthritis were not included. The study was 
performed in compliance with the Declaration of Helsinki 
(as revised in 2013). The Medical Ethics Committee of the 
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First Affiliated Hospital of Sun Yat-sen University approved 
all research protocols involved in this research {No. [2017]-
049}. All participants provided written informed consent.

Cell isolation and culture

ST specimens were cut into 1-mm-diameter pieces and 
washed with phosphate-buffered saline (PBS). After 
digestion for 2 h at 37 ℃ with 1 mg/mL type I collagenase 
(Sigma-Aldrich, St. Louis, MO, USA), isolated RA FLSs 
were washed with PBS and then resuspended and cultured 
adherently in Dulbecco’s modified Eagle’s medium with 
10% fetal bovine serum (FBS) under 5% CO2 at 37 ℃. 
RA FLSs from passages 4–6 were used in subsequent 
experiments.

Separation of nuclear and cytoplasm fractions

The nuclear and cytoplasmic fractions of FLSs were 
separated using a PARIS kit (Thermo Fisher Scientific, 
Waltham, MA, USA). In brief, RA FLSs at 90% confluence 

were trypsinized and lysed using cell fractionation buffer. 
After collecting the supernatant, the remaining nuclear 
pellet was washed and further lysed, and the nuclear fraction 
was collected.

Extraction of RNA and quantitative reverse transcription 
polymerase chain reaction (qRT-PCR)

Total RNA was extracted with TRIzol reagent (Thermo 
Fisher Scientific, Waltham, MA, USA), and the isolated 
RNA was quantified with a NanoDrop 2000 (Thermo 
Fisher  Scient i f ic ,  Waltham,  MA,  USA).  Reverse 
transcription of RNA was carried out with a PrimeScript 
RT kit (Takara, Tokyo, Japan). A SYBR Premix Ex Taq kit 
(Takara, Tokyo, Japan) was used for qRT-PCR, and the 
Bio-Rad CFX96 system (Bio-Rad, Hercules, CA, USA) 
was employed. Details of the primers used in amplification 
are provided in Table 1. The PCR program was set as 
follows: 95 ℃ for 30 s, followed by 40 cycles of 95 ℃ for  
5 s and then 60 ℃ for 30 s. GAPDH was used as the internal 
reference gene, and the 2–ΔΔCt method was employed to 

Table 1 Primers used in this study for the detection of the indicated RNAs

Genes Sense (5'-3') Anti-sense (5'-3')

THRIL AAACAGGTGCACGTTTCAGG CCAGGTCTCAGTTTGGAGAAGA

GAPDH GCACCGTCAAGGCTGAGAAC TGGTGAAGACGCCAGTGGA

U6 CTCGCTTCGGCAGCACA AACGCTTCACGAATTTGCGT

Actin GCAAAGACCTGTACGCCAA GGAGGAGCAATGATCTTGATCTTC

MMP1 CTCTGGAGTAATGTCACACCTCT TGTTGGTCCACCTTTCATCTTC

MMP3 CGGTTCCGCCTGTCTCAAG CGCCAAAAGTGCCTGTCTT

MMP13 TCCTGATGTGGGTGAATACAATG GCCATCGTGAAGTCTGGTAAAAT

IL6 ACTCACCTCTTCAGAACGAATTG CCATCTTTGGAAGGTTCAGGTTG

TNF GAGGCCAAGCCCTGGTATG CGGGCCGATTGATCTCAGC

MKI67 AGAAGAAGTGGTGCTTCGGAA AGTTTGCGTGGCCTGTACTAA

CDC20 GACCACTCCTAGCAAACCTGG GGGCGTCTGGCTGTTTTCA

CDK1 AAACTACAGGTCAAGTGGTAGCC TCCTGCATAAGCACATCCTGA

AUKRB CAGTGGGACACCCGACATC GTACACGTTTCCAAACTTGCC

GTSE1 CAGGGGACGTGAACATGGATG ATGTCCAAAGGGTCCGAAGAA

AUKRB, aurora kinase B; CDC20, cell division cycle 20; CDK1, cyclin-dependent kinase 1; GAPDH, glyceraldehyde-3-phosphate 
dehydrogenase; GTSE1, G2 and S phase-expressed-1; IL-6, interleukin 6; MKI67, markers of proliferation Ki-67; MMP, matrix 
metalloproteinase; THRIL, tumor necrosis factor-α and heterogeneous nuclear ribonucleoprotein L-related immunoregulatory lincRNA; 
TNF, tumor necrosis factor.
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calculate gene expression.

Transfection of small interfering RNA (siRNA)

siRNAs targeting THRIL, scramble control siRNA, 
and CY3-labeled siRNA were synthesized at RiboBio 
(Guangzhou, China). RA FLSs at 70% confluence were 
transfected with the indicated siRNA with Lipofectamine 
RNAiMAX (Thermo Fisher Scientific, Waltham, MA, 
USA). The target sequences of the indicated genes are 
shown in Table 2.

Infection of overexpression lentivirus

Lentiviruses overexpressing THRIL and vector control 
lentiviruses were constructed at GeneChem (Shanghai, 
China). Cells at 60% confluence were infected with 
lentivirus particles (MOI =30) in the presence of 10 µg/mL 
polybrene.

EdU incorporation assay

The Cell-Light EdU Apollo567 In Vitro Kit (RiboBio, 
Guangzhou, China) was utilized to evaluate the proliferation 
rate. FLSs at a confluence of 80% were incubated with 
EdU solution (1:1,000) for 8 h and then subjected to EdU 
and Hoechst staining. EdU-positive cells were regarded 
as proliferating cells and counted under a fluorescence 
microscope.

Apoptosis assay

The cell apoptosis rate of FLSs was measured by annexin 
V and 7-AAD staining. Briefly, FLSs were washed with 
PBS and then suspended in 200 µL 1× binding buffer;  

5 µL annexin V-APC (BD Bioscience, San Jose, CA, USA) 
was added to the cell suspension and incubated for 15 min 
at room temperature away from light. Then 5 µL 7-AAD 
(BD Biosciences, San Jose, CA, USA) was added, and the 
samples were analyzed by flow cytometry.

Migration and invasion assay

Transwell inserts (Corning, NY, USA) with 8 µm pores 
were used to evaluate migration. Briefly, after counting and 
resuspending in serum-free medium, RA FLSs (2.5×104/
well) were seeded into transwell inserts, and cell culture 
medium supplemented with 10% FBS was added to the 
wells below the chambers for directed chemotaxis. Six 
hours later, after removing the cells remaining above the 
transwell membrane using cotton swabs, RA FLSs that 
migrated across the transwell membrane were visualized 
by crystal violet staining and counted manually under an 
optical microscope (magnification 100×). To detect the 
invasion rate, transwell chambers precoated with Matrigel 
(BD Biosciences, San Jose, CA, USA) were utilized, 5×104 
cells were seeded, and a medium with 15% FBS was used as 
a chemoattractant. After 30 h, the number of invading cells 
was counted as described for the migration assay.

qRT-PCR array

To identify target genes regulated by THRIL, RT² Profiler 
PCR Array Human Cell Cycle and RT² Profiler PCR Array 
Human Cell Motility (Kang Chen Biotech, Shanghai, 
China) were used. In brief, RNA of RA FLSs was extracted 
with TRIzol and cleaned using the RNeasy MinElute 
Cleanup Kit (Qiagen, Duesseldorf, Germany) to remove 
contaminating DNA. RNA was then reverse transcribed to 
produce cDNA using the RT2 First Strand Kit (Invitrogen, 
Carlsbad, CA, USA) and amplified by PCR using RT2 
SYBR Green qPCR Master Mix (Invitrogen, Carlsbad, CA, 
USA). Five housekeeping genes, including glyceraldehyde-
3-phosphate dehydrogenase (GAPDH), actin beta (ACTB), 
ribosomal protein lateral stalk subunit P0 (RPLP0), 
hypoxanthine phosphoribosyltransferase 1 (HPRT1), and 
beta-2-microglobulin (B2M), were incorporated in the 
assay, and the average Ct values were calculated.

Statistical analysis

GraphPad Prism 8 for Windows (GraphPad, La Jolla, CA, 
USA) was used to carry out statistical analyses and draw 

Table 2 siRNA sequence targeting THRIL

Sequences Target sequence for THRIL siRNAs

siTHRIL-001 CCACCAATCCCTAAGCTGT

siTHRIL-002 GTGTGTAGTTCCACGTCAA

siTHRIL-003 GCCACTTTCTTGCTCAGTC

Negative control siRNA Purchased from RiboBio  
(siN0000001-1-5)

siRNA, small interfering RNA; THRIL, tumor necrosis factor-α 
and heterogeneous nuclear ribonucleoprotein L-related 
immunoregulatory lincRNA.
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statistical charts. The values shown were pooled from 
at least 3 independent experiments and presented as the 
mean value ± standard error of the mean. To minimize 
variability between independent experiments using FLSs 
from different RA patients, some data were normalized 
and presented as the fold change over the indicated 
control group. A 2-tailed Student’s t-test was employed for 
comparisons between 2 groups. For comparisons between 
3 or more different groups, 1-way analysis of variance 
with Bonferroni’s post-hoc test was employed. P<0.05 was 
considered to be statistically significant.

Results

Decreased expression of lncRNA THRIL in FLSs from RA 
patients

First, qRT-PCR was employed for the quantification 
of THRIL expression in FLSs. As shown in Figure 1A, 
RA FLSs displayed significantly decreased expression of 
THRIL compared with HC FLSs. It is now well established 
that pro-inflammatory cytokines are key components 

that form the inflammatory microenvironment in the 
rheumatoid synovium. We evaluated the influences of 
cytokine stimulation on the expression of THRIL in RA 
FLSs. However, unexpectedly, THRIL expression in RA 
FLSs was not influenced by stimulation with interleukin 
(IL)-1β ,  IL-17A, TNF-α ,  PDGF, or LPS for 24 h  
(Figure 1B). In addition, treatment with dexamethasone, but 
not methotrexate, increased THRIL expression in RA FLSs 
(Figure 1C).

Next, to explore the expression pattern and intracellular 
localization of THRIL, we separated the nuclear and 
cytoplasmic fractions of RA FLSs. We found that THRIL 
was primarily expressed in the nucleus (Figure 1D), 
suggesting that THRIL probably exerts its regulatory 
function at the transcription level in RA FLSs, as previously 
reported for macrophages (17).

THRIL is a negative regulator of RA FLS proliferation

siRNAs targeting THRIL were transfected into RA FLSs, 
and the silencing efficiency was confirmed (Figure 2A,2B). 

Figure 1 Expression of tumor necrosis factor-α and heterogeneous nuclear ribonucleoprotein L-related immunoregulatory lincRNA (THRIL) 
in rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLSs) and healthy control (HC) FLSs. (A) Differential expression of THRIL in 
FLSs from HCs (n=9), osteoarthritis (OA) patients (n=5) and RA patients (n=10). ● HC individuals, ■ OA patients, ▲ RA patients. **P<0.01 
vs. HC. (B) Expression of THRIL under treatment with various cytokines. RA FLSs were stimulated with interleukin (IL)-1β (10 ng/mL), 
IL-17A (10 ng/mL), TNF-α (10 ng/mL), platelet derived growth factor(PDGF) (10 ng/mL), or Lipopolysaccharide (LPS) (100 ng/mL) 
for 24 h. (C) Effect of dexamethasone (DEX) or methotrexate (MTX) on THRIL expression in RA FLSs. RA FLSs were treated with DEX  
(1 μg/mL) or MTX (10 μg/mL) for 24 h. Ct values were normalized to glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Data 
shown are the mean ± standard error of mean from at least 3 independent experiments. *P<0.05 vs. control (C). (D) THRIL expression in 
cytoplasmic and nuclear fraction of FLSs. Actin served as a cytoplasmic marker and U6 served as a nuclear marker.
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Transfection of all 3 siRNAs successfully decreased the 
expression level of THRIL, and siTHRIL03, which showed 
the greatest silencing efficiency, was chosen for the 
subsequent experiments. A lentivirus-based overexpression 
strategy was employed to increase the expression of THRIL 
(Figure 2C,2D).

Because the significant proliferation and reduced 
apoptosis of RA FLSs contribute to synovial hypertrophy 
in the articular cavity, we investigated the role of THRIL 
in controlling the proliferation rate of RA FLSs. We found 
that silencing THRIL with siRNA significantly increased 
the percentage of proliferating cells, as measured by EdU 
staining (Figure 3A). In contrast, as shown in Figure 3B, 
THRIL overexpression by lentivirus markedly decreased 
the proliferation rate compared with that of the empty 
vector control in RA FLSs. However, we observed that 
the proliferation of HC FLSs with THRIL knockdown or 
overexpression was not different from that of the control 

siRNA or empty vector control group (Figure 3C,D). 
We further demonstrated that THRIL knockdown or 
overexpression did not influence the apoptosis of RA FLSs 
(Figure 3E,3F) and HC FLSs (Figure 3G,3H). 

THRIL represses the migration and invasion of RA FLSs

Another key pathogenic feature of RA FLSs is tumor-like 
aggressive behavior characterized by enhanced migration 
and invasion ability, which is the main cause of bone and 
cartilage destruction in joints. To establish whether the 
aberrant expression of THRIL modulates the migration 
of RA FLSs, we performed a transwell assay to measure 
chemotaxis migration. We found that siRNA-mediated 
knockdown of THRIL promoted the migration of RA FLSs 
(Figure 4A). We then evaluated the influence of THRIL on 
RA FLSs invasion through a transwell chamber precoated 
with Matrigel. The findings indicated that knockdown of 

Figure 2 Efficiency of tumor necrosis factor-α and heterogeneous nuclear ribonucleoprotein L-related immunoregulatory lincRNA 
(THRIL) knockdown or overexpression in rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLSs). (A) CY3-labeled small interfering 
RNA (siRNA) was transfected to RA FLSs at a final concentration of 50 nM and visualized under a fluorescence microscope after 48. Red 
fluorescence represents CY3-labeled siRNA. Original magnification 100×. (B) RA FLSs were transfected with scramble siRNA (siNC) or 
THRIL siRNA (siTHRIL), and efficiency of THRIL silencing was determined by quantitative reverse transcription polymerase chain reaction 
(qRT-PCR). (C) RA FLSs were infected with Green Fluorescent Portein (GFP)-carrying lentivirus at a Multiplicity of Infection (MOI) of 
30 and observed after 72 h. Green fluorescence represents GFP-positive cells. Original magnification 100×. (D) Expression level of THRIL 
in RA FLSs after infection with empty vector lentivirus (Vector) or THRIL overexpression lentivirus (THRIL OE) was measured by qRT-
PCR. Data shown are the mean ± standard error of mean from at least 3 independent experiments. *P<0.05, ****P<0.0001 vs. control small 
interfering RNA (siNC) or Vector.
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THRIL significantly increased the invasion of RA FLSs 
(Figure 4B). We also observed that RA FLSs overexpressing 
THRIL exhibited significantly decreased migration and 
invasion rates than the control group (Figure 4C,4D). 
However, we found that the migration and invasion of HC 
FLSs with THRIL knockdown or overexpression were not 
different from that of the control siRNA or empty vector 
control group (Figure 4E-4H).

Modulation of the expression of MMPs and 
proinflammatory cytokines by THRIL in RA FLSs

RA FLSs have been found to secrete various MMPs in 
response to inflammatory stimulation, which directly 
degrade the extracellular matrix and facilitate invasion of 
RA FLSs into the articular cartilage and bones. Suppression 
of MMP expression might be an efficient strategy to block 
joint destruction. Interestingly, we found that silencing 
THRIL remarkably increased the mRNA expression of 
MMP-1, MMP-3, and MMP-13 in IL-1β-treated RA FLSs 
(Figure 5A). However, THRIL overexpression resulted in 
a significant decrease in the IL-1β-triggered expression of 
MMP-13 (Figure 5B). THRIL overexpression also slightly 
reduced the expression of MMP-1 and MMP-3 but had 
no statistical significance (Figure 5B). We also observed 
that silencing of THRIL increased the IL-1β-triggered 
expression of MMP-1 mRNA in HC FLSs; however, we 
found that THRIL knockdown or overexpression did not 
affect the expression of MMP-3 and MMP-13 in IL-1β-
treated HC FLSs (Figure 5C,5D). In addition, we found 
that THRIL knockdown increased the expression of IL-6 
and TNF-α, 2 important pro-inflammatory cytokines in RA 
(Figure 5E).

Downstream molecular targets of THRIL in RA FLSs

To further explore how THRIL regulates RA FLSs function, 
2 RT-PCR arrays designed to measure 84 genes related 
to the human cell cycle and 84 genes associated with 
human cell motility were used to identify target genes 
that are regulated by THRIL overexpression. As shown in  
Figure 6A,6B, a large panel of genes involved in cell 
proliferation and motility was found to be regulated by 
THRIL. The top 5 differentially expressed genes regulated 
by THRIL overexpression were further confirmed by qRT-
PCR in RA FLSs infected with THRIL overexpression 
lentivirus. We found that THRIL overexpression decreased 
the expression of MKI67, CDC20, CDK1, AURKB, and 

GTSE1 (Figure 6C).

Discussion

In the current study, we reported that the lower-than-
normal expression of lncRNA THRIL negatively regulated 
the proliferation rate, migration, and invasion of RA FLSs. 
In addition, THRIL modulated the expression of MMP-1,  
MMP-3, and MMP-13. Furthermore, we showed that 
THRIL regulated various genes associated with the cell cycle 
and cell motility. Our findings suggest that downregulated 
THRIL may contribute to excessive hyperplasia and invasive 
behaviors of rheumatoid pannus, ultimately leading to joint 
destruction.

It has been shown that some lncRNAs participate in RA 
pathogenesis (10,21); however, their contribution to RA 
remains largely elusive. In the current investigation, we 
established decreased expression levels of lncRNA THRIL 
in RA FLSs compared to HC cells. THRIL knockdown 
or overexpression increased or decreased the migration, 
invasion, and proliferation rates of RA FLSs. Collectively, 
our data suggest that THRIL negatively regulates the 
tumor-like aggressiveness of RA FLSs. Our previous 
work demonstrated that the downregulated lncRNA 
LERFS negatively regulated migration and invasion by 
interacting with hnRNP Q in RA FLSs (12). Increasing 
evidence indicates an important role of FLSs in promoting 
rheumatoid synovial aggression (3,22); therefore, our 
findings provide a potential novel target for controlling 
synovitis and joint damage in RA. Consistent with our 
results, THRIL was reported to be downregulated in 
gastric cancer tissues and non-small cell lung cancer 
tissues obtained from males compared with adjacent non-
cancerous tissues (23,24). A recent report showed that 
THRIL modulated the migration and invasion of H9C2 
cells (25). Another study indicated that THRIL was involved 
in the epithelial-to-mesenchymal transition phenotype of 
osteosarcoma cells (26).

MMPs, primarily secreted by FLSs in rheumatoid ST, 
are involved in the degradation of the extracellular matrix, 
leading to cartilage damage and bone erosion in RA joints. 
Pro-inflammatory cytokines, especially IL-1β, are important 
inducers of MMP production. Nonetheless, the detailed 
mechanisms responsible for the expression of MMPs in RA 
FLSs are not well understood. Here, we found that THRIL 
knockdown or overexpression increased or decreased the 
expression of MMP-13 with IL-1β stimulation of RA FLSs. 
Our findings indicated that THRIL negatively regulates 
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MMPs expression, which further supports the notion that 
THRIL is a powerful regulator in rheumatoid synovial 
aggression and joint damage.

In addition, we showed the suppressive effect on the 
proliferation of RA FLSs by THRIL. Similarly, a recent 
study indicated that silencing THRIL reversed TNF-α-
induced reduction of cell viability and enhancement of 
apoptosis (19). The unrestrained proliferation of resident 
FLSs is one of the leading contributors to the formation of 

rheumatoid pannus and joint destruction in RA; therefore, 
our findings suggest that the decreased level of THRIL 
in RA FLSs might be associated with abnormal synovial 
hyperplasia in RA. In line with our findings, it has been 
shown that THRIL is involved in the proliferation of 
endothelial progenitor cells and osteosarcoma cells (26,27). 

To further investigate the downstream molecular 
mechanisms and pathways through which THRIL modulates 
the pathogenic behaviors of RA FLSs, we employed real-

Figure 5 Modulation of interleukin (IL)-1β-induced expression of matrix metalloproteinases (MMPs) and pro-inflammatory cytokines 
in rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS) by tumor necrosis factor-α (TNF-α) and heterogeneous nuclear 
ribonucleoprotein L-related immunoregulatory lincRNA (THRIL). Cells were transfected with THRIL small interfering RNA (siTHRIL) or 
control siRNA (siNC) for 48 h or infected with THRIL overexpression lentivirus (THRIL OE) or empty vector lentivirus (Vector) and then 
stimulated with IL-1β (10 ng/mL) for 24 h. mRNA expression of MMPs and cytokines was quantified by quantitative reverse transcription 
polymerase chain reaction (qRT-PCR). (A,B) Effect of THRIL knockdown (A) or overexpression (B) on the expression of MMP-1, MMP-3, 
and MMP-13 in RA FLSs. (C,D) Effect of THRIL knockdown (C) or overexpression (D) on the expression of MMP-1, MMP-3, and MMP-
13 in HC FLSs. (E) Effect of THRIL knockdown on the expression of IL-6 and TNF-α in RA FLSs. Data are presented as mean ± standard 
error of mean from at least 3 independent experiments. *P<0.05 vs. siNC or Vector.
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Figure 6 Downstream target genes regulated by tumor necrosis factor-α and heterogeneous nuclear ribonucleoprotein L-related 
immunoregulatory lincRNA (THRIL). Rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLSs) infected with control lentivirus (Vector) 
or THRIL overexpression lentivirus (THRIL OE) were subjected to human cell cycle real-time polymerase chain reaction (PCR) array (A) 
or human cell motility real-time PCR array (B). (C) Top 5 differentially expressed genes regulated by THRIL overexpression were further 
validated by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The results are shown as mean ± standard error of 
mean. *P<0.05, **P<0.01,***P<0.001, and ****P<0.0001 vs. Vector.
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time PCR arrays to identify genes modulated by THRIL. 
A series of typical cell cycle-related genes were shown to 
be regulated by THRIL overexpression, which was further 
confirmed by qRT-PCR performed in RA FLSs infected 
with THRIL overexpression lentivirus. Among those 
differentially expressed genes, markers of proliferation 
Ki-67 (MKI67), cell division cycle 20 (CDC20), cyclin-
dependent kinase 1 (CDK1), aurora kinase B (AUKRB), and 
G2 and S phase-expressed-1 (GTSE1) were confirmed to 
be downregulated by overexpression of THRIL. MKI67 is a 
nuclear protein required to disperse mitotic chromosomes 
during mitosis and proliferation (28). CDC20  and 
AUKRB are important regulators participating in mitotic 
checkpoints and cell cycle regulation (29,30). CDK1, also 
known as CDC2, a member of the cyclin-dependent kinase 
family, is essential for controlling the cell cycle and mitosis. 
Constitutive and deregulated CDK1 activation has been 
found to contribute to the aberrant proliferation of cancer 
cells by driving cell cycle progression (31,32).

Interest ingly,  in addit ion to driving cel l  cycle 
progression, CDKs also carry out important roles in the 
modulation of the actin cytoskeleton and cell migration (33). 
Moreover, small-molecule inhibitors of CDKs are effective 
in treating experimental models of RA (34,35), suggesting 
a potential treatment strategy for RA by targeting CDK-
related pathways. GTSE1 has been previously reported 
to contribute to cancer progression and metastasis by 
promoting cell proliferation and invasion (36,37).

As previously reported, THRIL is a multifunctional 
lncRNA that has important roles in various cellular 
processes  by  t ranscr ipt iona l  regula t ion  o f  gene  
expression (17) and post-transcriptional regulation, such as 
targeting microRNAs (25,38). Our data indicate that the 
modulation of THRIL in the invasion and proliferation of 
RA FLSs might be associated with its role in regulating the 
gene expression of CDK1 and GTSE1. Nevertheless, we 
do not rule out the possibility that some other mechanisms 
might be engaged in the regulation of RA FLSs by 
THRIL. Further studies are required to address the precise 
molecular mechanisms by which THRIL regulates the 
aggressive and proliferative behaviors of RA FLSs.

Conclusions

Our findings provide new evidence that the downregulated 
expression of THRIL negatively regulates the aggressive 
behavior of RA FLSs, suggesting that THRIL could be a 

novel key regulator controlling synovial hyperplasia and 
joint damage in RA.
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